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ABSTRACT OF THE DISSERTATION 

MULTI-CRITERIA EVALUATION IN SUPPORT OF THE DECISION-MAKING 

PROCESS  

IN HIGHWAY CONSTRUCTION PROJECTS  

by 

Jianmin Jia 

Florida International University, 2017 

Miami, Florida 

Professor Mohammed Hadi, Major Professor 

The decision-making process in highway construction projects identifies and selects the 

optimal alternative based on the user requirements and evaluation criteria. The current 

practice of the decision-making process does not consider all construction impacts in an 

integrated decision making process. This dissertation developed a multi-criteria 

evaluation framework to support the decision-making process in highway construction 

projects. In addition to the construction cost and mobility impacts, reliability, safety, and 

emission impacts are assessed at different evaluation levels and used as inputs to the 

decision making process. 

Two levels of analysis, referred to as the planning level and operation level, are 

proposed in this research to provide input to a Multi-Criteria Decision-Making (MCDM) 

process that consider  user prioritization of the assessed criteria. The planning level 

analysis provides faster and less detailed assessments of the inputs to the MCDM 

utilizing analytical tools, mainly in a spreadsheet format. The second level of analysis 

produces more detailed inputs to the MCDM and utilizes a combination of mesoscopic 
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simulation-based dynamic traffic assignment tool, and microscopic simulation tool, 

combined with other utilities.     

The outputs generated from the two levels of analysis are used as inputs to a 

decision making process based on present worth analysis and the Fuzzy TOPSIS 

(Technique for Order Preference by Similarity to Ideal Situation) MCDM method and the 

results are compared.   
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INTRODUCTION 

Motivation 

According to a Federal Highway Administration report (FHWA, 2010), the total vehicle 

miles traveled (VMT) on U.S. roadways increased from 1.5 trillion to 3.0 trillion from the 

1980s to 2010s, while the total length of public roads only increased by about 5%. To 

keep up with the pace of the growing need to improve network performance, the 

investments in adding roadway network capacity and in maintaining and replacing 

existing infrastructure increased significantly. As a result, the number of construction 

projects has increased over the years. In order to minimize the adverse traffic disruptions 

while preserving quality of work and fulfilling the budget of constraints, transportation 

departments and agencies across the country are dealing with bigger challenges created 

by these construction activities.  

Although there are various traffic analysis tools that can assist decision makers 

with a better understanding of highway construction projects, there is a need for an 

integrated process of decision making that utilizes the appropriate level of analysis to 

generate the parameters required for the decision problem at hand. The parameters 

required for the decision process includes, in addition to direct and indirect construction 

costs, road user costs, that will be an important focus of this dissertation. Direct 

construction costs include the material, labor, and equipment costs needed during 

construction. The indirect costs include preliminary engineering, right-of-way, 

construction engineering, and inspection costs.  
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A primary focus of this dissertation is estimating road user costs as important 

components of the decision making process. These costs can be used in a life-cycle cost 

assessment or in utility-based decision making process. Construction projects can result 

in significant mobility, reliability, environmental, and safety impacts to roadway users. 

Work zones can often reduce roadway capacity, causing congestion and traveler delays, 

and can create irregular traffic flow. These factors, as well as the changing lane 

configurations and other factors in work zones, can lead to safety hazards. There are more 

than 500 fatalities and 37,000 injuries in work zones every year (FHWA, 2010). 

Construction projects can also cause inconveniences to local businesses and communities, 

and can create noise and environmental impacts. The FHWA Federal Highway 

Administration’s (FHWA’s) Road User Cost Manual (FHWA, 2011) provides a high-

level framework to estimate the components of user costs, including mobility, vehicle 

operating cost (VOC), safety and emission. However, the report does not specifically 

address the tools and methods needed to perform the actual assessments of these 

parameters at different levels of the analysis (planning versus operations) and how these 

parameters can be best used in a multi-criteria decision making process. 

With the increasing need to analyze and evaluate road user costs in transportation 

projects, several traffic analysis tools are available to assist traffic engineers, planners, 

and traffic operations professionals to perform the analysis. These tools can be 

categorized into multiple levels or multiple resolutions, including a sketch planning level, 

travel demand model post-processers, freeway and urban street facility analysis 

procedures of the Highway Capacity Manual (HCM), traffic simulation, and dynamic 
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traffic assignment tools, according to the Traffic Analysis Toolbox Volume I (FHWA, 

2004). 

Several sketch planning tools were developed in a spreadsheet environment and 

made available to the FHWA and state departments of transportation to assess work zone 

impacts on mobility. For example, the Q-DAT tool developed by the Texas 

Transportation Institute is a simple Microsoft Excel spreadsheet-based tool for 

construction impact analysis. Two types of analysis can be conducted using this tool: 

“Delay and Queue Estimation” and “Lane Closure Schedule.” Q-DAT requires simple 

inputs and can produce estimates of queues and delays, which is applicable for planning 

purposes. However, only mobility impacts caused by work zones are assessed, and the 

outputs are not provided as road user costs directly. QuickZone, developed by the FHWA, 

is also a spreadsheet format, but it is a more detailed sketch planning analysis tool than 

Q-DAT. It is capable of modeling a facility with construction activities and associated 

alternative routes. The estimated work zone mobility impacts include traffic delays, 

queue, and associated delay costs. However, QuickZone mainly focuses on the mobility 

impacts of user costs, and the percentage of diverted traffic to alternative routes must be 

input by the user. Typically, the sketch planning tool utilizes daily or hourly traffic 

demands and capacity estimates to quantify work zone impacts. The results are less 

accurate than using more advanced approaches, such as simulation-based analysis tools. 

The HCM 2010 provides macroscopic procedures to calculate the performance of 

freeways and urban streets. These procedures were recently updated in the new version of 

the HCM 2010 by incorporating a work zone capacity analysis developed by the National 

Cooperative Highway Research Program (NCHRP) project (Kittelson & Associates, 
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2014). The corresponding computational engines for freeway and urban street facilities 

are FREEVAL and STREETVAL, respectively. Recently, these two tools were further 

enhanced to model travel time reliability with the updated names of FREEVAL-RL and 

STREETVAL-RL. In addition, the updated HCM work zone procedure mentioned above 

has been incorporated into these models. These models require time-variant traffic 

parameter inputs for every 15 minutes and can be considered as macroscopic simulation 

models and can provide higher levels of analyses than those provided by the sketch 

planning procedures mentioned earlier.  

The Work Zone Impacts and Strategies Estimator (WISE) is a product produced 

by the SHRP2 R11 Project. It is a decision-support tool used to assist agencies with 

evaluating the impacts of work zones and work zone-related mitigation strategies along a 

given corridor or for a network (Pesesky et al., 2012). WISE is able to evaluate renewal 

projects at both the planning and operational levels. When used as a planning tool, the 

user can evaluate the effectiveness of various travel demand and construction duration 

strategies for multiple projects by comparing two main measures: construction cost and 

traveler delay cost. When used at the operational level, time-dependent congestion and 

diversion caused by congestion can be captured by a simulation-based dynamic traffic 

assignment (DTA) tool. More accurate estimation of the diversion due to the impacts of 

capacity reduction resulting from work zones can be obtained using the operation module 

based on the simulation outcomes.  The user can model whether to change the sequence 

of projects based on the diversion rate results. However, WISE assumes that travelers 

achieve a user equilibrium in the assignment and does not assess other traffic parameters 

for use in an integrated decision making process. 
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As can be seen from the introduction above, various traffic analysis tools at 

different levels are available for use at the planning and operational stage of construction 

projects. However, these tools mainly focus on mobility impacts, including delay and 

queueing analysis. Estimation of other road user elements, such as reliability, mobility, 

worker safety, environmental, and business impacts, and integrating these estimates in a 

comprehensive decision making process at different analysis levels have not been 

investigated in the analysis.  In addition, the impacts of using different levels of analysis 

have not been identified to compare the conclusions reached when different levels of 

analysis are used to produce the inputs to the decision making process.  

There are a number of analysis components, including the capacity impacts as a 

function of construction zone, lane-changing behavior impacts, and the diversions to  

alternative routes that have not been well integrated in the decision making process.  

Strategic and microscopic Driver behavior is an important consideration in the traffic 

analysis of work zones. Due to the adverse traffic impacts from construction activities on 

freeways, a proportion of travelers are likely to choose detours close to work zones. 

Existing practice when using traffic analysis tools is that demands are user inputs and in 

most cases diversion is either not considered or based on engineering judgment. To 

estimate accuracy behavioral models and/or dynamic traffic assignment should be used. 

However, the applications of such models have to consider the day-to-day learning 

associated with work zones. Microscopic traffic behavior including car following and 

lane-changing impacts capacity drops at the work zones. 

The decision-making process that uses the construction and user impact 

parameters can be based on present worth analysis, MCDM, or a combination of the two. 
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Present worth analysis is used to assist decision makers when evaluating and comparing 

one or more alternatives to a “base case” of construction projects. A major limitation of 

present worth analysis is that several components of the total costs are difficult to convert 

or cannot be converted into monetary terms. In addition, agency preferences and 

priorities cannot be accounted for with the present worth analysis approach. This is the 

reason the Multi-Criteria Decision Making (MCDM) process is suggested as an 

alternative analysis. It should be mentioned that the life-cycle cost can be considered a 

component of the MCDM.  

This dissertation will recommend and compare a combined present worth analysis 

and MCDM framework. 

 Goal and Objectives 

The goal of this research is to develop a framework that can be used to support the 

decision-making process of highway construction projects for application at the planning 

and operation levels. The framework will allow selections between construction 

alternatives based on a combination of direct construction costs, indirect construction cost, 

and user costs. The construction costs will be provided by others. The user cost 

parameters required as inputs to the framework will be estimated in this study utilizing a 

multi-resolution modeling that ranges from a sketch planning level to microscopic 

simulation, as appropriate for the project at hand. The specific objectives are as follows:  

1) Recommend a present worth analysis and an MCDM approaches for the 

utilization in construction alternative selection decision-making processes. These 



7 
 

approaches will combine road user costs and construction costs to assist agencies 

in their decisions.  

2) Identify multi-resolution tools, methods and procedures based on existing 

modeling tools and procedures to estimate all user cost components for use as 

inputs to the present worth analysis and MCDM, including mobility, reliability, 

motorist safety, and environmental impacts for different analysis levels.  

3) Develop a method to estimate the impacts of driver behaviors, including route 

diversion and lane merging, under different traffic conditions resulting from 

construction activities.  

4) Compare the alternative analysis results when using the present worth analysis 

and the MCDM method and different levels of cost estimation methods and tools. 
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 Dissertation Organization 

This dissertation is organized into five chapters. Chapter 1 introduce the background of 

this dissertation research, describes the problems to be solved, and sets the goal and 

objectives to be achieved. 

Chapter 2 presents an extensive literature review of the existing studies on the 

road user costs, including mobility, safety, reliability, emission, business and freight 

commodity impacts, as well as driver’s diversion behaviors and lane-merging behaviors 

at work zones. The main purpose of this review is to understand the current practice 

related to road user cost estimation and work zone modeling. 

Chapter 3 describes the methodology developed in this dissertation for the 

proposed multi-criteria evaluation framework in support of the decision-making process 

in highway construction projects, which includes model and data preparation, 

performance measure estimation, and monetary and non-monetary evaluation.  

Chapter 4 details the implementation of the developed framework to assess the I-

4/Graves Interchange and I-595 work zone alternatives, which are used as the two case 

studies in this dissertation, followed by an evaluation of the framework’s performance. 

Chapter 5 summarizes the findings from this dissertation, highlights the research 

contributions, and provides recommendations for future studies. 
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 LITERATURE REVIEW 

 Critical Components of Road User Costs (RUC) 

2.1.1 Mobility 

According to the Work Zone Safety and Mobility Rule (FHWA, 2004), mobility can be 

defined as the ability to move from one place to another and is significantly dependent on 

the availability of transportation facilities and on system operating conditions. Traveling 

through or around work zone areas tend to take more time due to the reduction in facility 

capacity. A number of traffic mobility performance measures are commonly used in 

traffic analysis, including travel delay, speed, travel time, number of stops, vehicle miles 

traveled and queue lengths. 

According to the FHWA’s “Work Zone Road User Cost: Concepts and 

Applications” report (FHWA, 2011), mobility impacts are to be assessed based on travel 

delay, which is convenient when converting to monetary values. In order to compute 

travel delay, the speed change delays and the stopping delay and queue delay are defined 

in the report, and corresponding computing procedures are also provided. The United 

States Department of Transportation’s (USDOT) Office of the Secretary of 

Transportation (OST) provides guidelines and procedures for calculating the value of 

travel time saved or lost by the road users (USDOT, 2003). The hourly dollar value of 

road users’ personal travel time is estimated based on their wages. 

The New Jersey Department of Transportation also released a Road User Costs 

Manual (NJDOT, 2001) containing the calculation of mobility costs. This manual 

explains the characteristics of work zones and addresses the road user cost components 

associated with different traffic conditions, including unrestricted flow, forced flow, 
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circuity and crash. Under unrestricted conditions, three components should be considered 

in the analysis: speed change vehicle operating costs (VOC), speed change delay and 

work zone delay. Under forced flow condition, that is, traffic demand exceeds work zone 

capacity, four components are recommended: stopping VOC, stopping delay, queue delay 

and queue idling VOC. Circuity VOC and circuity delay are the two components under 

circuity condition, that is, driver travels for additional mileage at detour. Thus, it is 

necessary to determine the traffic conditions resulting from the work zone before 

computing the specific user cost components. 

In an earlier report titled “Work Zone Performance Measures Pilot Test” (FHWA, 

2011), a pilot test was conducted at five project sites that assisted state DOTs in 

identifying methods to collect field data and compute performance measures. In order to 

measure queuing impacts, several indicators were identified, including the duration in 

queue, average length of queue and maximum length of queue. The collected data 

included travel time and queue length data, in addition to field crew and truck 

transponder data. 

Jiang (2001) pointed out that traffic delays at a work zone include delays caused 

by deceleration of vehicles while approaching the work zone, reduced vehicle speed 

through the work zone, time needed for vehicles to resume freeway speed after exiting 

the work zone, and vehicle queues at the work zone. Delay equations were developed for 

conditions when the arrival traffic flows above the work zone capacity and below it.  

Under uncongested conditions, the total traffic delay at a work zone can be 

defined as:  
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           𝐷𝑒𝑙𝑎𝑦 = 𝑉𝑎(𝑑𝑑 + 𝑑𝑧 + 𝑑𝑎 + 𝑑𝑤)                                                                       (2-1) 

Where, Va is the hourly arrival traffic volume, dd is the traffic delay caused by 

deceleration before entering the work zone, dz is the traffic delay due to reduced speed 

through the work zone, da is the traffic delay caused by acceleration after the existing 

work zone, dw is the waiting time that an arrival vehicle spends before entering a work 

zone. 

Under a congested condition, the total traffic delay at a work zone can be defined 

as, 

𝐷𝑒𝑙𝑎𝑦 = 𝑉𝑎(𝑑𝑑 + 𝑑𝑧 + 𝑑𝑎 + (1 − 𝑡𝑙)𝑑𝑤) + 𝐷𝑙                                                 (2-2) 

Where, tl is the queue clearance time in time period l, and Dl is the traffic delay 

under a congested condition.  

To demonstrate the applications of the derived traffic delay equations, these 

equations were applied to calculate the traffic delays at a freeway work zone in Indiana 

during a 24-hour period. 

Simulation methods are also commonly used in the mobility impact analysis of 

work zones. Edara (2013) developed a framework to evaluate the effectiveness of 

Intelligent Transportation Systems (ITS) deployment in a work zone. The framework 

recommends using five performance measures: diversion rate, delay time, queue length, 

crash frequency, and speed, as shown in Figure 2-1. The diversion rate was derived from 

field data and surveys. VISSIM software was used to determine the delay and queue 

length measures. 
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Figure 2-1   Work Zone ITS Evaluation of Framework (Edara, 2013) 

As can be concluded based on the above literature review, mobility impacts of 

work zones and corresponding computing methods were addressed in previous studies. 

However, although the travel delay and queue length measures were adequately 

addressed, the impacts of work zones on diversion rates have not been sufficiently 

studied. 

2.1.2 Safety 

According to the Fatality Analysis Reporting System (FARS), 576 fatalities in motor 

vehicle traffic crashes were reported in work zones in 2010. Traffic safety is a 

representation of the level of exposure to potential hazards for users of transportation 

facilities and highway workers. Traffic safety management, as applied to work zones, 

aims at minimizing potential hazards to road users and workers at or around the work 

zone area during construction activities. The commonly used measures for highway 

safety are the number and/or rate of crashes and the severity of crashes (fatalities, injuries, 

and property damaged only) at a given location or along a section of highway during a 

period of time. 
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With reference to various types of roadway segments, the Highway Safety 

Manual (HSM) has provided regression analysis-based equations to estimate crash 

frequency. The predictive models used in HSM then modify the crash estimates from 

these equations using crash modification factors, as follows:  

Npredicted = Nspf × (CMF1 × CMF2 × ⋯ × CMFn) × C                                    (2-3) 

Where, Nspf represents the estimates based on the safety performance function 

(SPF), which is an equation used to predict the average crash frequency for basic 

conditions for the specific facility type considering the basic information for roadway 

segment, including number of lanes, median type, and AADT. CMFs are used to adjust 

crash frequency to specific site type and specific geometric design features. C is the 

calibration factor to adjust SPF to local condition.  

The Work Zone Safety Data Collection and Analysis Guide (FHWA, 2013) 

provides assistance to transportation agencies in developing techniques and strategies to 

successfully collect and analyze work zone safety-related data for the purpose of making 

work zones safer for motorists and workers. In order to perform safety analysis, the 

collection of four types of data elements is recommended:  crash data elements, vehicle 

data elements, person data elements and exposure information. Traffic safety information 

should be gathered while a work zone is under construction and after the project is 

complete. Recommendations include using Crash Modification Factors (CMF) to adjust 

the crash frequency estimates for normal conditions to account for work zones. In order 

to deal with the effects of particular features at work zones, such as the duration and 

length of the work zone, the HSM procedure applies the following equations: 
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  𝐶𝑀𝐹𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 =
1+(%𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑓 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛×1.11)

100
                                                   (2-4) 

  𝐶𝑀𝐹𝑙𝑒𝑛𝑔𝑡ℎ =
1+(%𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑓 𝑙𝑒𝑛𝑔𝑡ℎ×1.11)

100
                                                          (2-5) 

Where, the increase of duration parameter in the duration CMF duration is 

calculated relative to work zone duration of the base condition of 16 days, and the length 

CMF length calculation is in relation to a base condition of 0.51 mile.  

Based on previous studies, the increase in crash frequency at work zones tends to 

vary at different locations. Some of the values reported in the literature are 7.0 to 21.4 

percent at 10 work zones (Juergens, 1972), 7.5 percent at 79 sites (Graham, 1977), an 88 

percent increase (Rouphail et al., 1988), and a 26 percent increase (Hall and Lorenz, 

1989). Garber and Woo (1990) reported a 57 percent increase in crash rates for multilane 

highways, and 168 percent for two-lane urban highways. Khattak et al. (2002) reported a 

23.5 percent increase in non-injury crashes, and a 17.5 percent increase in injury crashes. 

However, not all research projects found an increase in crash rates as a result of work 

zones. For example, Pigman and Agent (1990) stated that crash rates only increased in 14 

of 19 sites in the presence of work zone. Jin et al. (2008) reported a decrease in crash 

rates during work zone conditions. Regarding the crash severity, the findings are also 

inconsistent. Several studies revealed that work zone crashes are less severe, whereas 

others indicate that work zones caused an increase in the level of crash severity (2002). 

Benekohal et al. (1995) showed that work zones also increased safety risks for trucks. 

Therefore, it can be concluded that crash frequency increases with the work zone. It is 

recognized that safety analysis in different studies and the validity of these studies vary. 
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The Florida ITS Evaluation (FITSEVAL) is a sketch-planning tool that evaluates 

the benefits of ITS in the FSUTMS/Cube Environment (FDOT, 2008). The tool uses a 

predictive method to estimate crash rates similar to the ones used in the Intelligent 

Transportation System (ITS) Deployment Analysis System (IDAS) Tool. Table 2-1 

shows the crash rates of property damage only (PDO), injury and fatality for freeway, and 

arterial segments used in FITSEVAL as a function of volume to capacity (V/C) ratio. The 

total number of crashes is then estimated by multiplying the crash rate with million 

vehicle miles traveled (MVMT). 

Table 2-1 Crash Rates Table 

V/C Fatality 
Injury PDO 

Freeway 

Auto 

Arterial 

Auto 

Freeway 

Truck 

Arterial 

Truck 

Freeway 

Auto 

Arterial 

Auto 

Freeway 

Truck 

Arterial 

Truck 

0.09 
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 c
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st
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0
.0

0
0
4
 f
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ee

w
ay

 a
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d
 0

.0
0
7
2
 f
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ar
te
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al

. 

0.5156 1.715 0.5156 1.715 0.8551 2.394 0.8551 2.394 

0.19 0.5156 1.715 0.5156 1.715 0.8551 2.394 0.8551 2.394 

0.29 0.5156 1.715 0.5156 1.715 0.8551 2.394 0.8551 2.394 

0.39 0.5156 1.715 0.5156 1.715 0.8551 2.394 0.8551 2.394 

0.49 0.5156 1.715 0.5156 1.715 0.8551 2.394 0.8551 2.394 

0.59 0.5757 1.715 0.5757 1.715 0.8551 2.394 0.8551 2.394 

0.69 0.5757 1.715 0.5757 1.715 0.8551 2.394 0.8551 2.394 

0.79 0.5757 1.715 0.5757 1.715 0.9953 2.394 0.9953 2.394 

0.89 0.5757 1.715 0.5757 1.715 0.9953 2.394 0.9953 2.394 

0.99 0.7392 1.715 0.7329 1.715 1.1591 2.394 1.1591 2.394 

1.00 0.7329 1.715 0.7642 1.715 1.2737 2.394 1.2737 2.394 

The presence of a work zone increases the likelihood of crashes at a given 

location. Therefore, a crash modification factor (CMF) needs to be applied to the pre-

work zone crash rates at the project site. Numerous studies indicate that the pre-work 

zone crash rates are likely to be increased 20 to 70 percent when there is a work zone in 

place. According to the state of Indiana’s study on crash rate difference at work zones, 
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the CMF ranges from 1.3 to 1.6 (FHWA, 2011). The default CMF used in FITSEVAL is 

1.3. 

2.1.3 Reliability 

Reliability can be defined in two different ways. The first refers to the variability in travel 

times that occurs on a facility or a trip over the course of time. The second is related to 

the number of times (trips) that either “fail” or “succeed” in accordance with a pre-

determined performance standard.  

Reliability is defined as “a measure of how consistent or predictable travel times 

are over time” by the L05 project of the Second Strategic Highway Research Program 

(SHRP 2) (Vandervalk et al., 2013). Regression equations to estimate reliability were 

originally developed in the SHRP 2 L03 project (Systematics C., 2011).  The data rich 

environment equations were later modified and implemented in a spreadsheet tool 

developed in the SHRP 2 L07 project (Potts et al., 2014). The utilized measures of 

reliability that can be calculated using the models are the nth percentile travel time 

indexes (TTIs), where nth could be the 10th, 50th, 80th, 95th, and mean travel time index 

(TTI). The TTI estimation models have the following general functional form, 

TTIn% = e(jnLHL+kndccrit+lnR0.05")                                                                  (2-6) 

Where,   TTIn% is nth percentile of TTI, LHL represents lane hour lost due to 

incidents and/or construction; dccrit is the critical demand to capacity ratio; R0.05" is the 

number of hours of rainfall exceeding 0.05 inch; and jn, kn,ln represents coefficients for 

nth percentile of TTI. 
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In the SHRP 2 Capacity project C11 report (Cambridge System et al., 2013), four 

sets of spreadsheet modules were developed to enable analysts to assess the wider 

economic impacts associated with transportation projects. The Reliability Estimation 

Module is one of these four modules. Reliability is calculated as a function of recurring 

delay, incident delay, and free flow speed As follows. 

TTI = 1 + FFS × (RecurringDelayRate + IncidentDelayRate )                    (2-7) 

Where, FFS is the free-flow speed. RecurringDelayRate defines the delay related 

to volume/capacity ratio. IncidentDelayRate defines the delay related to traffic incidents. 

The value of reliability (VOR) is an important factor that needs to be considered 

when including reliability in the decision-making process. The value of time (VOT) 

refers to the monetary values travelers place on reducing their travel times. Utilizing the 

State Preference (SP) survey and Revealed Preference (RP) survey methods, the 

reliability ratio has been assessed to be in the 0.5~1.5 range, according to the SHRP 2 

Capacity project C11 report (Cambridge System et al., 2013).   

The SHRP 2 L04 project provided methods on how to address reliability using 

simulation models (Mahmassani et al., 2014). It also recommended utilizing the standard 

deviation of travel time in addition to the travel time in the generalized cost function used 

in the assignment procedures. This project recommends using VOR based on travel 

purpose, household income, car occupancy, and travel distance. 

2.1.4 Vehicle Operating Cost (VOC) 

Vehicle operating cost (VOC) is an important component of the road user costs. The 

VOC has been defined as the costs associated with owning and operating the vehicle over 
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roadway segments. As one component of the vehicle operating costs, the ownership costs 

can be estimated using the following formula (AASHTO, 2010): 

(
PMTmile = PMT × 100

VMT⁄

PMTmin = PMT × 100 365 × 24 × 60⁄
                                                          (2-8) 

Where, PMT is the annual amortized value of the vehicle and VMT is the vehicle 

miles traveled. 

The FHWA Road User Costs Manual defines VOC as the expenses incurred by 

road users as a result of the vehicle use.  The VOC varies with the degree of vehicle use, 

and thus is mileage traveled-dependent. The manual identified models that can be used to 

determine the VOC. In 1982, the Texas Research and Development Foundation (TRDF) 

developed relationships to incorporate the effects of highway design and pavement 

conditions on VOC for the FHWA. This study provided a model to estimate VOC as a 

function of vehicle speed, grade, and vehicle class. This model was developed based on 

highways, vehicle technology, operations, and economic conditions typical of the 1970s. 

The NCHRP Report 133 provides procedures to calculate the VOC for work zone 

conditions. Additional time and operating costs are calculated based on vehicle stops, 

idling, and speed changes in work zones. The NCHRP Report 133 procedures are also 

utilized in an evaluation tool: RealCost for computing work zone VOC (Caltrans, 2013).  

2.1.5 Emission 

There are several models that estimate roadway emissions. Based on the input parameters 

and the methodologies used, these models are classified into the followings: 

 Static emission factor models. 

 Dynamic instantaneous emission models. 
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Static emission factor models use pollutant emission rates (i.e., amount of 

pollutants released into the atmosphere for a given activity) to calculate emissions based 

on average operation conditions. These models typically include separate emission 

factors for a given speed and a type of vehicle (passenger cars, buses, light-duty trucks, 

medium-duty trucks, etc). Mobile 6.2, which was used in the United States prior to 2010, 

is a notable example that uses the static emission model. This model provided estimates 

of pollutants, toxic pollutants, and particulate matter by vehicle class (covering 28 vehicle 

types), roadway type (freeways, arterial, ramp and locals), time of day, fuel options, 

vehicle operating parameters, and other characteristics. 

Dynamic emission factor models, otherwise called modal emission models, 

incorporate the effects of instantaneous changes in vehicle operating conditions in 

emission estimations. These models typically require extensive data for different 

operating scenarios with second-by-second intervals (Nesamani, 2007). The Motor 

Vehicle Emission Simulator (MOVES) is the new generation, state-of-the-art modeling 

tool developed by the EPA to estimate emissions from highway vehicles at a detailed 

level. The current version of this model, MOVES 2014a, replaces Mobile 6.2 as the 

approved tool for use in transportation conformity analyses outside of California (EPA, 

2010). This model is capable of estimating emissions on macro-scale (e.g., county level), 

meso-scale, and a micro-scale (e.g., corridor level). The macro-scale and meso-scale 

models are static models, while the microscopic model is a model emission model.  The 

model can also calculate emissions for the time aggregation level chosen (for example, 

year, month, day, or hour). 
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2.1.6 Business Impacts 

Highway construction projects also disturb the operations of business activities around or 

in close proximity to work zones. Although construction activities may be accomplished 

in a relatively short period of time, business owners still worry about the level of 

disturbance during construction and the time needed to recover. Traditionally, highway 

construction project impacts may result in a loss of customers and sales, as well as 

contribute to noise, air pollution and several other problems. 

Harrison et al. (1998) pointed out that Dallas North Central Expressway 

reconstruction projects influenced 25 percent of Dallas residents and 20 percent of a jobs 

catchment area.  A questionnaire and survey methods were utilized to measure business 

impacts based on feedback from business personnel. In additional sales analysis, the 

researchers conducted a two-sample t-test to determine whether there were statistically 

significant differences in the sales under different conditions. According to the results, 

the business sales around the North Central Expressway were not significantly affected 

by the construction activities. In addition, transportation researchers recorded the number 

of open and closed businesses during the construction period. It was found that the North 

Central Expressway had provided more opportunities for business:  business birth was 

nearly two times business death. 

Young et al. (2005) investigated the business-related effects of highway 

construction projects in Wyoming and provided case studies and impact estimates to 

better address business owners’ concerns. The data collected and analyzed for this 

research effort included business categorizations, traffic volumes, tax revenues, 

commercial property rights-of-way, business and engineer surveys, and perceived versus 
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actual impact data. Based on the results, it was found that most businesses around the 

construction area experienced reduced positive growth but not negative growth in sales. 

In addition, the research also illustrated an obvious growth of business two years after 

construction. 

Ray (2016) examined whether transit construction negatively affected businesses’ 

revenue and survival along the second segment of the Los Angeles Metro Rail Red Line. 

Through regression analysis of time-series data, a lower rate of business survival was 

found along the corridor than for the county, and was significantly lower around the 

stations. In addition, locations near stations were also correlated with revenue decreases 

during the early construction period and with revenue increases following construction. 

2.1.7 Freight Commodity 

Freight transportation has grown rapidly in the last few decades. Similar to business 

impacts, highway construction projects also disturb freight commodity flows. Thus, it is 

necessary to address how to quantify the value of construction impacts on freight 

commodity. Shabani et al. (2012) conducted a statistical study of commodity 

value/tonnage trends in the United States.  Value/tonnage ratios are not only relevant 

because they can show aggregate trends for key commodity groups, but also because they 

are utilized in many freight models at the freight generation stage.  The results show that 

significant changes in the value/tonnage ratio took place from 1997 to 2007.  

In the road user cost manual of work zones (FHWA, 2011), a freight inventory 

cost is defined to quantify the adverse impacts on freight commodity. The hourly dollar 

value of freight inventory delay is estimated using the procedure described in the 
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Highway Economic Requirements System (HERS-ST) Technical Report (FHWA, 2005). 

In order to compute the freight inventory cost; hourly discount rate, average payload of 

freight trucks, and average value of commodities shipped by truck are the three main 

factors that need to be considered. The discount rate can be computed as the annual 

discount rate divided by total number of hours in a year. The used annual discount rate is 

the average prime bank lending rate. To estimate the average payload of a truck, the users 

may utilize the local-specific payload data from the FHWA’s Office of Freight 

Management and Operations. Based on the HERS-ST report, the average value of the 

commodities shipped by truck was $1.35 per pound (on a ton-mile weighted basis) in 

1993, and the users need to check the updated dollar value of commodities when 

implementing the method. Thus, the inventory cost can be computed by multiplying the 

average payload of the truck with the average value of commodities shipped by truck.  

 Estimation of Driver’s Diversion Behaviors 

Drivers’ strategic and microscopic behaviors in the presence of work zones are important 

to assess the work zone impacts.  This section discusses the diversion behaviors and 

Section 2.3 discusses the microscopic simulation behaviors.  There is still a limited 

amount of information on quantifying drivers’ diversion behaviors in the presence of 

work zones and information about the work zone induced delays. In particular, the 

estimation approaches can be classified into three types: application of diversion 

proportions, analytical-based diversion prediction models, and dynamic traffic 

assignment models. 
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2.2.1 Application of Diversion Proportions 

This method multiply diversion proportions derived based on past studies by the demands 

at the work zones to obtain the demands after diversion. Field surveys, such as the Stated 

Preference (SP) and Revealed Preference (RP) surveys, have been commonly used to 

estimate drivers’ diversion behaviors. Khattak et al. (1993) conducted a survey of drivers’ 

diversions due to work zones. The study concluded that the respondents would overstate 

their propensity to divert when compared with revealed behavior. Mannering et al., based 

on a commuter survey in downtown Seattle in 1988, concluded that the trip purpose also 

influences drivers’ diversion behaviors (Mannering et al., 1994).  The study also found 

that the traffic diversion rates during work-to-home trips are almost two times the home-

to-work trips. Khattak et al. conducted another analysis of two sets of surveys from 

Chicago and San Francisco. The results showed that the respondents in Chicago are more 

likely to select alternative routes than the respondents in San Francisco when they 

encounter unexpected traffic delays (Khattak et al., 1998).  

Another source of data that has been used to estimate diversion is data from 

sensors that record traffic volumes on both the original and alternative paths under 

normal and work zone conditions. Lee and Kim (2006), based on detector data, found 

that 17% to 18% of the traffic diverted during the peak hours. A study conducted by 

McCoy and Pesti (2004) assessed the impacts of a dynamic message sign (DMS) at work 

zones on I-80 in Nebraska. It was found that when the DMS was off, the diversion rate 

was 8%, while it increased to 11% when the DMS was on. Bushman et al. (2001) 

conducted a study of a smart work zone system deployment on I-95 in North Carolina 

and found that diversion rates were 10.9% and 20.2% under uncongested and congested 
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conditions, respectively. Zhang et al. (2008) conducted an empirical diversion analysis of 

reconstruction projects in Long Beach, California. They found that most demand 

diversions occur only during the peak time periods, and there was a clear adjustment 

process among travelers as the work zone project continued. Chen et al. (2008) studied 

four short-term work zones in Milwaukee utilizing a hybrid process (micro-simulation 

and logistic regression) to imitate diversion behaviors upstream of the work zones. The 

process looked at the presence of exit and entrance ramps combined with queuing. The 

field results showed a significant decrease in volume on entrance ramps (by up to 40%), 

and an increase, by as much as 12%, along exit ramps.  

In recent research (Justin et al., 2013), Bluetooth-based vehicle re-identification 

technology was deployed to assess work zone diversion. The research investigated one 

urban and two rural work zones, and compared the Bluetooth hits during closure and non-

closure periods. It was found that the diversion rate was very low (0.3% to 5.7%), 

especially at the rural work zone.  

Table 2-3 provides the estimates of rates from different studies, as presented by 

Song and Yin (2008). It should be noted that it is expected that the actual diversion rates 

depend on the congestion level of both the original path and the alternative path. In 

addition, many factors may influence drivers’ diversion behaviors, such as weather, trip 

purpose, and regional variations. The work zone duration (short-term vs. long-term) is 

also expected to influence the diversion rate. However, the review in this chapter and that 

in Table 2-2 seem to point out that work zones that cause congestion can result in a 10% 

to 20% traffic diversion.  
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Table 2-2  Summary of Empirical Diversion Rates in Rural Areas (Song and Yin, 2008) 

Location Facility Work Zone 

Diversion 

Diversion 

Rate 

Information 

Provision to 

Drivers 

Diversion 

Route 

Source 

Nebraska I-80 Two lanes 

closed; Two-

lane, 

two-way 

operation on 

the other side 

8-11% 

(peak 

period) 

DMS One 

alternative 

route 

McCoy 

and Pesti 

(2001) 

Racine, 

Wisconsin 

I-94 12miles One 

lane closure 

on two lanes 

each 

direction 

10% (peak 

period) 

DMS with 

travel time 

estimation 

Yes, 

known to 

all regular 

drivers; 

runs in 

parallel 

Horowitz 

et al. 

(2003) 

Rocky 

Mount, 

North 

Carolina 

I-95 1.25-2.5 

miles 

10.9- 

20.2% 

(peak 

period) 

Smart Work 

Zone system 

One 

alternative 

route 

Bushman, 

et al. 

(2004) 

Santa 

Clarita, 

California 

I-5 1.3 miles, 

one lane 

closure on 

three lanes 

each 

direction 

3-20% 

(average) 

Automated 

work zone 

information 

system 

(AWIS) 

One 

alternative 

route 

Chu et al. 

(2005) 

San 

Bernardino, 

California 

I-15 4.5 km, 

closed half 

of eight 

lanes; two by 

three lane 

configuration 

on the left 

half 

17-18% 

(peak 

hour) 

AWIS 

coupled with 

multifaceted 

proactive 

public 

outreach 

I-10 and I- 

215 

Lee and 

Kim 

(2006) 

 

2.2.2 Analytical-Based Diversion Prediction Models 

Ullman and Dudek (2003) proposed a theoretical approach using the energy analogy of 

traffic flow to estimate work zone diversion. However, this method seems to force the 
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analogy between the transportation system and a physical system. In addition, the most 

important coefficient in this model needs to be calibrated from location to location.  

Regression has also been utilized in analyzing traffic diversion at work zones. 

Song and Yin (2008) proposed a work zone diversion estimator based on traveler 

diversion behavior data collected from a SP survey. The study included several factors 

that may affect drivers’ decisions into the survey’s questionnaire. These factors include 

travel time, location, trip purpose, vehicle type, and so on. The calibration of a logit 

model yielded results that identified travel time, work zone location, and weather as 

factors that significantly affect diversion behaviors.   

 Two procedures, referred as open-loop and closed-loop procedures, were utilized 

in the above study (Song and Yin 2008). The first is a binary logit model and the second 

is a user equilibrium model to predict traffic diversion rates. In the binary logit model, 

unlike the case with the user equilibrium model, the interaction and feedback between the 

original and alternative routes, as travelers shift their selection between the routes, are not 

considered. The author suggested using the logit model and user equilibrium approaches 

for short-term work zones and long-term work zones, respectively.  

The developed logit model is shown below:  

RTF =
1

1+exp (0.1416(torg−talt)+ρ)
                                                                           (2-9) 

Where, torg  and  talt  are the travel times of original and alternative routes, 

respectively. ρ is a model parameter that needs to be calibrated based on work zone 

location and weather.  

The user equilibrium formulation is as follows:  
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minZ = ∫ [torg(ω) + α]dω
xorg

0

+ ∫ talt(ω)dω
xalt

0

+
1

0.1416
(xorglnxorg + xaltlnxalt) 

Subject to 

xorg + xalt = q  

xorg ≥ 0, xalt ≥ 0                                                                                              (2-10) 

Where, xorg and xalt are the remaining traffic on original and alternative route, 

respectively. The travel time is computed based on the Bureau of Public Roads (BPR) 

model. α is a model parameter. 

Liu et al. (2011) conducted an empirical study on traffic diversion due to freeway 

work zones based on field data. Three types of empirical analysis were performed: cut 

line analysis, Bluetooth reader data analysis, and ramp volume analysis. Based on the 

data from detector and Bluetooth technology, it was found that the work zone used as a 

case study had a significant shift in volumes, and the level of diversion between 

weekdays and weekends ranged from 4% to 10%. In addition, this study investigated 

drivers’ diversion behaviors due to rural work zones using field driver surveys. The 

survey showed that approximately 20% of drivers would not divert, at low speeds and 

high delays.  

 Finally, the study proposed a conceptual model of driver route selection. The 

probability that drivers remain on the original route is:  

pij
org

= f(tij, τij, bij)                                                                                            (2-11) 

Where, i represents origin, j represents destination. tij is travel time with work 

zones, τij  is the travel time under normal conditions, and bij  is an original route bias 

constant.   
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The original route bias factor would likely differ between work zones, but could 

be obtained by based on a survey questionnaire.  According to the developed model, the 

total number of drivers that stayed on their original routes is: 

Tij
org

= Tij(rij + (1 − rij)pij
org

)                                                                          (2-12) 

Where, rij is the fraction of resigned drivers and Tij is the number of drivers and 

their origin at i and their destination at j. 

Similar to work zone diversion studies, researchers also investigated traffic 

diversion when encountering incidents and other special events. Yin and Tuite’s research 

(2012) used loop-detector data and incident records on a freeway in Virginia to examine 

incident-induced diversion behaviors. A dynamic programming-based procedure was 

used to identify diversions by isolating transient level shifts. The diversion rate is defined 

as follows:  

DR =
RF

MF+RF
∗ 100%                                                                                         (2-13) 

Where, RF is the ramp traffic flow and MF is the mainstream traffic flow. 

Subsequently, the probability that diversion occurs and the magnitude of 

diversion were statistically examined using a binary logit model and a multiple linear 

regression (MLR) model, respectively. The binary logit model uses a dichotomous 

outcome dependent variable to predict the probability that the designated outcome 

(typically the outcome coded as 1) occurs. In this analysis, the two outcomes were 

whether diversion occurs (1) or not (0). The majority of variables, such as incident 

location, duration, number of blocked lanes and speed, were found to be statistically 

significant. The magnitude of the diversion, measured by diversion rate, is related to 
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instant traffic flow characteristics, general traffic demand considerations, and the incident 

characteristic through a linear regression model. According to the regression results, the 

model has a high R-square, and could provide an appropriate estimate for DR, as shown 

in Table 2-3 and Table 2-4 below. However, this research was based on the data in one 

location.  

Table 2-3  List of Variables for Statistical Modeling 

Variable Meaning Remark 

meanmsflow The average mainstream hourly flow rate Vehicle per hour 

meanrpflow The average ramp hourly flow rate. Vehicle per hour 

incidentduration Total temporal length of the incident In minute 

lanecloseduration Duration in which general purpose lane(s) 

was closed 

In minute 

trsug1 

Surrogate variable for traffic conditions and 

trip characteristics 

Weekday a.m. peak (5:30 

a.m. to 9:30 a.m.) 

trsug2 Weekday p.m. peak (4:00 

p.m. to 6:30 p.m.) 

trsug3 Weekday off peak (other 

time in weekday) 

spdincloc1 traffic speed at the incident location Indicates 0~20 mi/h 

spdincloc2 Indicates 20~30 mi/h 

constant Regression model constant  

 

Table 2-4  Results of the Multiple Linear Regression Model for the Diversion Rate 

Variable  Coefficient  Std. error T-statistics P-value 

meanmsflow -0.0027 0.0001 -24.2800 0.0000 

meanrpflow 0.0139 0.0006 23.8400 0.0000 

incidentduration 0.0023 0.0007 3.1400 0.0030 

lanecloseduration 0.0092 0.0030 3.1100 0.0040 

trsug1 1.1779 0.5739 2.0500 0.0470 

trsug2 2.7373 0.8440 3.2400 0.0030 

trsug3 0.3137 0.5645 0.5600 0.5820 

spdincloc1 1.9588 0.7686 2.5500 0.0150 

spdincloc2 1.3984 0.7487 1.8700 0.0700 

constant 13.3296 1.1623 11.4700 0.0000 

Note: Adjusted R-square=0.8451 
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In a research by Hadi et al. (2013), an even simpler method was developed to 

estimate traffic diversions from main-line detector data without the need for off-ramp 

detectors. To estimate the average diversion rate for a given corridor, the methodology of 

this study utilized a set of incidents and associated attributes extracted from the incident 

database. The diversion rates were estimated through computing the differences of the 

average traffic volumes under incident conditions and non-incident conditions. The 

identification of the typical non-incident days and incident days were accomplished using 

the k-means clustering algorithm. In the case study, several patterns of traffic volumes 

were defined, including normal days, incident days, weekend traffic, and detector 

malfunctions. The diversion rates were further fitted into a linear expression using a 

linear regression analysis that relates the average diversion rate to the lane blockage ratio, 

which is the ratio between the number of lanes blocked and the total number of lanes 

under normal conditions. The derived expression was as follows: 

D = 33.949 × R                                                                                                (2-14) 

Where, D is used to represent the average diversion rate in percentage and R is the 

ratio between number of lanes blocked and original number of lanes. 

2.2.3 Utilization of Assignment Models 

Traffic assignment is a process that determines the network traffic flows and conditions 

based on travelers’ route choices made during their travels. The basic assumption for 

traveler behavior is selecting the available route that has the least travel time between the 

origin and destination (O-D). Static traffic assignment (STA) and dynamic traffic 

assignment (DTA) have been used for traffic assignment. STA models have always been 
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used and considered suitable for long-range planning purposes. However, STA models 

cannot reflect the variation over time of travel flows and conditions. In past decades, 

emerging policy, planning and construction developments have increased the number of 

network modeling challenges for traffic engineers and transportation planners. To resolve 

this problem, DTA is used because it is an effective modeling option.  

Chiu et al. (2011) explained the basic concepts of DTA and provided guidelines to 

select available analysis tools and described the following basic steps of applying the 

DTA models: 

 Data Preparation 

 Model Validation and Calibration 

 Scenario Analysis 

 Continue System Monitoring and Recalibration 

Traffic assignment tools have also been utilized to estimate traffic diversion at 

work zones. The  WISE (Work Zone Impact and Strategy Estimator) tool developed by 

the SHRP 2 R11 project (Pesesky, 2012) provides two options for analysis: Planning and 

Operation. When used as a planning tool, the user can evaluate the effectiveness of 

various travel demand and construction duration strategies for multiple projects by 

comparing two main measures: construction cost and traveler delay cost. When used at 

the operational level, time-dependent congestion and diversion caused by congestion can 

be captured by a simulation-based dynamic traffic assignment (DTA) tool. The SHRP 2 

C05 project (Kittelson & Associates et al., 2014) explored four major methodological 

improvements that increase the sensitivity and realism of existing traffic assignment tools, 
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including stochastic capacity of freeway bottlenecks, stochastic capacity and turn pocket 

analysis on arterials, implementation of  a day-to-day learning paradigm, and new 

performance measurements and implementation considerations. The day-to-day learning 

enhancement implemented as part of that project is attractive to work zone analysis since 

travelers learn to select better alternative paths, as the number of days of the work zone 

increase. The day-to-day learning utilizes different travel times on the same path over 

different days, even for the same path traffic flows because the model considers the 

inherent travel time variability introduced by stochastic capacity. In order to capture the 

stochastic day-to-day travel time evolution process, the utilized route choice utility 

function is as follows:  

GT = T +
VOR

VOT
∗ TSD +

TOLL

VOT
= T + β ∗ TSD +

TOLL

VOT
                                        (2-15) 

Where, GT is the generalized travel time, T is the expected travel time for 

travelers, TSD represents the perceived travel time variability derived from historical data,  

β is the reliability value ratio that is calculated as the value of reliability divided by the 

value of time (VOR/VOT), and Toll is the road toll charges. The route choice decision is 

made by comparing the generalized travel time of the alternative paths. 

Han et al. (2015) investigated variable message signs (VMS) and their interaction 

with drivers’ travel choices using a day-to-day dynamic traffic assignment model. In this 

research, it is assumed that drivers adjust their departure time and route choices on a daily 

basis in search of a more efficient travel arrangement. Traffic dynamics and users’ 

learning processes are simultaneously modeled, and their interactions and 

interdependencies are analyzed. With the long-term simulation run (100 to 200 days) for 
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the utilized case study, results showed that traffic continued to divert to alternative routes 

with VMS guidance until the alternative routes were saturated.  

Considering the short-term effects of non-recurrent congestion conditions, 

Sundaram et al. (2015) compared the method to model the day-to-day and within-day 

behavior of travelers, and developed a simulation framework for a short-term planning 

system. In the case study of traffic incidents, network performance was simulated under a 

base condition, with no information and with information. The results showed significant 

travel time savings when incident information was provided. 

In summary, a number of approaches were explored to analyze traffic diversion at 

work zones. However, drivers’ diversion behaviors may be affected by many factors, and 

it is important to consider local conditions. In addition, short-term and long-term work 

zones are expected to have considerable different diversion behaviors due to the day-to-

day learning effects. It appears that analytical models, such as those developed regression, 

may be applicable for short term work zones, particularly for high level planning 

purposes. A dynamic traffic assignment approach that utilizes day-to-day learning is 

applicable for work zones with longer periods. 

 Microscopic Behavior at Work Zones 

In addition to the strategic behavior impacts of work zones, the impacts on the 

microscopic driver behavior are important to assess the mobility and safety impacts, 

when conducting analysis at the operational level. Safety at highway construction or 

maintenance zones is a paramount concern to transportation officials. According to 

statistics, a large amount of crashes at work zone areas occurred in lane closure areas 
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where there were mixed drivers, workers and barriers. In Michigan, 47% of work zone 

crashes occurred in lane closure areas (Michigan State Police, 1999). To solve this 

problem, MUTCD (2006) provides the guidance of advanced warning area at work zone. 

For instance, the placement of warning signs at freeways should be longer than 1000ft. 

These distances should be adjusted for field conditions, if necessary, by increasing or 

decreasing the recommended distances. Transportation authorities in the United States 

and across the world also developed a number of merging strategies to provide a better 

understanding of traffic signs and reduce the aggressive behavior of drivers. These 

merging strategies are also expected to have significant effects on capacity and thus 

mobility and reliability measures.  

2.3.1 Field Research on Merging Strategy 

In order to manage work zones on freeways, the Pennsylvania Department of 

Transportation investigated the impacts of the concept of Late Merge Control. Generally, 

late merging aims to take a full advantage of the traffic facility capacity and encouraging 

drivers to use all of the lanes until the merging point. The sign “USE BOTH LANES TO 

MERGE POINT” is usually used upstream of the work zone, and the sign “MERGE 

HERE TAKE YOUR TURN” is set up for drivers a short distance before the lane 

closures. Figure 2-2 presents the normal late merge control plan. 
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Figure 2-2  Late Merge Traffic Control Plan 

Researchers (Pesti et al., 1999) conducted a field studies for a late merge control 

strategy in Pennsylvania using videotape recordings. The left lane on a freeway was 

closed during the construction activities. Traffic volume, lane distribution, speed and 

traffic conflict data were collected to assess the effectiveness of the strategy.  Results 

showed that the lane distribution for the two lanes at the drop point of one of the lanes 

was close to 50/50 in a breakdown situation where the queue length exceeded two miles.  

In contrast to the Late Merge strategy, the engineers at the Indiana Department of 

Transportation developed the Early Merge traffic control concept to reduce aggressive 

driving behavior and improve safety at work zones. The Early Merge traffic control 

system uses a series of traffic signs placed in advance of the taper area, creating an 

enforceable no passing zone to encourage motorists to make an early merge, as shown in 

Figure 2-3. The Indiana Department of Transportation (IDOT) tested the Early Merge 

system by using a series of “Do Not Pass/When Flashing” signs placed just a short 

distance before the work zone area. This traffic control system was designed to create a 
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smooth and uniform flow of traffic as the vehicle proceeds through the lane closure area. 

The results of a simulation study by the University of Purdue indicated that travel times 

were longer for the Early Merge concept (Tarko et al., 1998). 

For safety considerations, McCoy and Pesti (1999) observed both Early Merge 

and Late Merge systems. The number of traffic conflicts is used as a measure of 

effectiveness of different merge strategies. Three types of conflicts were observed:  

forced merges, lane straddles, and lane blocking. When compared with the Nebraska 

Department of Roads (NDOR) merge strategy, both Early Merge and Late Merge 

provided safer operation conditions at the merging area. 

 

Figure 2-3 Early Merge Control Plan 

It was argued that the best strategy may be different for different traffic conditions, 

with Late Merge possibly work best during congested peak periods rather than off-peak 

periods. Considering this argument, McCoy and Pesti (1999) developed the concept of 

the Dynamic Late Lane Merge (DLM). With DLM, the recommended merging strategy 

can switch between Conventional Merge, Late Merge, and Early Merge operations. Static 
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merging systems utilize static signs to instruct motorists on where to merge, while 

dynamic merging systems can alternate the display of different merging techniques. The 

dynamic message signs and flashing indicators on static signs are utilized to inform 

drivers based on the detector monitoring real-time traffic characteristics. The DLM 

usually takes two forms: dynamic early merge and dynamic late merge. In Datta et al. 

(2007), the dynamic message signs were recommended to be placed on both sides of the 

road at the taper to ensure the transmission of understandable messages. The FHWA 

(2012) provided guidance for the use of DLM strategies. 

Sign spacing is an important consideration for the deployment of DLM. The 

MUTCD (2003) specifies the minimum distance required between message signs on a 

rural freeway in the advanced warning area, which should not be less than 500 feet. Harb 

et al. (2009) tested both dynamic early merge and late merge systems. In a field study, a 

Portable Changeable Message Sign (PCMS) was placed at a distance of 3,460 feet from 

the start of the taper, and a Portable Regulatory Sign (PRS) was placed at 1,320 feet from 

the PCMS, at a work zone site located on I-95 in Malabar, Florida. The percentage of 

passenger cars changing lanes was 67.5% at early zone for early Dynamic Lane merging 

System, while the percentage of passenger cars changing lanes was 51.9% at early zone 

for late Dynamic Lane merging System. The results showed that a proportion of drivers 

are complying with the messages displayed by the system.  

2.3.2 Simulation of Merging Strategies 

Several researchers have utilized simulation methods to investigate the driver response 

and performance of merging strategies. Radwan et al. (2011) evaluated the dynamic lane 

merging system (DLMS) in work zones with variable speed limits (VSL). VISSIM was 
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utilized to simulate a 2-to-1 lane work zone configuration for six scenarios: Work Zone 

without VSL and without DLMS, Work Zone with VSL and without DLMS, Work Zone 

with VSL and Early DLMS, and Work Zone with VSL and Late DLMS, Zone with Early 

DLMS and without VSL and Zone without VSL and with Late DLMS.  The partial route 

decision feature of VISSIM was used to simulate the merging systems. Travel demand 

ranging from low (V500) to high (V2500) was implemented in the study. While the travel 

demand is higher than 2000vph, the throughput using lane merge system was about 20% 

higher than that using early merge system. The results show that the late merge system 

can produce higher throughputs with high travel demand.  

Kang et al. (2006) assessed the dynamic late merge system for highway work 

zone operations. The assessment criteria contained input–output analysis, work zone 

throughput, volume distribution, and resulting queue length. CORSIM was utilized to 

simulate a 2-to-1 lane work zone under no-merge control, and the results were compared 

with field data from the dynamic late merge control. Based on evaluation results, the 

proper deployment of the dynamic late merge system can improve the work zone 

throughput at about 10% when compared with work zone with no-merge control. 

However, the late merge system should be integrated with warning signs to avoid 

potential traffic conflicts. 

Beacher et al. (2004) investigated the deployment of the Late Merge system using 

simulation. The results of the VISSIM simulations showed that the Late Merge produced 

a statistically significant increase in throughput volume for only the 3-to-1-lane closure 

configuration and was beneficial across all factors for this type of closure. The increase 

for work zone throughput was about 10%. For the 2-to-1 and 3-to-2 lane closure 
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configurations, the Late Merge increased throughput 2% and 3% respectively when the 

percentage of heavy vehicles was large. 

Long et al. (2016) utilized a driving simulator to evaluate driver response to work 

zone sign configurations. The conventional Manual on Uniform Traffic Control Devices 

(MUTCD) configurations was compared with the Missouri Department of Transportation 

(MoDOT) management method. Seventy-five drivers, of different ages and from various 

cultures and driving histories, were chosen to conduct a driving simulator experience. 

The results showed that drivers prefer to merge earlier with a MoDOT merging sign than 

with an MUTCD merging sign. 

Previous research mainly focused on simplified work zone configuration (2-to-1 

lane and 3-to-1 lanes). Table 2-5 summarizes driver response to the merging strategy 

based on the lane distribution of traffic volumes. Most of the drivers complied with the 

merging control plan. In the Early Merge strategy, drivers started merging into the open 

lanes 3,000 feet away from the work zone taper. In the Late Merge strategy, drivers 

started merging into the open lanes 1,500 feet away from the work zone taper. In 

congested conditions, the Late Merge strategy is able to use the capacity for all lanes 

ahead of the lane closure area. 
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Table 2-5  Summary of Merging Strategies Performance 

Source 
Merging 

Strategy 

Lane 

Configuration 

Analysis 

Method 

Lane Distribution Based on 

Distance to Work Zone Taper 

McCoy et al., 

1999 

 

Late Merge 

 
2-to-1  lane 

Video 

Recording 

3,000 ft: 40% at open lane 

1,600 ft: 50% at open lane 

500 ft: 90% at open lane 

Taper: 100% at open lane 

Early 

merge 
2-to-1  lane 

Video 

Recording 

3,000 ft: 60% at open lane 

2,000 ft: 75% at open lane 

500 ft: 95% at open lane 

Taper: 100% at open lane 

Beacher et al., 

2004 
MUTCD 2-to-1  lane 

VISSIM 

Simulation 

Percentage of vehicles at open lane 

= 1- 0.016*distance to taper 

R2=0.953 

Waters et al., 

2001 
Late Merge 3-to-2  lane 

Video 

Recording 

Congested Condition: 

3,000 ft: 67.3% at open lane 

1,500 ft: 70.6% at open lane 

Taper:  88.9%% open lane 

Kang et al., 

2006 
Late merge 2-to-1  lane 

Video and 

CORSIM 

Simulation 

Congested condition: 

2,500 ft:  65.56% at open lane 

Long et al., 

2016 

MoDOT 

Sign 
2-to-1  lane 

Driving 

Simulator 

3,600 ft: 57.3% at open lane 

1,600 ft: 65.4% at open lane 

Taper: 95% at open lane 

 Available Traffic Analysis Tools for Road User Cost 

As a result of the increasing needs from transportation agencies, traffic analysis tools 

have been produced to provide efficient methods to assess transportation projects. 

Traditionally, these tools can be classified into multi-level categories, as follows: sketch-

planning, travel demand model-based, Highway Capacity Manual (HCM) methodology-

based, and traffic simulation-based analysis tools, according to the Traffic Analysis 

Toolbox Volume I (FHWA, 2004). 

There are several sketch planning tools that assess construction impacts, mostly in 

spreadsheet environments, that were developed by the FHWA and state departments of 

transportation. The Q-DAT tool developed by the Texas Transportation Institute is a 
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simple Microsoft Excel spreadsheet-based tool for construction impact analysis. Two 

types of analysis are conducted using this tool: “Delay and Queue Estimation” and “Lane 

Closure Schedule.” Q-DAT requires simple inputs and can produce estimates of queues 

and delays, which is applicable for planning purposes. However, only the mobility 

impacts caused by work zones are assessed, and the outputs are not provided as road user 

costs directly. QuickZone, which was developed by the FHWA, is a more detailed sketch 

planning analysis tool, which can estimate work zone mobility impacts such as traffic 

delays, queue, and associated delay costs. QuickZone is capable of modeling a facility 

with construction activities and associated alternative routes for work zone mobility 

impact analysis, and it can also be applied to evaluate traveler behavior with the presence 

of work zones such as route changes, peak-spreading, mode shifts, and trip losses. 

However, QuickZone mainly focuses on the mobility impacts for user costs. 

The HCM 2010 provides a more detailed macroscopic procedure that estimates 

the performance of freeways and urban streets. The HCM work zone capacity procedure 

was researched in a recent National Cooperative Highway Research Program (NCHRP) 

project (Kittelson & Associates, 2014). The HCM freeway and urban facility procedures 

are now being updated based on the results of the abovementioned report with the 

expected release of the updated HCM in 2015. The corresponding computational engines 

to the freeway and urban street facilities are FREEVAL and STREETVAL, respectively. 

Recently, these two tools were further enhanced to model travel time reliability 

producing modules that had been referred to as FREEVAL-RL and STREETVAL-RL.  

In addition, the updated HCM work zone procedure mentioned above was incorporated 

into these models. The Highway Capacity Software (HCS) was also updated to include 
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reliability estimation procedures. These models can be considered as macroscopic 

simulation models and can provide more detailed levels of analyses than those provided 

by the sketch planning procedures mentioned earlier. 

The Work Zone Impacts and Strategies Estimator (WISE) is a product produced 

by the SHRP2 R11 Project. It is a decision-support tool that assists agencies with the 

evaluation of the impacts of work zones and work zone-related mitigation strategies 

along a given corridor or for a network (Pesesky et al., 2012). WISE is able to evaluate 

renewal projects at both the planning and operational levels. When used as a planning 

tool, the user can evaluate the effectiveness of various travel demand and construction 

duration strategies for multiple projects by comparing two main measures: construction 

cost and traveler delay cost. When used at the operational level, time-dependent 

congestion and diversion caused by congestion can be captured by a simulation-based 

dynamic traffic assignment (DTA) tool. A more accurate estimation of the diversion due 

to the impacts of capacity reduction resulting from work zones can be obtained using the 

operation module based on the simulation outcomes.  The user can model whether to 

change the sequence of the projects based on the modeling results. However, WISE also 

has some limitations. It cannot be connected to any simulation-based DTA other than 

DynusT, and it needs to be calibrated with significant effort. 

As can be concluded from above, various traffic analysis tools are available to 

provide multi-tier analysis at both the planning and operation stages for the construction 

projects. Nevertheless, these tools mainly focus on mobility impacts, including delay and 

queueing analyzation. Estimation of other road user components, such as safety, 

environmental and business impacts, still need additional research.  
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 Multi-Criteria Decision Making Process 

The decision-making process that uses the construction and user impact parameters can 

be based on life cycle cost analysis (LCCA), MCDM, or a combination of the two. LCCA 

is the process of evaluating the economic performance of a transportation facility at 

current period. The department of transportation provides procedures to conduct 

alternative projects. The agency costs and user costs are the two main types of costs 

considered in a typical LCCA analysis. According to a technical report about life cycle 

cost analysis (LCCA) analysis of pavement design (FHWA, 1998), detailed procedures 

for conducting LCCA are provided. User costs are a combination of delay, vehicle 

operating costs, and crash costs. Each of these cost components is explored, and 

procedures are presented to determine their value. To deal with the uncertainty of input 

parameters such as discount rate, sensitivity analysis is utilized in traditional LCCA 

approaches. In 2007, the California Department of Transportation (Caltrans) adopted 

RealCost, which is the LCCA software developed by the U.S. Federal Highway 

Administration (FHWA). Automated functions were developed to select efficient and 

adequate sequences for future maintenance and rehabilitation (M&R) for comparing 

alternatives. The RealCost 2.5CA program was adopted as an official PWA tool to 

comply with regulatory requirements for California state highway projects.  

As stated earlier, the main objective of this research is to investigate the use a 

decision support method, in order to select between construction and work zone operation 

alternatives. A Multi-Criteria Decision Making (MCDM) approach is appropriate for use 

in the ranking and selection of the best alternative from a pool of available alternatives 

(Shyur & Shih, 2006). In relation to the topic of this study, decision makers need to 
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consider many factors when selecting construction alternatives, for instance, construction 

costs, mobility impacts, safety impacts, environmental impacts, and so on. While 

evaluating alternatives, the combination of quantitative and qualitative criteria makes the 

decision-making process complex and challenging. In addition, the selection is often 

based on inadequate information and/or personal judgments. Thus, the decision makers 

may find it hard to identify the best choice due to the lack of systematic methods to deal 

with the multi-criteria problems.   

A number of approaches were proposed to conduct MCDM. There are a number 

of MCDM approaches available in the literature. Perhaps, the most widely used among 

these methods are the Simple Multi Attributes Rating Technique (SMART) approach, 

Analytical Hierarchy Process (AHP) approach, and the fuzzy approach.   

According to Edwards and Barron (1994), the SMART is “by far the most 

common method actually used in real, decision-guiding multi-attribute utility 

measurements”. For the smart technique, ratings of alternatives are assigned directly, in a 

natural scale of the criteria where available. The advantage of the smart model is that it is 

independent of the alternatives. Since the ratings of alternatives are not relative, changing 

the number of alternatives considered will not change the decision scores of the original 

alternatives. This characteristic is particularly useful when new alternatives or features 

are added to the existing comparison. Any further evaluations necessary need not begin 

right from the start but the process can continue from the previous scores obtained.  

In order to select measures to be used in the balanced scorecard, Clinton et al. 

(2002) have used the analytic hierarchy process (AHP). However, AHP is often a more 

time-consuming process than smart and for managerial decision making “time” becomes 
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a crucial factor. Another potential drawback of AHP is that of “rank reversal” (Bruce et 

al., 1989). Judgements in AHP are relative by nature and changing the set of alternatives 

may change the decision scores of all the alternatives. Even if a new and very poor 

alternative is added to a completed model, those alternatives with top scores sometimes 

reverse their relative ranking (Belton et al., 1996). Since business performance 

measurement decision-making has become more and more complex with the passage of 

time, the overall complexity of selecting from a set of alternative measures has greatly 

increased. The dynamic nature of performance measurement systems (Bititci et al., 2000) 

suggests that new measures are likely to be introduced. As such the “rank reversal” 

problem might prove to be acute in this type of application (Wright et al., 2009) and 

therefore smart can be recommended as a better method in this situation. 

Among the available MCDM methods, the Technique for Order Performance by 

Similarity to Ideal Solution (TOPSIS) is one of the widely used techniques. TOPSIS was 

first developed by Hwang and Yoon (1981) and is based on the concept that the chosen 

alternative should have the shortest distance from the positive ideal solution (PIS), which 

is the solution with the maximum benefits and minimum cost; and the farthest from the 

negative ideal solution (NIS), which is the solution with the maximum cost and minimum 

benefit. The basic procedures of TOPSIS can be summarized as follows: 

Step 1: Construct the decision matrix using linguistic ratings for each alternative 

with respect to the criterion. 

Step 2: Convert the linguistic decision matrix to the fuzzy matrix, and normalize 

the fuzzy matrix in order to make the fuzzy number range from (0, 1). 
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Step 3: Obtain the weighted normalized fuzzy decision matrix using the fuzzy 

matrix and criteria weight matrix.  

Step 4: Determine the positive ideal and negative ideal solution. Calculate the 

separation measures using the n-dimensional Euclidean distance. 

Step 5: Rank the preference order for each alternative. 

The TOPSIS approach is selected for use in this dissertation. 
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 METHODOLOGY 

As stated earlier, the goal of this study is to develop a multi-criteria evaluation 

framework to support the decision-making process of highway construction projects. 

Such a framework can be used by agencies to compare different construction alternatives 

and support their decision-making. The performance measures that will be considered in 

this framework include mobility, travel time reliability, vehicle safety, emission and 

traffic diversion. Two levels of analysis are considered: a planning level and an 

operational level. For the planning level, spreadsheet analysis tools with simple inputs 

will be used to provide road user performance measures to be used as inputs to present 

worth analysis (PWA) and MCDM analysis. For the operation level, a dynamic traffic 

assignment tool combined with a simulation tool will be utilized to produce more 

accurate results for the PWA and MCDM analyses. The results from the PWA and 

MCDM analyses for the planning and operation levels will be analyzed and compared 

with each other in terms of their ability to select between construction alternatives and 

operational strategies including smart work zone deployments. With the detailed 

operation-level analysis, driver diversion behavior and lane merging behavior impacts on 

safety and mobility, which are particularly important when assessing smart work zone 

strategies will be assessed. The estimated road user performance parameters, as estimated 

in this study, will be used in combination with direct and indirect construction and 

operation strategy costs, and as inputs to the present worth analysis and MCDM analysis. 

Figure 3-1 presents an overview of the methodology that will be utilized in this study. As 

illustrated in this flow chart, the developed methodology consists of three main modules:  

data input, performance estimation, and decision-making processes. In the data input 
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module, information regarding alternative construction projects and associated operations 

strategies, historical traffic data, and network data are collected to prepare the inputs for 

traffic analysis and modeling tools. As shown in the flow chart, two levels of analysis are 

provided. The 2010 HCM methods and the updated procedure according to NCHRP 03-

107 (2014) project are used to estimate the work zone capacity, which is an essential 

input to both levels of analysis For simplicity, the methods used for the estimation of the 

reliability and emission impacts in the operations level used in this study are the same as 

those used for the planning level. For reliability impacts, a regression model based on the 

demand/capacity ratio, lane hour lost and weather condition is used in this study. The 

model was developed in the SHRP2 L03 (Systematic al., 2011) project. For emission 

impacts, the average speed approach of the EPA MOVES is used in this study. At the 

operation level, more detailed estimation of reliability using the SHRP L04 (Mahmassani 

et al., 2014) approach and more detailed estimation of emission using the microscopic 

approach of the MOVES model were proposed. 
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At the planning level, the spreadsheet tools used to estimate mobility impacts in 

this study include Q-DAT and QuickZone, as reviewed in the literature. A logit 

regression model, developed on the basis of travel time, weather and location, will be 

utilized to assess traffic diversion impacts. At the operation level, a combination of 

dynamic traffic assignment and simulation modeling is used to estimate diversion and 

mobility impacts. The safety impacts of work zone are estimated using the HSM 

procedure as a function of work zone length and duration The SSAM, developed by the 

FHWA is also used to assess the safety impacts at the operation level to estimate conflicts 

based on vehicle trajectory output by simulation. The outputs from the planning or 

operation level analysis are used as inputs to the decision-making module. 

  Data Collection and Model Preparation  

Data used as inputs to the multi-criteria decision making and those required for the 

associated modeling were first collected. Construction costs will have to be estimated. In 

this study, the construction costs were estimated using a method developed by Hadi et al. 

(2017). In addition, estimation of construction impacts requires collecting additional 

construction project information including construction schedule and construction 

alternatives. The inputs required for the modeling tools will need to be collected, 

including traffic volume/demand data, traffic network data, incident and weather data. 

Table 3-1 describes the data input requirements for different tools utilized in this study.  
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Table 3-1 Inputs for Different Tools Utilized in this Study 

Levels Utilized Tools Inputs 

Spreadsheet Tool 
Q-DAT 

QuickZone 

AADT (or hourly traffic volume if 

available in some tools), capacity drop, 

No. of days, No. of lanes, free flow 

speed, Construction schedule, Diversion 

Rate  in case of work zone 

Analytical Tool (HCM 

Facility Processor) 
FREEVAL 

15-min traffic volume, mainline and 

on/off ramp configuration, construction 

schedule 

Mesoscopic Simulation-

Based DTA 
DTAlite 

O-D matrix, Network Data, Capacity 

drop, No. of days 

Microscopic Simulation VISSIM 

Vehicle inputs, Static route and Partial 

route decisions, Network Data, 

Parameters for car-following and lane-

changing model 

 

As shown in Table 3-1, the required inputs will be obtained from various data 

sources. As introduced earlier, spreadsheet tools and analytical tools only require simple 

inputs. The first utilized case study in this research is a highway bridge construction 

project located in the I-4/Graves Avenue Intersection, in Orlando, Florida. The second 

case study is a construction project along the I-595 corridor in Broward County, Florida. 

The planning level analysis is applied to both cases, while the operation level analysis is 

applied only to the I-595 case. 

 DTA Model Preparation and Performance Measures Estimation 

The operation level analysis of this study utilizes the mesoscopic simulation-based 

dynamic traffic assignment (DTA) tool to estimate traffic diversion due to work zones. 

The assignment tool utilized in this study is DTALite, which is an open-source 

mesoscopic simulation-based DTA package, in conjunction with the Network Explorer 

for Traffic Analysis (NEXTA) graphic user interface. The base DTALite traffic network 
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was imported from the Port Everglades model developed by Citilabs for the Florida 

Department of Transportation (FDOT), as shown in Figure 3-1. 

 

Figure 3-1 Port Everglades Network in ArcGIS 

The base network and demand had to be converted to a format acceptable by the 

DTALite tool. The converted network conversion is shown in Figure 3-2. The conversion 

maintained link attributes including link capacity, free-flow speed, number of lanes, 

length, and so on, along with the node attributes including location coordinates and 

control type. 
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Figure 3-2 Port Everglades Network in NEXTA 

Initial travel demands, or more specifically, the Origin Destination (OD) matrices, 

were extracted from the regional planning model. Three types of OD matrices were 

imported to DTALite, including normal auto vehicle, long-haul vehicle and short-haul 

vehicle. Time-dependent 15-minute O-D matrices were created from the base matrix for 

the full period, from 3:30 PM to 6:30 PM, using the DTALite Origin Destination Matrix 

Estimation (ODME) model that estimates the O-D matrices based on the initial seed 

matrix and detector data. Data from 34 Microwave Vehicle Detection System (MVDS) 

detection stations were used in the ODME process.  

3.2.1 Estimation of Work Zone Capacity  

Due to lane closure and work zone activities, the road capacities for work zones are much 

lower than under normal operations, which is an important input for traffic analysis tools 
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to produce accurate results. Based on a previous study, the work zone capacity values are 

not uniform across different locations. Dixon et al. (1996) found that for a high intensity 

work zone in a 2-to-1 lane configuration, the capacity value at the activity area is around 

1,200 vphpl and 1,500 vphpl for rural and urban areas, respectively. Sarasua et al. (2004) 

summarized the work zone capacity values utilized in the analysis procedures of different 

states, as shown in Table 3-2. 

Table 3-2 Variation of Work Zone Capacity across States (vphpl) 

State 2-to-1Lane Configuration 3-to-1 Lane Configuration Units 

Texas 1340 1170 vphpl 

Missouri 1240 960 vphpl 

Nevada 1375 to 1400 1375 to 1400 vphpl 

Oregon 1400 to 1600 1400 to 1600 pcphpl 

South Carolina 950 950 vphpl 

Washington 1350 1350 vphpl 

 

The Highway Capacity Manual (HCM 2010) defines capacity as the “maximum 

sustained 15-min, expressed in passenger cars per hour per lane, that can be 

accommodated by a uniform freeway segment under prevailing traffic and roadway 

conditions in one direction of flow.” The capacity reduction due to construction activities 

can be divided into short-term and long-term work zone lane closures. The HCM 2010 

also states that work zone capacity values should be modified by applying certain 

adjustment factors based on work zone intensity, effects of heavy vehicles, and the 

presence of ramps close to work zones. The following equation is utilized to estimate the 

capacity. 

C = {[(1600 + I) × fhv] × N} − R                                                                     (3-1) 

Where, C represents adjusted work zone capacity (vphpl). I represents adjustment 

factor work zone intensity (ranges from -160 pcphpl to 160 pcphpl). fhv represents heavy-
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vehicle adjustment factor. N represents number of open lanes through a work zone. R 

represents manual adjustment for on-ramps. 

For long-term work zones, the HCM 2010 suggests that the capacity value can be 

1,400 vphpl for a 2-to-1 lane closure (which means 1 out of 2 lanes is open within a work 

zone), 1,450 vphpl for a 3-to-1 lane closure, and 1,350 vphpl for a 4-to-1 lane closure.  

Sarasua et al. (2004) conducted studies on 22 work zone sites in South Carolina 

and estimated that the base capacities for a short-term work zone capacity was 1,460 

pcphpl. Greenshields’ linear relationship and speed-flow-density data were used to 

estimate the capacity for work zones. They proposed a work zone capacity estimation 

model similar to HCM: 

Capacity (in veh) = (1460 + I) × N × fhv                                                       (3-2) 

Where, I defines the work zone intensity adjustment factor that ranges from -146 

vph to +146 vph, N represents the number of open lanes, and  fhv represents the heavy 

vehicle adjustment factor. 

In NCHRP Report 03-107 (2014), the updated results of developing regression 

models for capacity estimation for a freeway work zone is summarized. As a result of 

variable analyses, including missing data, the research team developed a freeway work 

zone capacity model that considered the number of open lanes, barrier type used in work 

zones, work zone location, lateral distance, and time of day. Two types of regression 

models, referred to as additive and multiplicative models, were developed and are listed 

below.  
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The Additive model: 

C = 2093 − 154 × fLSCI − 194 × fbarrier − 179 × farea + 9 × flateral−12 

−59 × fday−night                          (3-3) 

Where, C represents the average queue discharge flow rate (vphpl), fLSCI is 

computed as 
1

No.  of open lanes∗open ratio
, fbarrier represents the barrier type multiplier (0: 

concrete, 1: cone or PE drum). farea is the location of the freeway multiplier (0: urban, 1: 

rural), flateral−12 is the difference between the lateral distance and 12 (ft), and fday−night 

is the time of the day multiplier (0: day, 1: night). 

The Multiplicative model: 

C = 2013 × fLSCI
−0.1323 × fbarrier × farea × flateral−12

0.0309 × fday−night        (3-4) 

Where, C  represents the average queue discharge flow rate (vphpl). fLSCI  is 

computed as 
1

No.  of open lanes∗open ratio
, fbarrier is the barrier type parameter( 1: concrete, 

0.805: cone or PE drum), farea  is the location of the freeway multiplier (1: urban, 0.8836: 

rural), flateral−12 is the ratio of the lateral distance over 12 (ft), and fday−night  is the time 

of the day multiplier (1: day, 0.9363: night). 

A summary of the capacity values from sources that can be potentially used in the 

modeling of this study are shown in Table 3-3. For planning level and operation level 

analysis, the work zone capacity derived from the Table 3-2 capacity range were utilized. 

Combined with experience, 1,100 vphpl was used as capacity for the 3-to-1 lane work 

zone, and 1,200 vphpl was used as capacity for the 4-to-2 lane work zone. Spreadsheet 

analysis tools and mesoscopic simulation-based DTAlite are able to utilize the capacity as 

input directly. For the microsimulation tool, which is VISSIM, the work zone capacity is 
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determined through the calibration of the driving behavior parameters in VISSIM. The 

details of calibration are described later. 

Table 3-3 Estimation of Work Zone Capacity (vphpl) 

Work Zone 

Capacity  

HCM NCHRP_ 

Additive 

NCHRP_ 

Multiplicative 

Previous 

Research 

Capacity 

Range 

3 to 1 Lane 1187 1258 1307 950 to 1400 1000 to 1300 

4 to 2 Lane 1275 1453 1480 1450 1200 to 1500 

 

3.2.2 Estimation of Mobility Impacts  

Mobility impacts refer to the additional travel time needed to drive through the work zone 

area or take a detour route around it. In this study, the planning level of analysis of 

mobility impacts was conducted using sketch-planning spreadsheet tools. The operational 

level is conducted using a combination of DTALite, and a simulation tool (VSSIM at the 

microscopic level and FREEVAL at the macroscopic level). 

Travel times were converted into dollar values for use in present worth or benefit-

cost analyses. Based on the concept that travel time has the same economic value as the 

time spent on working or recreation, the monetary value of travel time can be quantified. 

A report by the FHWA (2011) suggests using a VOT value of 16.64 $/person-hour, 

which was utilized in this study. The total travel delay costs were estimated as follows:  

MobilityCosts = VOT ∗ TotalDelay ∗ Vehicle Occupancy                               (3-5) 

Where, VOT is the value of time, Total Delay represents the total delay during 

construction in veh-hour, and vehicle occupancy is a region-specific parameter that can 

vary by time of day and trip purpose (occupancy of 1.4 persons per vehicle was used in 

this study). 
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The delays due to work zones estimated by traffic flow models used in a number 

of traffic analysis tools were compared in this study to determine the differences in the 

obtained results. The assessed tools include two widely used analytical tools that are 

relatively easy to use for this purpose, Q-DAT and QuickZone, as well as the HCM 

computational engine work zone module referred to as FREEVAL, a mesoscopic 

dynamic traffic assignment tool, DTALite, and a microscopic simulation tool, VISSIM. 

In general, these tools require different inputs and generate different outputs. The demand 

inputs for Q-DAT are the daily traffic volumes. The inputs for the FREEVAL tools are 

15-minute link volumes. QuickZone requires hourly link traffic volumes, and DTALite 

requires travel demand matrices. The VISSIM software allows for the input of either the 

O-D matrix, partial route demand, or demands at entrance links combined with turning 

movement percentages. These tools were compared based on the results from the case 

study. It should be mentioned that route diversion was not considered in this comparison, 

as some of the tools do not consider the diversion to alternative routes.   

Work zone capacity and travel demand are important factors for work zone 

mobility analysis. To simplify the analysis, a capacity of 1,000 vphpl was used for work 

zones in this case study, and a sensitivity analysis was conducted for travel demand. 

Figure 3-3 shows the case study results. It can be seen from this figure that the average 

travel delay increases significantly with the increase in travel demand (that is, 

demand/capacity ratio). However, the estimated delay by FREEVAL does not change 

when the demand/capacity ratio is over 1.2. This is because the queue extends beyond the 

boundary of the system, as explained in the next section. It can also be seen that all of the 
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results except FREEVAL show similar trends to the results obtained using simple 

queuing theory equations. 

  
Figure 3-3 Comparison of Travel Delay 

In order to capture the backup of queue, the upstream link of the work zone was 

extended to 5 miles in each analysis tool.  The corresponding new results are shown in 

Figure 3-4. After changing the length of the upstream link, the estimated delay from 

FREEVAL increases dramatically. This indicates that FREEVAL utilizes a true 

“horizontal queue.” As a microscopic simulation tool, the VISSIM software also 

considers the spatial distribution of queues. The other tools use vertical queues. Q-DAT, 

QuickZone, DTALite, and the deterministic queuing theory analysis produce similar 

estimates of travel delay at the work zones, while FREEVAL and VISSIM produce 

higher delays.   
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Figure 3-4 Comparison of Travel Delay with Extended Upstream Link 

3.2.3 Estimation of Safety Impacts  

Safety impacts reflect the expected increase in crashes that occur due work zone 

operations. Two types of analysis are used for safety impacts: crash analysis, which can 

be applied to both planning and operation level analysis, and conflict analysis, which can 

be applied only to operation level analysis based on VISSIM outputs. The crash 

frequencies without work zones can be estimated based on real-world data or utilizing a 

model or average frequency values reported in previous studies. In this study, the default 

values used in the Florida ITS Evaluation (FITSEVAL) were used to estimate the 

frequency of crashes without work zones, shown in Table 3-4.  

 

 

 

 

 

 

 

 

0

5

10

15

20

25

30

35

40

45

50

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Tr
av

e
l D

e
la

y(
m

in
)

Demand/Capacity Ratio

QDAT

QuickZone

FREEVAL

DTAlite

Queuing Theory

VISSIM



61 
 

Table 3-4 Crash Rates Table 

V/C Fatality 

Injury PDO 

Freeway 

Auto 

Arterial 

Auto 

Freeway 

Truck 

Arterial 

Truck 

Freeway 

Auto 

Arterial 

Auto 

Freeway 

Truck 

Arterial 

Truck 

0.09 
A

 c
o

n
st

an
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o
f 

0
.0

0
0

4
 f
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ee
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ay
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d

 0
.0

0
7
2

 f
o
r 

ar
te
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al

. 

0.5156 1.715 0.5156 1.715 0.8551 2.394 0.8551 2.394 

0.19 0.5156 1.715 0.5156 1.715 0.8551 2.394 0.8551 2.394 

0.29 0.5156 1.715 0.5156 1.715 0.8551 2.394 0.8551 2.394 

0.39 0.5156 1.715 0.5156 1.715 0.8551 2.394 0.8551 2.394 

0.49 0.5156 1.715 0.5156 1.715 0.8551 2.394 0.8551 2.394 

0.59 0.5757 1.715 0.5757 1.715 0.8551 2.394 0.8551 2.394 

0.69 0.5757 1.715 0.5757 1.715 0.8551 2.394 0.8551 2.394 

0.79 0.5757 1.715 0.5757 1.715 0.9953 2.394 0.9953 2.394 

0.89 0.5757 1.715 0.5757 1.715 0.9953 2.394 0.9953 2.394 

0.99 0.7392 1.715 0.7329 1.715 1.1591 2.394 1.1591 2.394 

1.00 0.7329 1.715 0.7642 1.715 1.2737 2.394 1.2737 2.394 

 

Crash modification factors (CMF) are utilized to estimate work zone impacts on 

safety. Per the recommendation by a research in Indiana (Mallela, 2011), the crash 

modification factor (CMF) due to a work zone ranges from 1.3 to 1.6. This indicates a 30% 

to 60% increase in crash rates due to work zones.  

For the conflict analysis, the Surrogate Safety Assessment Model (SSAM) tool, 

developed by the FHWA, was used to perform analysis of the vehicle trajectory data 

output from VISSIM. Traditionally, in order to assess a traffic facility with SSAM, the 

facility is first modeled in one of the aforementioned simulation models and then 

simulated with desired traffic conditions (typically simulating several replications with 

different random number seeds). Each simulation runs the results in a corresponding 

trajectory file, referred to as a TRJ file corresponding to the .trj file name extension. Then, 

SSAM is used as a post-processor to analyze the batch of TRJ files. 
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3.2.4 Estimation of Diversion Impacts 

The traffic diversion rate depends on many factors associated with construction activities, 

traffic conditions, and the availability of alternative routes, and the characteristics of road 

users. In this study, a logit regression model and DTALite day-to-day learning 

assignment were utilized to predict the diversion, and the results were compared. The 

logit model is more appropriate for short-term work zones, particularly at the planning 

level. The DTA-based model is appropriate for the operation analysis level. 

The logit regression model, initially used in this study, was proposed by Song and 

Yin (2008) to predict traffic diversion due to work zone impacts. With this logit model, 

the interaction and feedback between the original and alternative routes are not 

considered. The prediction model for the diversion rate is as follows:  

RTF =
1

1+exp (0.1416(torg−talt)+ρ)
                                                                           (3-8) 

Where, torg  and talt  are the travel times of original and alternative routes, 

respectively. ρ is the model parameter that was calibrated based on work zone location 

and weather, shown in Table 3-5.  

Table 3-5 Value of Parameter 𝛒 

Parameter Value Work Zone Location 

Rural Urban 

Weather Condition 
Normal -0.6166 0.1054 

Bad -0.2207 0.5013 

 

A new logit model was developed in this study that considers day-to-day learning 

based on DTALite by including the number of the days that the work zone was active as 

an independent variable in the regression. Thus, this model considers the interactions 

with the alternative routes. However, this model is developed based on a single network 
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(the I-595 network). Thus, DTA utilization is necessary to ensure accurate estimation of 

the diversion. 

For the operation level, the day-to-day learning traffic assignment option of 

DTALite was used for the analysis. In this study, the diversion is estimated by tracking 

the vehicles that travel from origins to destinations using the link-based results reported 

in the DTAlite output. Figure 3-5 illustrates the work zone and alternative route used by 

the DTALite assignment for an Origin-Destination Pair. 

 

Figure 3-5 Original Route and Alternative Route of Work Zone Used by DTALite 

Assignment for an O-D Pair 

Notes: The squares in figure above represent the origin and destination of the O-D pair. The blue 

link represents the original route, while the pink link represents the alternative route. 

3.2.5 Estimation of Reliability Impacts 

This study uses regression equations to estimate reliability for both the planning level and 

operation level analyses. These equations were originally developed in the SHRP 2 L03 

project (Cambridge Systematics, 2011). The simulation-based reliability estimation of 
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SHRP 2 L04 can be used for more detailed operation studies. This procedure was not 

performed in this study. The utilized measures of reliability that can be calculated using 

the models are the nth percentile travel time indexes (TTIs), where nth could be the 10th, 

50th, 80th, 95th, and mean travel time index (TTI). The TTI estimation models have the 

following general functional form:  

TTIn% = e(jnLHL+kndccrit+lnR0.05")                                                                  (3-9) 

Where, TTIn% represents the nth percentile TTI. LHL represents the lane hour lost. 

dccrit  represents the demand-capacity ratio. R0.05"  represents the hours of rainfall 

exceeding 0.05 of an inch, and jn, kn,ln represents the coefficients for nth percentile TTI. 

In order to convert the reliability into a dollar value, it is necessary to estimate the 

value of reliability (VOR). The L04 project of the SHRP 2 program (Mahmassani et al., 

2014) recommended that the VOR value is set as a function of the travel purpose, 

household income, car occupancy and travel distance. In this study, the buffer time, 

representing the extra time budgeted for travel, is selected as the reliability measure to 

estimate reliability costs based on its use in the SHRP 2 L04 project, as follows:  

ReliabilityCosts = VOR ∗ BufferTime                                                            (3-10) 

BufferTime = Vehicles ∗ Occupancy ∗ AveTravelTime ∗
(95%TTI−MedianTTI)

MedianTTI
          (3-11) 

Where, the VOR value used in this project is 22.5$/hr, according to the SHRP 2 

L04 project. BufferTime defines the additional amount of time needed to be on time. 

Vehicles represents the number of vehicles in the study period. Occupancy represents the 

average occupancy for automated vehicles. AveTravelTime represents the average travel 

time for drivers to pass the work zone area. TTI represents the Travel Time Index. 
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3.2.6 Estimation of Emission Impacts 

Work zone can also increase pollutant emissions from vehicles due to the increase in 

stops and decrease in speed. The average speed approach of the Motor Vehicle Emission 

Simulator (MOVES) (EPA, 2010), developed by the United States Environmental 

Protection Agency (EPA), was used in this study to estimate emission. The average speed 

approach is the simplest of the project level analysis in MOVES and is based on the 

average speed of the vehicles and the vehicle miles traveled by vehicle type. Figure 3-8 

displays the emission rates used in this study. 

 

Figure 3-6 Emission Rates of Pollutants 

The emission cost was then estimated using the following equation:  

EmissionCost = UnitCost ∗ VMT ∗ EmissionRate(PollutantType, Speed)  (3-12) 

Where, the utilized unit costs of emissions were obtained from the FHWA work 

zone road user cost manual mentioned earlier (FHWA, 2011). Three types of pollutants 

are considered in this study: Carbon Oxide (CO), Nitrogen Oxide (NOx), and 

Hydrocarbons (HC). 
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 Microscopic Simulation Model Preparation 

To investigate the impacts of a work zone and associated strategies considering the 

detailed driving behaviors, VISSIM, which is a microscopic, stochastic, discrete time-

step-based simulation tool, was utilized to conduct a more detailed level of analysis in 

conjunction with DATlite. As such, DTALite provides the strategic diversion behaviors 

of drivers, while VISSIM provides the mobility and microscopic traffic behavior impacts. 

VISSIM has two car-following models: Wiedemann 74 and Wiedemann 99, and a lane-

changing model. The Wiedemann 99 car-following model represents freeway condition, 

and there are ten user-defined driving behavior parameters, CC0, CC1, …, CC9, which 

classify driving behavior. The lane-changing model in VISSIM is based on the driver’s 

response to the perception of the surrounding traffic. Necessary lane changes depend on 

the aggressiveness of drivers in accepting/rejecting gaps in adjacent lanes. The safety 

reduction factor (SRF) defines the reduction in safety distance for lane changing. A lower 

SRF value, for instance 0.4, means that the safety distance for lane changing is reduced 

by 60%, which suggests that drivers are more aggressive in accepting shorter gaps. Table 

3-6 describes the parameters that influence car-following and lane-changing behaviors in 

VISSIM. 
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Table 3-6  Parameter Range and Default Value   

Parameter  Description  Default value Range  

CC0 Standstill distance between two stopped 

vehicle 

4.92ft  

CC1 Desired time headway 0.9sec 0.9~1.8sec 

CC2 Following variation 13ft 10~55ft 

CC3 Threshold for entering “Following” -8.00  

CC4 Following threshold -0.35  

CC5 Following threshold 0.35  

CC6 Speed dependency 11.44  

CC7 Oscillation acceleration 0.82ft/s2 0.4~2.0ft/s2 

CC8 Standstill acceleration 11.48ft/s2  

CC9 Acceleration at 80 km/h 4.92ft/s2  

SRF Safety distance reduction factor 0.6 0.15~0.6 

 

Gomes et al. (2004) utilized the CC0, CC1 and CC4/CC5 pairs to calibrate the 

value of field capacity in their VISSIM simulation study. The CC0 value was changed 

globally from 1.5 to 1.7 seconds, and this parameter was used specifically to calibrate the 

queue length, as it has more significance at lower speed conditions. The overall selection 

of the parameter values was done manually and based on the visual interpretation of the 

results. Lownes et al. (2006) performed an analysis of the quantitative impact of VISSIM 

driving behavior parameters in estimating capacity. The impacts of the Weidman 99 

driving behavior parameter and lane-changing distance were investigated. Each of the ten 

behavior parameters were tested at four levels, namely “low,” “medium,” “calibrated” 

and “high,” depending on the values selected for each parameter. The results suggested 

that parameter CC0 produced significant differences only when the CC0 value is at a high 

level, but the CC1 values at all four levels resulted in a significant difference in the 

simulated capacity. Similarly for CC2, as its value increased, a drop in the mean value of 

capacity was observed. 
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As mentioned earlier, the work zone capacity values that were estimated using the 

HCM and NCHRP’s project 03-107 methods were used to calibrate the driving behavior 

parameters in VISSIM. Only four parameters were selected for use in the calibration, 

based on the findings from previous studies. These parameters are CC0, CC1, CC2, and 

SRF. After the calibration, the resulting simulated capacity value was 1,880 vphpl for 

normal freeway, 1,144 vphpl for the 3-to-1 lane work zone, and 1,290 vphpl for the 4-to-

2 lane work zone. When compared with the work zone capacity value range in Section 

3.2.1, which is 1000 to 1300 vphpl for the 3-to-1 lane work zone and 1,200 to 1500 vphpl 

for the 4-to-2 lane work zone, the VISSIM calibration is acceptable. Table 3-7 presents 

the selected parameter.  

Table 3-7 Selection of Parameter 

Parameter Default Value Range Calibration Value 

CC0 4.92ft - 4.92ft 

CC1 0.9sec 0.9-1.8sec 1.1sec 

CC2 13.2ft 10-55ft 25ft 

SRF 0.6 0.15-0.6 0.6 

 Monetary and Non-Monetary Evaluation 

Traditionally, economic analysis, such as present worth or benefit-cost analyze, has been 

utilized to assist decision makers in evaluating and comparing one or more alternatives to 

a “base case” of construction projects. In this study, the performance measures estimated 

in the previous module will be converted into dollar values and used as road user costs in 

the life cycle cost analysis. Construction costs, including both direct and indirect costs 

that are used as inputs to the analysis, will be estimated using models developed by 

researchers in the Construction Management Department at Florida International 

University. Smart zone strategies will also be estimated and used in the analysis. The 
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present worth analysis (PWA) is then calculated based on construction and user costs in 

the current period, and then added to the initial costs to determine the PWA.  

In addition to the PWA estimation as a decision support method, MCDM was 

used in this study to capture all quantity and quality impacts and account for stakeholder 

preference. In this study, the TOPSIS MCDM is used for selecting between construction 

and operation strategy alternatives. The results from using the MCDM and PWA for the 

planning and operation analysis levels are then compared.  The following are steps on 

how to apply the TOPSIS procedure: 

 Step 1: Calculation of the Synthetic Importance Weight Matrix. This calculation 

involves asking decision makers, using linguistic variables, to express their 

perceptions of the level of importance of each criterion. This will allow for the 

calculation of an integrated fuzzy importance weight matrix for the valuing 

criteria. 

 Step 2: Building the Fuzzy Decision Matrix. This step involves decision makers 

using linguistic terms to express their opinions about the rating of every 

alternative based on the raw data provided. 

 Step 3: Calculating Weighted Normalized Fuzzy Decision Matrix. Considering 

the weights and the ratings of each alternative, the weighted normalized fuzzy 

decision matrix will be obtained using the matrix produced in Step 1 and Step 2. 

 Step 4: Calculating the Performance of Each Alternative Using the Closeness 

Coefficient (CC). The closeness coefficient is measured using the Euclidean 
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distances of each candidate system to the fuzzy positive ideal solution and the 

fuzzy negative ideal solution. 

The fuzzy TOPSIS MCDM method described earlier was utilized for the selection 

between the construction and work zone alternatives using accelerated bridge 

construction (ABC) technology and smart work zone strategy for the I-4 and I-595 

construction projects. There are five criteria included in the evaluation:   

C1: Mobility Costs 

C2: Reliability Costs 

C3: Safety Costs 

C4: Emission Costs 

C5: Construction Costs 

In this study, the triangular fuzzy number is utilized to express the importance of 

each criteria and assessment of each alternative. The linguistic variable for the 

importance of each criteria ranges from “very low” to “very high,” and the linguistic 

variable for the assessment of each alternative ranges from “very poor” to “very good.”  

The linguistic variable has seven grades, which are shown in Table 3-8 and Table 3-9, 

based on an input from an input from an experienced previous state department of 

transportation engineer. In real-time implementation of this method, these weights should 

be assigned by project stakeholders. 
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Table 3-8 Linguistic Variables for the Importance Weight of Each Criteria 

Linguistic Variable Corresponding Triangular Fuzzy Number 

Very Low (VL) (0,0,0.1) 

Low (L) (0,0.1,0.3) 

Medium Low (ML) (0.1,0.3,0.5) 

Medium (M) (0.3,0.5,0.7) 

Medium High (MH) (0.5,0.7,0.9) 

High (H) (0.7,0.9,1.0) 

Very High (VH) (0.9,1.0,1.0) 

 
Table 3-9 Linguistic Variable for Rating 

Linguistic Variable Corresponding Triangular Fuzzy Number 

Very Poor (VP) (0,0,1) 

Poor (P) (0,1,3) 

Medium Poor (MP) (1,3,5) 

Fair (F) (3,5,7) 

Medium Fair (MG) (5,7,9) 

Good (G) (7,9,10) 

Very Good (VG) (9,10,10) 

 

Decision makers could use the linguistic variable to express their perceptions 

about the level of importance of each criteria and assessment of each criteria based on the 

linguistic variable table mentioned above. Table 3-10 shows the importance of criteria 

based on expert survey data. 

Table 3-10 Criteria Importance Table 

Criteria Expert1 Expert2 Expert3 Expert4 

C1:Mobility H VH VH H 

C2:Reliability H VH MH ML 

C3:Safety VH VH H H 

C4:Emission M MH MH L 

C5:Construction Costs VH H H VH 

 

For the assessment of each alternative, it is not necessary to convert all of the 

performance measures to dollar value. Thus, the performance measure will keep its unit 

in the fuzzy evaluation. The evaluation index selected for each criterion is listed as: total 

travel delay (mobility), TTI (reliability), number of conflicts (safety), pollutants weight 
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(emission), implementation and maintenance costs (construction). To make the ratings for 

each criterion more flexible and understandable, the performances of alternative traffic 

management scenarios, which are Accelerated Bridge Construction (ABC) and 

conventional method, were compared. The increasing/decreasing percentage of the 

performance measures using the ABC method compared to that of using the conventional 

method was utilized to determine the rating for each criterion. Through the expert survey, 

the rating principle of performance ABC with respect to Conventional Construction was 

shown in Table 3-11. Users can provide the ratings based on the rating principle and their 

own experience.  

Table 3-11 Rating of the Performance of ABC with Respect to Conventional Construction 

Rating Expert Mobility 

Impacts 

Reliability 

Impacts 

Safety   

Impacts 

Emission 

Impacts 

Construction 

Costs 

VP 

Expert1 

Expert2 

Expert3 

Expert4 

Equal or higher 

Equal or higher 

10% lower 

10% higher 

Equal or higher 

Equal or higher 

10% lower 

10% higher 

Equal or higher 

Equal or higher 

10% lower 

10% higher 

Equal or higher 

Equal or higher 

10% lower 

10% higher 

100% higher 

10% higher 

50% higher 

30% higher 

P 

Expert1 

Expert2 

Expert3 

Expert4 

10~30% lower 

0~10% lower 

10~20% lower 

0~10% higher 

10~30% lower 

0~10% lower 

10~20% lower 

0~10% higher 

10~30% lower 

0~10% lower 

10~20% lower 

0~10% higher 

10~30% lower 

0~10% lower 

10~20% lower 

0~10% higher 

75~100% higher 

5~10% higher 

40~50% higher 

25~30% higher 

MP 

Expert1 

Expert2 

Expert3 

Expert4 

30~45% lower 

10~15% lower 

20~35% lower 

0~15% lower 

30~45% lower 

10~15% lower 

20~35% lower 

0~15% lower 

30~45% lower 

10~15% lower 

20~35% lower 

0~15% lower 

30~45% lower 

10~15% lower 

20~35% lower 

0~15% lower 

50~75% higher 

0~5% higher 

35~40% higher 

20~25% higher 

F 

Expert1 

Expert2 

Expert3 

Expert4 

45~60% lower 

15~20% lower 

35~50% lower 

15~30% lower 

45~60% lower 

15~20% lower 

35~50% lower 

15~30% lower 

45~60% lower 

15~20% lower 

35~50% lower 

15~30% lower 

45~60% lower 

15~20% lower 

35~50% lower 

15~30% lower 

30~50% higher 

Equal 

30~35% higher 

15~20% higher 

MF 

Expert1 

Expert2 

Expert3 

Expert4 

60~80% lower 

20~30% lower 

50~65% lower 

30~45% lower 

60~80% lower 

20~30% lower 

50~65% lower 

30~45% lower 

60~80% lower 

20~30% lower 

50~65% lower 

30~45% lower 

60~80% lower 

20~30% lower 

50~65% lower 

30~45% lower 

20~30% higher 

0~5% lower 

20~30% higher 

10~15% higher 

G 

Expert1 

Expert2 

Expert3 

Expert4 

80~95% lower 

30~40% lower 

65~80% lower 

45~60% lower 

80~95% lower 

30~40% lower 

65~80% lower 

45~60% lower 

80~95% lower 

30~40% lower 

65~80% lower 

45~60% lower 

80~95% lower 

30~40% lower 

65~80% lower 

45~60% lower 

Equal  

5~10% lower 

10~20% higher 

5~10% higher 
VG Expert1 95% lower 95% lower 95% lower 95% lower 0~20% lower 
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Expert2 

Expert3 

Expert4 

40% lower 

80% lower 

60% lower 

40% lower 

80% lower 

60% lower 

40% lower 

80% lower 

60% lower 

40% lower 

80% lower 

60% lower 

10% lower 

10% higher 

5% higher 
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 APPLICATION RESULTS 

The decision-making analysis framework and the associated analysis described in 

Chapter 3 were applied to the I-4 and the I-595 case studies. The planning level decision 

making analysis was conducted for both case studies, while the operational analysis was 

only applied to the I-595 case study, since there is no detailed traffic network data for the 

I-4 case study. This section describes the results obtained from the implementation of the 

two case studies. 

 I-4 at Graves Avenue Interchange Case Study 

Basic Information 

This case study represents a three-mile work zone located along the I-4 corridor near the 

Graves Avenue Interchange in Orlando, Florida. The duration of the work zone activities 

was assumed to be three hours each day, and two out of the facility’s three lanes were 

closed during construction.  

The construction zone segment has an AADT of 67,000 vehicles per day (see 

Figure 4-1). During construction, an existing two-lane four-span concrete beam bridge 

was widened to 33 feet with two traffic lanes, a shoulder and a sidewalk on each side. 

The basic information for this project is shown in Table 4-1. 
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Figure 4-1 Location of Study Bridge Construction Project 

Table 4-1  Basic Information for I-4/Graves Bridge 

Segment  No. of Lanes Length (miles) Free-flow speed (mph) 

I-4-work zone 3 lanes 3.11 60 

Detour for I-4 2 lanes 4.32 30 

Graves Ave 1 lane 0.83 45 

Detour for Graves 1 lane 1.91 30 

 

The decision support framework described in Chapter 3 is applied to this case 

study to select between conventional construction and accelerated bridge construction 

(ABC). Only the planning level approach to estimate the performance measures is used in 

this case. Both approaches (the planning and operations approaches) are used in the 

analysis of the second case study, discussed in the next section. The construction period 

and lane closure schedules are different between the ABC and the conventional 

construction methods. The associated in the construction costs, user costs, and thus the 
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total costs are different between the two construction approaches and must be estimated 

and compared. Following are the estimated construction durations for the different 

alternatives. 

 ABC Method. The ABC Method requires I-4 to close one outside lane from 21:00 to 

24:00 for only four nights.  This schedule was obtained based on project documents. 

 Conventional Method I. Conventional Method I requires I-4 to close two outside 

lanes from 21:00 to 24:00 for 48 nights. This schedule is a hypothetical schedule 

identified in this study as a potential variation for Conventional Method II identified 

in project documents. The main purpose for including this additional method, 

although not specified as an option in the project document, is to further the 

comparison that can be made using the identified framework. Due to the site 

overhead costs caused by the longer period of Conventional Method I compared to 

Conventional Method II, the construction cost of Method 1 is assumed to be 15% 

higher than the Conventional Method II. 

 Conventional Method II. Conventional Method I requires I-4 to close all lanes from 

21:00 to 24:00 for 32 nights. This is a schedule obtained from the project 

documentation that shows the schedule of the construction estimated by the agency 

for the conventional bridge construction. 

Work zone capacity has a large influence on the estimation of mobility and 

reliability impacts and thus the road user costs. Since there is uncertainty in the open-lane 

capacity during construction, sensitivity analysis was done to determine the impact of this 

parameter value on the analysis results. In this study, three values of work zone capacity 
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were utilized and the results of the analysis were compared to determine the impacts on 

the analysis results: an estimate from a previous analysis of real-world data by this 

study’s researchers (capacity equal to 1000 veh/hr/lane), a HCM 2010 methodology 

(1136 veh/hr/lane), and a method presented in the NCHRP project 03-107 report 

(capacity equal to 1264 veh/hr/lane).  

Another important issue is the route diversion due to construction zones. During 

the lane closure period, drivers may choose to divert to alternative routes. The logit 

model developed by Song and Yin (2008) as reviewed earlier was utilized to estimate 

traffic diversion. As a result, a 15.8% diversion rate was utilized for both one-lane 

closure and two-lane closure, and a 100% diversion to the alternative route for the full-

lane closure.   

The results from applying the framework to the case study are shown in Table 4-2 

and Figures 4-2 to 4-4. As shown in Figure 4-2, the construction cost of the ABC is 

higher than that of the conventional method according to the utilized construction cost 

estimation method. This could be in part due to the lesser amount of experience with 

ABC compared to the conventional methods, raising the possibility of the ABC costs 

decreasing with the increasing experience of ABC. The Conventional Method I (Con I in 

the table 4-2) has a 15% higher construction cost compared to Conventional Method II 

(Con II in the table 4-2) due to the longer construction period. If the comparison was 

based on the construction cost alone, agencies would select Conventional Method II. This 

illustrates the importance of considering the user impacts, in addition to user costs in the 

analysis. 
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The Quick Zone sketch planning tool was used to estimate the mobility impacts. 

As shown in Table 4-2, the ABC method has the lowest mobility impacts. Conventional 

Method II has the highest impacts since all of the vehicles had to use an alternative route 

with the full closure required by this method. The reliability, emission, and safety impacts 

are also shown in Table 4-2 and Figures 4-2 to 4-4. If the mobility (travel time delays due 

to construction) is added to the comparison, as is sometimes done when comparing 

construction and construction management alternatives, Figure 4-3 shows that 

Conventional Method II becomes the alternative with the highest cost. However, the cost 

of Conventional Method I is still lower than the ABC cost, as shown in Figure 4-3. When 

all components of the user costs are added to the analysis, ABC became the best 

alternative in Figure 4-4, except for the optimistic lane capacity of the work zone 

(capacity of 1264 veh/hr/lane). This illustrates the benefit of using the total costs, which 

includes the user costs, in the comparison with ABC and conventional methods. If 

additional user costs, such as the impacts on businesses and toll revenue losses, if any, 

could be added, then the user costs would be even higher. In this project, I-4 was not a 

tolled highway, and there were no impacts on businesses that could be quantified. 

Table 4-2  Total Costs for Different Alternatives 

Costs in dollar value ($) 
Mobility 

Costs 

Reliability 

Costs 

Safety 

Costs 

Emission 

Costs 
Construction 

Construction 

Agency Costs 
Total Cost 

C=1000 

veh/hr/lane 

ABC 120,347 32,807 40,864 1,615 430,000 53,320 678,953 

Con I 224,591 258,414 77,313 2,274 342,125 46,529 951,246 

Con II 487,838 258,580 127,434 3,102 297,500 40,460 1,214,914 

C=1136 

veh/hr/lane 

ABC 120,347 32,489 40,864 1,615 430,000 53,320 678,635 

Con I 191,339 202,851 77,207 2,425 342,125 46,529 862,476 

Con II 487,838 258,580 127,434 3,102 297,500 40,460 1,214,914 

C=1264 

veh/hr/lane 

ABC 120,347 32,311 40,864 1,615 430,000 53,320 678,457 

Con I 183,026 73,715 77,207 2,499 342,125 46,529 725,101 

Con II 487,838 258,580 127,434 3,102 297,500 40,460 1,214,914 
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Figure 4-2 Comparison of Construction Costs  

 
Figure 4-3  Comparison of the Construction Costs When Mobility Costs is Added  
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Figure 4-4  Comparison of the Total Costs of Different Alternatives  

The fuzzy TOPSIS approach was also conducted for the evaluation between ABC 

and conventional construction alternatives. As described earlier, the performance 

measure does not require conversion to a dollar value, as shown in Table 4-3 (1136 

veh/hr/lane used as work zone capacity). Based on the fuzzy evaluation approach 

described in Methodology chapter, the performance measures were rated to linguistic 

variable according to the rating principle, as shown in Table 4-4.   

Table 4-3   Comparison of Different Alternatives  

Scenario Mobility 

Impacts 

(In veh.hr) 

Reliability 

Impacts 

(In veh.hr) 

Emission 

Impacts 

(In ton) 

Safety 

Impacts 

(Crashes) 

Construction 

Costs (Direct 

and Indirect) 

ABC 7,338 1,444 2.79 0.79 483,320 

CONI 11,667 9,016 4.19 1.49 388,654 

CONII 29,746 11,492 5.36 2.46 337,960 

No Work Zone 0 848 1.64 0.54 0 
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Table 4-4 Rating Results for Alternatives 

Alternatives 

Mobility 

Impacts 

(In veh.hr) 

Reliability 

Impacts 

(In Veh.hr) 

Emission 

Impacts 

(In ton) 

Safety 

Impacts 

(Crashes) 

Construction 

Costs (Direct 

and Indirect) 

User1 ABC VG VG G VG MP 

CONI G MP MP F MF 

CONII P VP P P G 

User2 ABC VG VG VG VG P 

CONI G F F F P 

CONII VP VP VP VP VG 

User3 ABC VG G F VG VP 

CONI F MP VP MF MF 

CONII VP VP VP VP VG 

User4 ABC VG G VG VG MG 

CONI MP F P G G 

CONII VP VP VP VP G 

 

Combined with the criteria importance in Table 3-9, the fuzzy evaluation results 

are listed in Table 4-5. D(max) represents the distance between the alternative to the best 

alternative, while D(min) represents the distance between the alternative to the worst 

alternative. CC shows the ranking of alternatives. It can be found that the ABC 

alternative has a significant advantage in implementation when compared to other 

alternatives. This result is consistent with that of the present worth analysis. 

Table 4-5 Fuzzy Evaluation Results 

Alternatives D(max) D(min) CC 

ABC 3.076 6.178 0.667 

Con(2) 5.993 3.029 0.335 

Con(3) 7.036 1.929 0.215 
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 I-595 Corridor Case Study 

This case study was used to illustrate the use of both the planning level and operation 

level analyses for a more congested urban environment. The case study was conducted 

for a construction project along the I-595 corridor in Broward County, Florida. 

Assessment of accelerated construction and operation smart work zone strategy impacts 

will be conducted using the analysis methods. A particular emphasis is placed on 

estimating strategic driver behaviors in terms of diversion and microscopic behavior in 

terms of lane changing ahead of the work zone. 

Traffic Diversion Analysis 

 

Three methods of diversion estimation during construction were examined in this study: 1) 

diversion during short-term construction utilizing a logit model developed in a previous 

study（Song and Yin，2008); 2) diversion during long-term construction where the 

network reaches user equilibrium (modeled using the MSA (Method of Successive 

Average) option in DTALite); and 3) diversion through a day-to-day learning assignment 

in DTA modeling that accounts for the number of days that the construction zone is 

active (modeled using a day-to-day learning assignment in DTALite).  A regression 

model was developed in this study based on the results from the DTAlite to facilitate the 

estimation of diversion when there are limited resources for the effort that do not allow a 

DTA to be conducted(Dynamic Traffic Assignment).  

In this study, a construction zone was assumed to be located along I-595 

westbound in Broward County, Florida. The travel demand from the Port Everglades 

zone (ZONE ID: 147) to I-595 Westbound (ZONE ID: 165) was analyzed. Figure 4-5 
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shows the location of the construction zone and its main alternative route (SR 84). The 

corresponding lengths and free-flow travel times for these two paths are summarized in 

Table 4-6.  

 
Figure 4-5 Location of Work Zone and Alternative Route 

Table 4-6 Basic Information of Travelling Paths in the Case Study  

From Zone To Zone Path Length  (mile) Free-Flow Travel Time (min) 

147 165 I-595 6.6 8.58 

147 165 SR-84 6.4 11.03 

 

Four scenarios were considered in this study, as follows: 

 Scenario 1: Simulation is conducted for 100 days without a work zone, which is a 

base case for comparison.  

 Scenario 2: Simulation is conducted for 100 days with a work zone using the 

MSA method.  It is assumed that the system reaches user equilibrium in case of 

long-term work zones. 



84 
 

 Scenario 3: Simulation is conducted for 100 days with a work zone using the day-

to-day learning assignment method, and then observing the change in diversion 

behaviors when increasing the number of days of the work zone. 

 Scenario 4: The logit regression model developed by Song et al. (2008) is also 

utilized to estimate traffic diversion. 

Figures 4-6 displays the results of the traffic diversion estimation using different 

methods. As shown in the figure, both the MSA method and day-to-day learning method 

produce similar results after 100 days of learning as the traffic assignment reaches 

equilibrium in both cases. In equilibrium, about 50 percent of the vehicles shift to other 

routes. In short-term work zones, as modeled using day-to-day learning, 50% of the 

traffic is diverted to alternative routes due to the severity of the work zone blockage 

(resulting in demand/capacity ratio of 2.5). However, in the short-term modeling of the 

work zone (three days), the day-to-day learning indicates the overreaction of drivers to 

the work zone, with about 60% of the traffic diversion. This overreaction appears to 

result in overloading alternative routes, resulting in a proportion of these vehicles 

returning to the original path where the work zone occurs. The logit model by Song et al. 

(2008) estimates only 28%. It should be noted that this logit model does not account for 

the severity of the work zone lane blockage and the associated delays. 

An attempt was made to fit a logit model based on the DTALite day-to-day 

learning traffic assignment. The model estimates the diversion based on the 

demand/capacity ratios on the work zone link and the alternative route and the number of 

work zone days. The expression is shown as follows:  
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Diversion Rate =
1

(1+e(a∗DCratio+b∗days+c∗𝐷cratio2+d∗days2+e∗DCratio∗days+f))
           (4-1) 

Where, Diversion Rate defines the percentage of the vehicles diverted. 

The DCratio  represents the demand/capacity ratios on the work zone link. and days 

represents the number of work zone days. The a, b, c, d, e and f represent the coefficients. 

In order to build the regression model to estimate diversion, multiple runs of 

DTAlite were conducted with a different number of days and demand/capacity ratios. 

The results are shown in Table 4-7. 

Table 4-7  DTAlite Results for Diversion Analysis 

Number of Days Demand/Capacity 

Ratio 

Number of Vehicles 

Stay at Original Route 

Diversion 

Percentage 

10 4.13 1751 71% 

15 4.13 1999 67% 

25 4.13 2165 64% 

50 4.13 2280 62% 

100 4.13 2251 62% 

10 3.30 2016 66% 

15 3.30 2358 61% 

25 3.30 2682 55% 

50 3.30 2601 57% 

100 3.30 2561 57% 

10 2.64 2458 59% 

15 2.64 2656 56% 

25 2.64 2996 50% 

50 2.64 2776 54% 

100 2.64 2829 53% 

10 2.20 2465 59% 

15 2.20 2921 51% 

25 2.20 3293 45% 

50 2.20 3021 50% 

100 2.20 2976 50% 

10 1.65 2465 59% 

15 1.65 3239 46% 

25 1.65 4140 31% 

50 1.65 3990 34% 

100 1.65 3996 33% 

10 1.10 2465 59% 

15 1.10 3206 47% 

25 1.10 4382 27% 

50 1.10 4516 25% 
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100 1.10 4716 21% 

 

SPSS was utilized to conduct the regression analysis. Through regression analysis, 

the significant parameters, which are DCratio, days and DCratio*days, were kept in the 

regression model. The R-square for the regression model is 0.501. The t statistics of the 

three parameters is significant at the 0.05 confidence level, as shown in Table 4-8. 

However, it appears that particularly for short-term work zones, the DTAlite day-to-day 

learning model overestimated the diversion significantly, as shown in Figure 4-6. Thus, 

using the day-to-day learning and the model developed based on it without considering 

the number of drivers willing to divert does not produce a good estimate of the diversion.   

Table 4-8 Parameter Estimates 

Parameter Estimate 
Std. 

Error 

95% Confidence 

Interval 
t Sig. 

Lower 

Bound 

Upper 

Bound 

a (DCratio) -0.268 0.052 -0.373 -0.164 -5.153 0.000 

b (days) 0.021 0.006 0.010 0.033 3.333 0.001 

e (DCratio*days) -0.005 0.002 -0.009 1.228E-005 -2.500 0.003 
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Figure 4-6 Comparison of Diversion Percentage Estimates Using Different 

Approaches 

For this reason, the dynamic user equilibrium of DTAlite using the MSA traffic 

assignment, was used to produce another logit regression model based on the 

Demand/Capacity ratio at the work zone link without considering the duration of the 

work zone. The expression is shown as follows: 

Diversion Rate =
1

(1+e(a∗DCratio+b∗𝐷cratio2+c∗ln (DCratio)+d))
                                    (4-2) 

Where, Diversion Rate defines the percentage of the vehicles diverted. 

The DCratio  represents the demand/capacity ratios on the work zone link. 

The a, b, c and d represent the coefficients. 

The R-square for the regression model is 0.980. The t statistics of the three 

parameters is significant at the 0.05 confidence level, as shown in Table 4-9. When 

compared with the logit regression model developed by Song et al. (2008), which does 

not consider the D/C ratio impact on diversion, the diversion percentage varies from 20% 
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to 60% with the model in Equation 4-2 when the demand/capacity ratio changes from 

1.10  to 3.30.  

Table 4-9 Parameter Estimates 

Parameter Estimate 
Std. 

Error 

95% Confidence 

Interval 
t Sig. 

Lower 

Bound 

Upper 

Bound 

a (DCratio) -1.567 0.323 -2.465 -0.669 -4.851 0.000 

b (DCratio2) 0.168 0.059 0.005 0.332 2.847 0.002 

e (Constant) 2.786 0.411 1.646 3.927 6.779 0.000 

Figure 4-7 Comparison of Diversion Percentage Estimates Using Different 

Approaches 
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Microscopic Lane Merging Behavior 

Lane merging behavior was investigated utilizing the VISSIM microscopic simulation 

modeling. As stated earlier, the lane-changing distance in the connectors controls the 

drivers’ lane-changing behaviors by forcing the drivers to change lanes before the 

connector link. Current lane merging enhancement strategies at work zones include late 

merge and early merge. Generally, the late merge strategy could fully use the capacity of 

closed lanes until the work zone taper area; however, this would induce the increase of 

potential conflicts due to late merging behavior. On the other hand, the early merge 

strategy could guide drivers’ lane-changing behaviors by merging early, but would 

increase the queue length of open lanes. This section aims to investigate the optimal lane-

changing distance to improve the mobility and safety impacts at work zones. This 

distance can be achieved as a connected and automated vehicle application.     

The network utilized is the I-595 corridor described earlier, and an assumed work 

zone was built based on the construction activities along the I-595 corridor in Broward 

County, Florida. The work zone was 1.5-miles long and had a 4-to-2 lane configuration. 

Detailed information is shown in Table 4-9, and the corresponding VISSIM configuration 

is shown in Figure 4-7. 

Table 4-10  Basic Information of I-595 Work Zone 

Location  Length (miles) FFS (mph) Lane Closure Schedule Working Activity Schedule 

I-595, Broward  1.5 65 2 out of 4 lanes 3:30~6:30 
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Figure 4-8  I-595 Work Zone in VISSIM 

In order to optimize the lane-changing distance parameter, multiple work zone 

scenarios utilizing different lane-changing distances were built ranging from 200 feet to 

2,000 feet. Travel delay, queue length and number of conflicts are the three performance 

measures that were used to compare the lane-changing distance parameter. The capacity 

resulting from each merging scenario and the vehicle trajectory distribution resulting 

from each distance in VISSIM were also obtained and were related to each other. In 

terms of the randomness of simulation, five simulation runs using different seed numbers 

were conducted for each work zone scenario. The comparison results are shown in Table 

4-11.  

Table 4-11 Performance of Each Work Zone Scenario  

Lane-changing 

Distance Group(ft) 

Seeds 

Number 

Average Travel 

Delay (sec) 

Average Queue 

length (ft) 

Number of 

Conflicts 

WorkZone 

Throughput (vph) 

2000 

 

55 377.56 4711 26450 2380 

65 372.8 4635 26416 2413 

75 404.5 5171 28189 2270 

85 385.17 4839 25712 2395 

95 329 4208 24556 2410 
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1600 

 

55 407.43 5168 28501 2385 

65 396.69 4819 26937 2364 

75 363.19 4520 27020 2331 

85 377.4 4734 25609 2349 

95 311.7 4057 23565 2440 

1300 

 

55 370.3 4442 25882 2451 

65 330.2 4164 25479 2362 

75 391.6 4877 27577 2418 

85 387.56 4651 25512 2381 

95 304 3696 21673 2441 

1000 

 

55 424.2 5088 28209 2306 

65 370.45 4351 25139 2350 

75 387.41 4491 26998 2397 

85 410.75 4781 26039 2387 

95 279.9 3512 19976 2404 

800 

 

55 370 4233 24816 2377 

65 372 4455 26666 2368 

75 425 5062 28414 2317 

85 392 4631 25602 2356 

95 328 3880 23063 2415 

500 

 

55 389 4352 25563 2359 

65 366.2 4336 25746 2313 

75 423.7 4879 27892 2117 

85 411.98 4794 26747 2275 

95 332 3969 23838 2427 

200 

 

55 422 5011 28622 2321 

65 461.81 5242 29721 2277 

75 486.15 5628 30339 2195 

85 424.25 5160 28116 2248 

95 386.61 4562 27040 2252 

 

Based on Table 4-11, the mean value of each group is compared and shown in 

Figures 4-8 to 4-11 below. It can be seen that the four performance measures increase 

dramatically when the lane-changing distance is lower than 800 feet. Most drivers decide 

to change lanes up until the work zone taper area, and the merging behavior reduces the 

travel speed and work zone capacity. On the other hand, four performance measures also 

increase when the lane-changing distance is higher than 1,300 feet. This occurs because 

the simulated drivers are guided to merge to open lanes earlier so that the queue length of 
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the open lanes increases greatly. It can be concluded that the three performance measures 

have better performance when the lane-changing distance is between 1,000 feet and 1,300 

feet.  

 

Figure 4-9 Average Travel Delay 

 

Figure 4-10 Average Queue Length 
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Figure 4-11 Average Number of Conflicts 

 

Figure 4-12 Average Work Zone Throughput 
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traffic network and traffic demand are the same for all seven groups, the dependent 

paired sample t-test was conducted in this section. 

Similarly, the paired sample t-test was used when the samples were dependent, 

that is, when there was only one sample that was tested twice (repeated measures) or 

when there were two samples that were matched or "paired." The basic procedure is listed 

as follows: 

Let X and Y represent two paired samples. The t statistic can be calculated as 

follows: 

t =
D̅−u

SD

√n
⁄

                                                                                                              (4-2) 

Where, D̅ represents the average difference of (X − Y). SD represents the standard 

deviation of these differences. n represents the sample size. 

In this study, three performance measures are compared: travel delay, queue 

length and number of conflicts. The t-test was conducted for each performance measure 

separately. Let L2000 represent the group with 2,000 feet of lane-changing distance 

specified in VISSIM, L1600 represents the group with a 1,600-foot distance, L1300 

represents the group with a 1,300-foot distance, L1000 represents the group with a 1,000-

foot distance, L800 represents the group with a 800-foot distance, L500 represents the 

group with a 500-foot distance, and L200 represents the group with a 200-foot. 

For travel delay, t statistics for the paired sample among seven groups are listed in 

Table 4-11, and Figure 4-12 shows a sample of the results. In order to compare the 

performance of each group, the one tail t-test was selected. The critical value is 1.533 at a 

0.1 confidence level, according to the t-test table. It can be seen from Table 4-11 that 



95 
 

group L3000 has the least amount of travel delays and is significantly lower than in 

groups L2000, L800, L500 and L200. Travel delays in group L1600 are significantly 

lower than in groups L800, L500 and L200. Travel delays for group L1000 are 

significantly lower than in group L200. Thus, the lane-changing distance ranging from 

1,600 to 1,000 feet produce better travel delay performance. 

  

Figure 4-13 Parts of the T-test Results 

Table 4-12  T Statistics and P-value for Travel delay 

T Statistics 

and P-value 

L2000 L1600 L1300 L1000 L800 L500 L200 

L2000  0.191 

(0.428) 

2.198* 

(0.046) 

-0.044 

(0.483) 

-0.749 

(0.248) 

-1.832* 

(0.070) 

-6.286* 

(0.002) 

L1600 -0.191 

(0.428) 

 0.861 

(0.219) 

-0.242 

(0.410) 

-0.350 

(0.372) 

-0.791 

(0.237) 

-3.647* 

(0.011) 

L1300 -2.198* 

(0.046) 

-0.861 

(0.219) 

 -1.248 

(0.140) 

-2.541* 

(0.032) 

-9.281* 

(0.000) 

-4.765* 

(0.004) 

L1000 0.044 

(0.483) 

0.242 

(0.410) 

1.248 

(0.140) 

 -0.153 

(0.442) 

-0.649 

(0.276) 

-2.667* 

(0.028) 

L800 0.749 

(0.248) 

0.350 

(0.372) 

2.541* 

(0.032) 

0.153 

(0.442) 

 -1.363 

(0.122) 

-6.340* 

(0.002) 

L500 1.832* 

(0.070) 

0.791 

(0.237) 

9.281* 

(0.000) 

0.649 

(0.276) 

1.363 

(0.122) 

 -3.668* 

(0.011) 

L200 6.286* 

(0.002) 

3.647* 

(0.011) 

4.765* 

(0.004) 

2.667* 

(0.028) 

6.340* 

(0.002) 

3.668* 

(0.011) 

 

Note: * represents the significance at 0.1 confidence level. 
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For queue length, similar to travel delay, a one-tailed test critical value of 1.533 at 

a 0.1 confidence level is utilized. Figure 4-13 shows a sample of the results. Table 4-12 

presents the comparison of t statistics among seven groups. It should be noted that group 

L3000 has the shortest queue length and is significantly lower than the queues of the 

L2000, L1600, L500 and L200 groups. The queue length for group L1000 is significantly 

lower than the queues of the L1600 and L200 groups. Queue length for group L800 is 

significantly lower than in groups L2000 and L200. Thus, the lane-changing distance as 

specified in VISSIM, ranging from 1300 to 800, produce better queue length performance.  

  

Figure 4-14 Parts of the T-test Results 

Table 4-13  T Statistics and P-value for Queue Length 

T Statistics 

and P-value 

L2000 L1600 L1300 L1000 L800 L500 L200 

L2000  0.287 

(0.394) 

5.597* 

(0.003) 

1.330 

(0.127) 

4.020* 

(0.008) 

4.577* 

(0.005) 

-7.200* 

(0.000) 

L1600 -0.287 

(0.394) 

 1.577* 

(0.096) 

1.772* 

(0.075) 

0.874 

(0.216) 

0.938 

(0.216) 

-2.298* 

(0.042) 

L1300 -5.597* 

(0.003) 

-1.577* 

(0.096) 

 -0.446 

(0.339) 

-0.964 

(0.195) 

-1.556* 

(0.097) 

-7.333* 

(0.001) 

L1000 -1.330 

(0.127) 

-1.772* 

(0.075) 

0.446 

(0.339) 

 -0.031 

(0.488) 

-0.101 

(0.462) 

-2.945* 

(0.021) 

L800 -4.020* 

(0.008) 

-0.874 

(0.216) 

0.964 

(0.195) 

0.031 

(0.488) 

 -0.199 

(0.426) 

-12.611* 

(0.000) 

L500 -4.577* 

(0.005) 

-0.938 

(0.216) 

1.556 

(0.097) 

0.101 

(0.462) 

0.199 

(0.426) 

 -7.337* 

(0.001) 
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L200 7.200* 

(0.000) 

2.298* 

(0.042) 

7.333* 

(0.001) 

2.945* 

(0.021) 

12.611* 

(0.000) 

7.337* 

(0.001) 

 

Note: * represents the significance at a 0.1 confidence level. 

For the traffic conflicts, as assessed using the SSAM tool, the one-tailed test 

critical value of 1.533 at the 0.1 confidence level is also utilized. Figure 4-14 shows a 

portion of the results. Table 4-13 presents the comparison of t statistics among seven 

groups. It should be noted that group L3000 has the least number of conflicts and is 

significantly lower than in groups L2000, L1600, L500 and L200. The number of 

conflicts for group L1000 is significantly lower than in group L200. The number of 

conflicts for group L800 is significantly lower than in group L200. Thus, the lane-

changing distance ranging from 1300 to 800 produces better traffic conflict performance. 

  

Figure 4-15 Parts of the T-test Results 

Table 4-14  T Statistics and P-value for Number of Conflicts 

T Statistics 

and P-value 

L2000 L1600 L1300 L1000 L800 L500 L200 

L2000  -0.106 

(0.460) 

2.188* 

(0.046) 

0.940 

(0.200) 

1.321 

(0.129) 

0.880 

(0.214) 

-11.882* 

(0.000) 

L1600 0.106 

(0.460) 

 1.888* 

(0.066) 

1.433 

(0.112) 

0.735 

(0.252) 

0.487 

(0.326) 

-4.028* 

(0.007) 

L1300 -2.188* 

(0.046) 

-1.888* 

(0.066) 

 -0.071 

(0.473) 

-1.091 

(0.168) 

-1.681* 

(0.084) 

-6.495* 

(0.001) 
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L1000 0.940 

(0.200) 

-1.433 

(0.112) 

0.071 

(0.473) 

 -0.397 

(0.356) 

-0.665 

(0.271) 

-3.098* 

(0.018) 

L800 1.321 

(0.129) 

-0.735 

(0.252) 

1.091 

(0.168) 

0.397 

(0.356) 

 -0.604 

(0.289) 

-7.911* 

(0.001) 

L500 -0.880 

(0.214) 

-0.487 

(0.326) 

1.681* 

(0.084) 

0.665 

(0.271) 

0.604 

(0.289) 

 -6.464* 

(0.001) 

L200 11.882* 

(0.000) 

4.028* 

(0.007) 

6.495* 

(0.001) 

3.098* 

(0.018) 

7.911* 

(0.001) 

6.464* 

(0.001) 

 

Note: * represents the significance at a 0.1confidence level. 

For the work zone throughputs, a one-tailed test critical value of 1.533 at a 0.1 

confidence level is utilized. Figure 4-15 shows a sample of the results. Table 4-14 

presents the comparison of t statistics among seven groups. The work zone throughputs 

considered two lanes. It should be noted that group L3000 has the highest work zone 

throughputs and is significantly lower than in groups L2000, L1600, L800, L500 and 

L200. The work zone throughputs for group L1600 is significantly lower than that in 

groups L500 and L200. Thus, the lane-changing distance ranging from 1300 to 1600 

produces better traffic conflict performance. 

  

Figure 4-16 Parts of the T-test Results 
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Table 4-15 T Statistics and P-value for Work Zone Throughputs 

T Statistics 

and P-value 

L2000 L1600 L1300 L1000 L800 L500 L200 

L2000  -0.420 

(0.348) 

-2.298* 

(0.042) 

-1.225 

(0.144) 

-0.087 

(0.467) 

1.873* 

(0.067) 

6.127* 

(0.002) 

L1600 0.420 

(0.348) 

 -1.071 

(0.172) 

-0.009 

(0.496) 

0.134 

(0.449) 

2.378* 

(0.038) 

5.732* 

(0.002) 

L1300 2.298* 

(0.042) 

1.071 

(0.172) 

 2.093* 

(0.052) 

1.564* 

(0.096) 

2.254* 

(0.043) 

6.273* 

(0.003) 

L1000 1.225 

(0.144) 

0.009 

(0.496) 

-2.093* 

(0.052) 

 0.193 

(0.428) 

2.091* 

(0.052) 

5.327* 

(0.003) 

L800 0.087 

(0.467) 

-0.134 

(0.449) 

-1.564* 

(0.096) 

-0.193 

(0.428) 

 1.187 

(0.150) 

2.942* 

(0.021) 

L500 -1.873* 

(0.067) 

-2.378* 

(0.038) 

-2.254* 

(0.043) 

-2.091* 

(0.052) 

-1.187 

(0.150) 

 0.984 

(0.190) 

L200 -6.127* 

(0.002) 

-5.732* 

(0.002) 

-6.273* 

(0.003) 

-5.327* 

(0.003) 

-2.942* 

(0.021) 

-0.984 

(0.190) 

 

 

To summarize the results above, multiple comparisons of means of each group 

were conducted in Figure 4-16. It can be seen that only groups L1300 produced better 

performance in all of the four performance measures. The lane-changing distance 

parameter has an optimal value ranging from 1,300 ft to produce better performance in 

terms of both mobility and safety impacts at work zones. 

        

Delay L200 L500 L800 L2000 L1000 L1600 L1300 

        

Queue L200 L2000 L1600 L500 L800 L1000 L1300 

        

Conflicts L200 L500 L1600 L2000 L800 L1000 L1300 

        

Work Zone 

Throughput 
L200 L500 L800 L1000 L2000 L1600 L1300 

Figure 4-17 Ranking of Group Means 
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The resultant traffic distribution for each 200 ft ahead of the work zone were 

extracted for the L1300 and L500 groups, shown in Figure 4-17. For the L1300 group, it 

can be seen that the drivers make dramatic lane changes, from 1,300 ft to 1,000 ft. About 

15% of drivers merge at this area. On the other hand, the drivers make dramatic lane 

changes, from 500 ft to 200 ft in the L500 group. The drivers make smooth lane change 

in other areas. Such distributions can be used to inform connected and automated vehicle 

applications to optimize lane changing ahead of work zones. 

 

Figure 4-18 Lane Distribution Ahead of Work Zone 
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Implementation of Evaluation Framework 

 

Figure 4-19  Case Study Corridor 

Figure 4-18 shows the location of the case study corridor. The I-595 work zone 

has a 4-to-2 lane configuration. This section demonstrates the use of the framework 

developed in this study with the selection of construction and operational scenarios. The 

four investigated alternatives are: conventional work zone with and without intelligent 

transportation systems (smart work zones) and ABC construction with and without work 

zones. The smart work zone includes a traveler information system that influences 

traveler diversion behaviors and a lane merging optimization system. The following is a 

description of construction activity and traffic management strategy. 

 Conventional Construction Method without Smart Work Zones (A1): The 

construction activities require two out of four lanes to be closed from 3:30 PM to 

6:30 PM for 30 days. Conventional construction methods are utilized. No detour 

information is provided, and the travel demand driving through the work zone 
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remains the same as a normal condition without a work zone. No optimal merging 

strategy is implemented, and the drivers conduct lane-changing behavior as usual. 

 Conventional Construction Method with Smart Work Zones (A2): The 

construction activities require two out of four lanes to be closed from 3:30 PM to 

6:30 PM for 30 days. Conventional construction methods are utilized. A traveler 

information system is provided, and a specific percentage of drivers select the detour 

route. The diversion percentage is determined through the logit model and DTAlite 

for the planning level and operation level, respectively. The lane merging 

optimization system provides guidance for drivers’ lane-changing behaviors. 

 ABC Method without Smart Work Zone (A3): The construction activities require 

two out of four lanes to be closed from 3:30 PM to 6:30 PM for 4 days. The ABC 

methods are utilized, and the smart work zone is not implemented, as described 

earlier. 

 ABC Method with Smart Work Zone (A4): The construction activities require two 

out of four lanes to be closed from 3:30 PM to 6:30 PM for 4 days. The ABC 

methods are utilized and the smart work zone is implemented, as described earlier. 

Both the present worth (dollar value) and the MCDM approaches are used and 

compared. The inputs to these two approaches were estimated using the planning level 

and the operation level approaches. The planning level approach uses a sketch planning 

tool (QuickZone). The operation approach includes the utilization of a combination of the 

mesoscopic simulation-based DTA tool, DTAlite, and a microscopic simulation tool, 

VISSIM. Estimation of the work zone capacity is necessary for traffic analysis tools to 
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produce accurate results. The HCM 2010 methodology and NCHRP project 03-107 

report were utilized to estimate capacity for both planning and operation approaches. The 

work zone capacity for the 4-to-2 lane configuration was found to range from 1200 vphpl 

to 1500 vphpl, depending on the utilized analysis method. As described earlier, the 

capacity value used in all evaluation tools was 1880 vphpl for a normal freeway condition 

without a work zone, and 1,290 vphpl for a 4-to-2 lane work zone.  

Another important issue is route diversion due to construction zones. The 

planning level analysis used the logit regression model developed by Song et al. (2008), 

while the diversion was estimated in the operation level analysis using the day-to-day 

learning approach of DTALite. As shown in Figure 4-19, the work zone link demands 

come from three upstream links: I-595 WB, I-95 NB and I-95 SB. The corresponding 

demand values with and without diversion generated by DTALite are listed in Table 4-15. 

It can be seen from this table that the travel demand driving through the work zone area 

decreases for both short-term and long-term lane closures due to diversion. However, the 

diversion for the short-term construction is greater, which is mainly due to driver 

overreaction to the existence of a work zone. The total percentage diversion with short-

term and long-term work zones are 62.7% percent and 48.5% percent, respectively. The 

logit model estimates a 21.3% percent diversion and a 21.4% percent diversion for short-

term and long-term respectively. Based on the construction strategy described above, the 

conventional construction technology creates a long-term work zone, while the ABC 

construction technology creates a short-term work zone. The drivers’ diversion results 

from the day-to-day learning and the logit model were implemented to into the work zone, 

respectively. 
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Table 4-16 Travel Demand with and without Traffic Diversion Obtained from DTALite 

Travel Demand 

(vph) 

Without 

Diversion 

With Diversion 

Short-Term (10 days) 

With Diversion 

Long-Term (50-100 days) 

I-595 WB 2478 1292 1480 

I-95 SB Ramp 1210 114 320 

I-95 NB Ramp 2728 987 1508 

Total 6416 2393 3308 

  

As described earlier, the optimal lane-changing distance of 1,300 feet was used as 

lane merging guidance and was simulated in VISSIM for smart work zones. The VISSIM 

work zone mobility impact results are presented in Figure 4-19. As shown in this figure, 

the travel delay is much higher without route diversion and optimal lane merging due to 

smart work zones not considered in the analysis. Table 4-16 presents the simulated queue 

length and number of stops with and without the consideration of route diversion and 

optimal lane merging. Again, the queue length and number of stops without the smart 

work zone control strategy is significantly larger than those with the smart work zone 

control. The above results also indicate that the delay due to the work zone can be 

reduced significantly if route diversion information and optimal lane merging area are 

provided to drivers to encourage diversion.  
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Figure 4-20 VISSIM Mobility Estimation Results 

Table 4-17 VISSIM Queue Length and Number of Stops Results 

Queue Estimation 

Queue Length 

(Maximum) 

Queue Length 

(Average) 
Number of Stops 

Without Construction 2,636 ft 34 ft 95 

Construction with Smart 

Work Zone 
25,918 ft 11,979 ft 37,598 

Construction without 

Smart Work Zone 
58,330 ft 40,812 ft 160,394 

 

Using the models and procedures described in Chapter 3 (the methodology 

section), the operation level analysis of the road user costs and construction costs with 

different alternatives are shown in Table 4-17. As expected, the mobility impact cost of 

the alternative with smart work zones is lower. Travel time reliability estimated using the 

SHRP 2 L03 project procedures indicates similar improvements with the smart work zone 

deployment, as shown in Table 4-17. The safety impacts as measured by traffic conflicts 

using the SSAM and the emission estimation using the EPA model also show significant 

improvement. The construction costs estimation using the ABC and conventional 
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technologies were based on the method developed by Jia et al. (2016). The bridge is 

assumed to be 1mile long, while the work zone is assumed to be 1.5-miles. The 

implementation of considered smart work zone costs includes those of a traveler 

information system and a lane merging optimization system. The implementation cost of 

a traveler system is $4,000,000, while the implementation cost of a lane merging 

optimization system is $300,000, according to the research from Hadi et al. (2008). Based 

on the fuzzy evaluation approach described in the Methodology chapter, the performance 

measures were converted to linguistic variables according to the rating principle of the 

expert survey, as shown in Table 4-18. 

Table 4-18 Performance Measures Assessment of Construction Alternatives Utilizing the 

Operation Level of Analysis 

Alternative 

Description 

Mobility 

Impacts (in 

veh-hr) 

Reliability 

Impacts (in 

veh-hr) 

Safety Impacts 

(Million 

Conflicts) 

Emission 

(In ton) 

Agency 

Costs 

Construction 

Costs 

A1(Conventional 

Construction 

without Smart 

Workzone) 

402,030 394,294 6.031 150.71 4,956,188 45,828,748 

A2(Conventional 

Construction with 

Smart Workzone) 

240,750 90,879 1.835 124.75 4,956,188 45,828,748 

A3(ABC 

Construction 

without Smart 

Workzone) 

57,540 53,486 1.937 57.81 6,531,487 63,634,767 

A4(ABC 

Construction with 

Smart Workzone) 

36,000 13,030 1.377 54.35 6,531,487 63,634,767 

Without Work 

Zone 
4,500 1,054 0.131 43.52 0 0 
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Table 4-19 linguistic Ratings for Alternatives Utilizing the Operation Level of Analysis 

Ratings Mobility Reliability Safety Emission Construction 

Expert 1 A1 VP VP VP VP VG 

A2 MP P F P VG 

A3 G G F G F 

A4 G VG G G F 

Expert 2 A1 VP VP VP VP G 

A2 P P MP VP G 

A3 VG G G VG VP 

A4 VG G G VG VP 

Expert 3 A1 VP VP VP VP VG 

A2 F MF MF P VG 

A3 VG VG MF G VP 

A4 VG VG G G VP 

Expert 4 A1 MP MP MP MP VG 

A2 MF F G MP VG 

A3 VG VG G G P 

A4 VG VG VG G P 

 

Using the criteria importance presented in Table 3-9, the fuzzy evaluation results 

are listed in Table 4-19. D(max) represents the distance between the alternative to the 

best alternative, while D(min) represents the distance between the alternative to the worst 

alternative. CC indicates the ranking of the alternatives. It can be seen from these results 

that the ABC alternative with the smart work zone strategy is the preferred alternative 

according to the TOPSIS MCDM analysis results. 

Table 4-20 Fuzzy Evaluation Results Utilizing the Operation Level of Analysis 

Alternative D(max) D(min) CC 

A1(Conventional 

construction without 

Smart Workzone) 

6.694 2.274 0.254 

A2(Conventional 

Construction with Smart 

Workzone) 

5.832 3.205 0.355 

A3(ABC Construction 

without Smart Workzone) 
4.278 4.846 0.531 

A4(ABC Construction 

with Smart Workzone) 
3.800 5.395 0.587 
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To compare the above results to the results obtained when using the present worth 

analysis, the performance measure values were converted to dollar values. The total cost 

results are shown in Table 4-20 and Figure 4-20. These results indicate that based on the 

present worth analysis, the conventional construction alternative using the smart work 

zone strategy is the best alternative. The construction cost difference between the 

conventional method and ABC method is large in this project, and the consideration of 

the road user costs do not make the ABC alternative competitive when compared with the 

conventional construction method, based on the present worth method. 

Table 4-21  Present Worth of Construction Alternatives Utilizing the Operation Level of 

Analysis 

Alternative 

Description 

Mobility 

Costs  

Reliability 

Costs  

Safety 

Costs  

Emission 

Costs 

Agency 

Costs 

Construction 

Costs 

Total Costs 

A1(Conventional 

construction 

without Smart 

Workzone) 

6,689,779 8,871,615 381,437 358,219 4,956,188 45,828,748 67,085,986 

A2(Conventional 

Construction with 

Smart Workzone) 

4,006,080 2,044,777 331,221 289,318 4,956,188 45,828,748 57,456,332 

A3(ABC 

Construction 

without Smart 

Workzone) 

957,465 1,203,435 302,011 72,342 6,531,487 63,634,767 72,701,507 

A4(ABC 

Construction with 

Smart Workzone) 

599,040 293,175 295,316 63,155 6,531,487 63,634,767 71,416,940 

Without Work 

Zone 
74,880 23,715 289,792 28,361 0 0 416,748 
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Figure 4-21 Total Costs Comparison Utilizing the Operation Level of Analysis 

The planning level analysis approach was also conducted for the I-595 

construction project, and the performance measure assessment results are shown in Table 

4-21. Instead of utilizing simulation tools, the QuickZone tool was used to perform the 

mobility analysis. When the results are compared in Tables 4-17 and 4-21, the mobility 

impacts of the work zone and the improvement due to the ABC approach assessed using 

the planning approach is about half when using the operation approach.  

Table 4-22 Performance Measures Comparison of Construction Alternatives Utilizing the 

Planning Level of Analysis 

Alternative 

Description 

Mobility 

Impacts (in 

veh-hr) 

Reliability 

Impacts (in 

veh-hr) 

Safety 

Impacts 

(Crashes) 

Emission 

(In ton) 

Agency 

Costs 

 

Construction 

Costs  

A1(Conventional 

construction without 

Smart Workzone) 

229,500 226,697 9.26 196.96 4,956,188 45,828,748 

A2(Conventional 

Construction with 

Smart Workzone) 

136,800 51,639 8.27 121.37 4,956,188 45,828,748 

A3(ABC 

Construction 

without Smart 

Workzone) 

31,380 30,408 5.94 63.98 6,531,487 63,634,767 
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A4(ABC 

Construction with 

Smart Workzone) 

19,020 7,068 5.81 53.90 6,531,487 63,634,767 

Without Work Zone 
0 211 5.43 43.52 0 0 

Table 4-22 shows the linguistic rating of the results of Table 4-21. 

Table 4-23 linguistic Ratings for Alternatives in Planning Level 

Ratings Mobility Reliability Safety Emission Construction 

Expert 1 A1 VP VP VP VP VG 

A2 F G P P VG 

A3 G G F G F 

A4 VG VG F G F 

Expert 2 A1 VP VP VP VP G 

A2 G G F F G 

A3 VG VG F G VP 

A4 VG VG F G VP 

Expert 3 A1 VP VP VP VP VG 

A2 F G P MP VG 

A3 G G MP G VP 

A4 VG VG MP G VP 

Expert 4 A1 MP MP MP MP VG 

A2 G F G MP VG 

A3 G G G G P 

A4 VG VG G G P 

Combined with the criteria importance in Table 3-9, the fuzzy evaluation results 

are listed in Table 4-23. As with the operation level analysis, it can be seen that the ABC 

alternative with the smart work zone strategy is the best alternative according to the fuzzy 

logic approach. However, the evaluation scores of the ABC and conventional 

construction methods are closer than those using is obtained using the operation level 

analysis, presented earlier in Table 4-19. 
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Table 4-24 Fuzzy Evaluation Results Utilizing the Planning Level of Analysis 

Alternative D(max) D(min) CC 

A1(Conventional 

construction without 

Smart Workzone) 

6.635 2.355 0.262 

A2(Conventional 

Construction with Smart 

Workzone) 

4.179 5.078 0.549 

A3(ABC Construction 

without Smart 

Workzone) 

4.229 5.111 0.547 

A4(ABC Construction 

with Smart Workzone) 
4.000 5.270 0.568 

The total cost present values are shown in Table 4-24 and Figure 4-21. The results 

show that the conventional construction alternative using the smart work zone strategy is 

the best alternative.  

Table 4-25  Present Worth of Construction Alternatives Utilizing the Planning Level of 

Analysis 

Scenario 

Description 

Mobility 

Costs 

Reliability 

Costs 

Safety 

Costs 

Emission 

Costs 

Agency 

Costs 

Construction 

Costs 

Total Costs 

A1(Conventional 

construction 

without Smart 

Workzone) 

3,818,880 5,100,682 495,868 484,606 4,956,188 45,828,748 61,043,524 

A2(Conventional 

Construction with 

Smart Workzone) 

2,276,352 1,161,877 458376 280,272 4,956,188 45,828,748 55,245,373 

A3(ABC 

Construction 

without Smart 

Workzone) 

522,163 684,180 337,103 89,193 6,531,487 63,634,767 72,138,296 

A4(ABC 

Construction with 

Smart Workzone) 

316,492 159,030 330,604 61,949 6,531,487 63,634,767 71,365,233 

Without Work 

Zone 
0 4,747 289,792 28,361 0 0 682,243 
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Figure 4-22 Total Costs Comparison Utilizing the Planning Level of Analysis 

In both operation and planning level analyses, the combination of ABC 

technology and smart work zone strategies produced better performance when using the 

fuzzy evaluation approach, while combining the conventional construction methods and 

smart work zone strategies showed better performance when using the present worth 

analysis approach. This is due to the large construction cost difference between the ABC 

and conventional methods for long structure spans. When compared with the present 

worth analysis approach, the fuzzy evaluation method is able to consider a user’s 

preference and combine the quantitative and qualitative performance measures in the 

decision-making process in construction projects.
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 Summary 

In this chapter, a multi-criteria evaluation framework, including a planning and operation 

level of analysis, was implemented in the case studies. Since there is no detailed traffic 

network data for the I-4 case study, only planning level was analyses were conducted. 

Based on the results from the I-595 case study, the planning level analysis underestimated 

the performance measures, compared to using the operation level approach. In particular, 

the QuickZone mobility impact estimates are lower than those produced by DTAlite and 

VISSIM in the operation analyses. However, the utilized decision-making method, 

including the present worth analysis and fuzzy evaluation, produced the same decision 

results. The results indicate that the ABC technology with the smart work zone 

technology is the best alternative when analyzed using the fuzzy TOPSIS evaluation. The 

conventional method with the smart work zone technology is the best alternative when 

using the present worth analysis. Since the best alternative conclusions of the planning 

and operation level approach correspond to each other, the planning level analyses can be 

an used as an effective and quick approach in the decision-making process when there are 

no detailed traffic and network data provided to select a better construction alternative. 

The case study indicates that the best alternative based on the present worth 

analysis and fuzzy TOPSIS evaluation is the same in the I-4 case study and different in 

the I-595 case study. The present worth analysis is able to quantify the performance 

measures based on dollar value, while the fuzzy TOPSIS evaluation is able to solve the 

multi-criteria decision-making problem with user preference.  

In addition, driver behavior in a work zone area was also investigated based on this 

study. A logit traffic diversion model based on the travel demand forecasting using 
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DTAlite was developed with consideration of the demand/capacity ratio and number of 

days. The new model and the DTA results estimate a higher diversion when compared 

with a previous diversion estimation model. It seems that the day-to-day learning module 

overestimates the traffic diversion, particularly for short-term work zones, and its use 

should be considered with caution. Another traffic diversion regression model was 

developed based on the DTAlite MSA user equilibrium assignment results. This model 

produces better results but does not account for the duration of the work zone. Therefore, 

this model can be applied to long-term work zone when the traffic reaches equilibrium. 

The results from the analysis of the microscopic simulation in this chapter also indicates 

that there is an optimal distance between early merge and late merge that produces the 

least number of conflicts and highest throughput. This distance produces a 3-6% percent 

higher work zone throughput than the default lane-changing distance. 
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 CONCLUSION AND RECOMMENDATION 

 Summary and Conclusion 

The current practice of the decision-making process for utilizing accelerated bridge 

construction (ABC) in some cases is incomplete and mainly focuses on the construction 

and mobility costs. Also, there is not a systematic and effective evaluation approach that 

combines the multiple factors involved in the decision between using the ABC or 

conventional method. This dissertation investigated a multi-criteria multi-level evaluation 

framework to support the decision-making process of ABC construction projects. In 

addition to the construction direct and agency costs, the developed framework provides 

the option to assess mobility, reliability, safety and emission impacts at the operation and 

planning levels. The analyses at both levels utilize the return on investment analysis 

(present worth of dollar values) and fuzzy TOPSIS MCDM evaluation. The two analysis 

levels (planning and operation levels) utilize different tools and methods to estimate the 

required inputs for the evaluation. 

The planning level analysis provides a quick assessment utilizing the spreadsheet 

and analytical tool. The analysis requires simple inputs, such as daily traffic volume and 

project schedule. The operational level analysis is based on simulation and dynamic 

traffic assignment, and requires more detailed inputs that produce more accurate results. 

The impacts of the work zone and the associated strategic behavior (e.g., diversion) and 

microscopic traveler behaviors (e.g., lane-changing) can be better estimated using this 

approach.  Based on the results, the planning level analysis underestimated the 

performance measures, compared to using the operation level approach. In particularly, 

the QuickZone mobility impact estimates are lower than those produced by DTAlite and 
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VISSIM in the operation analyzes. However, the utilized decision-making method, 

including the present worth analysis and fuzzy evaluation, produced the same decision 

results. The results indicate that the ABC technology with the smart work zone 

technology is the best alternative when analyzed using the fuzzy TOPSIS evaluation. The 

conventional method with the smart work zone technology is the best alternative when 

using the present worth analysis. Since the best alternative conclusions of the planning 

and operation level approach correspond to each other, the planning level analyses can be 

used as an effective and quick approach in the decision-making process when there are no 

detailed traffic and network data provided to select a better construction alternative.  

Traffic diversion due to work zone activities is also investigated in this 

dissertation. A logit model, which considers travel time on both the original and 

alternative routes, can be applied to produce estimates of the diversion percentage of 

drivers. For a more detailed analysis, a day-to-day learning dynamic traffic assignment 

(DTA) approach and a MSA traffic assignment approach were investigated for use in 

estimating diversion. Two regression models were developed based on the results. 

However, it was found that both the day-to-day learning dynamic traffic assignment and 

the corresponding model may overestimate diversion, particularly for short-term work 

zones. Another traffic diversion regression model was developed based on the DTAlite 

MSA user equilibrium assignment results. Further analysis of this issue is needed. 

Another important issue is driver lane merging behavior at work zones. With 

regard to the current lane merging strategies at lane closure areas, this dissertation found 

that there is an optimal lane merging strategy that produces better results than current 
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strategies, such as early merge and late merge, can be implemented utilizing connected 

and/or automated vehicles. 

Two case studies were conducted to implement the multi-criteria evaluation 

framework: The I-4/Graves Avenue work zone case study in Orlando, Florida, and the I-

595 corridor in Broward County. The present worth and the MCDM approaches were 

implemented successfully into both approaches to select between construction and 

operation alternatives. The I-4/Graves Interchange was analyzed at the planning level, 

while the I-595 corridor in Broward County was analyzed at both the planning and 

operational levels. The results from the different approaches are compared. The case 

study results indicate that the best alternative based on the present worth analysis and 

fuzzy TOPSIS evaluation is the same in the I-4 case study and different in the I-595 case 

study. The present worth analysis is able to quantify the performance measures based on 

dollar value, while the fuzzy TOPSIS evaluation is able to solve the multi-criteria 

decision-making problem with user preference.     

 Contribution 

This dissertation addresses an important need in the decision-making process of highway 

construction projects. This research developed a framework to enhance and supplement 

the current construction project evaluation processes at the planning and operation levels. 

The framework combines the consideration of mobility, reliability, safety, emission 

impacts, direct construction costs, and indirect construction costs in two approaches to 

the decision-making process: return on investment and fuzzy TOPSIS evaluation. In 

addition, methods have been developed and assessed for estimating traveler diversion and 
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lane merging behaviors at work zones under different considerations. Logit regression 

modeling and DTAlite day-to-day learning DTA options are investigated and compared 

as part of this framework. An optimal lane merging strategy that can be implemented 

using connected and/or automated vehicles was also developed in this study. 

 Recommendation and Future Research 

Although a complete multi-criteria evaluation framework to support the decision-making 

process of highway construction projects is developed in this dissertation, the system 

development will benefit from additional developmental efforts. Future studies in the 

following areas will help improve the framework: 

 Traffic diversion behavior is influenced by many factors, aside from travel times 

on the original and alternative routes. For example, drivers are more likely to use 

original routes when they are not familiar with work zone areas. Time of day 

(day/night) also affects a driver’s choice of diversion. The day-to-day learning 

DTA and the derived logit regression model based on results appear to be 

overestimating traffic diversion. Therefore, additional work zone information 

needs to be collected to build and verify a proper estimation equation in the future. 

 The conflict analysis based on the SSAM utilizes vehicle trajectories from the 

VISSIM microscopic model. The ability of VISSIM to produce trajectories that 

are similar to what is expected in real-world conditions will need to be examined. 

 There is a need for the assessment of the importance of the utilization of a more 

microscopic analysis to assess reliability (such as that of the SHRP2 L04 project) 
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and emission (such as utilizing the microscopic module of the EPA MOVES 

model). 

 The optimal lane-changing location proposed in this research can be implemented 

using connected and automated vehicles. The assumption is that 100% of the 

vehicles are equipped with this technology. The impact of the market penetration 

of the technologies would have to be investigated in a future study. 
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