92 research outputs found

    ABC Method and Fractional Momentum Layer for the FDTD Method to Solve the Schrödinger Equation on Unbounded Domains

    Get PDF
    The finite­difference time­domain (FDTD) method and its generalized variant (G­FDTD) are efficient numerical tools for solving the linear and nonlinear Schrödinger equations because not only are they explicit, allowing parallelization, but they also provide high­order accuracy with relatively inexpensive computational costs. In addition, the G­FDTD method has a relaxed stability condition when compared to the original FDTD method. It is important to note that the existing simulations of the G­FDTD scheme employed analytical solutions to obtain function values at the points along the boundary; however, in simulations for which the analytical solution is unknown, theoretical approximations for values at points along the boundary are desperately needed. Hence, the objective of this dissertation research is to develop absorbing boundary conditions (ABCs) so that the G­FDTD method can be used to solve the nonlinear Schrödinger equation when the analytical solution is unknown. To create the ABCs for the nonlinear Schrödinger equation, we initially determine the associated Engquist­Majda one­way wave equations and then proceed to develop a finite difference scheme for them. These ABCs are made to be adaptive using a windowed Fourier transform to estimate a value of the wavenumber of the carrier wave. These ABCs were tested using the nonlinear Schrödinger equation for 1D and 2D soliton propagation as well as Gaussian packet collision and dipole radiation. Results show that these ABCs perform well, but they have three key limitations. First, there are inherent reflections at the interface of the interior and boundary domains due to the different schemes used the two regions; second, to use the ABCs, one needs to estimate a value for the carrier wavenumber and poor estimates can cause even more reflection at the interface; and finally, the ABCs require different schemes in different regions of the boundary, and this domain decomposition makes the ABCs tedious both to develop and to implement. To address these limitations for the FDTD method, we employ the fractional­order derivative concept to unify the Schrödinger equation with its one­way wave equation over an interval where the fractional order is allowed to vary. Through careful construction of a variable­order fractional momentum operator, outgoing waves may enter the fractionalorder region with little to no reflection and, inside this region, any reflected portions of the wave will decay exponentially with time. The fractional momentum operator is then used to create a fractional­order FDTD scheme. Importantly, this single scheme can be used for the entire computational domain, and the scheme smooths the abrupt transition between the FDTD method and the ABCs. Furthermore, the fractional FDTD scheme relaxes the precision needed for the estimated carrier wavenumber. This fractional FDTD scheme is tested for both the linear and nonlinear Schrödinger equations. Example cases include a 1D Gaussian packet scattering off of a potential, a 1D soliton propagating to the right, as well as 2D soliton propagation, and the collision of Gaussian packets. Results show that the fractional FDTD method outperforms the FDTD method with ABCs

    Near-field diffraction of protons by a nanostructured metallic grating under external electric field: Asymmetry and sidebands in Talbot self-imaging

    Full text link
    Self-imaging in near-field diffraction is a practical application of coherent manipulation of matter waves in Talbot interferometry. In this work, near-field diffraction of protons by a nanostructured metallic grating under the influence of (a) uniform, (b) spatially modulated, and (c) temporally modulated electric fields are investigated. Time-domain simulations of two-dimensional Gaussian wave packets for protons are performed by solving the time-dependent Schr\"odinger's equation using the generalized finite difference time domain (GFDTD-Q) method for quantum systems. Effects of strength (E0E_0) and orientation (θ\theta) of the uniform electric field on the diffraction properties, such as fringe pattern, intensity of the peaks, fringe shift, and visibility, are investigated. The results show that the Talbot fringes shift significantly in the transverse direction even for a small change in the applied electric field (ΔE0\Delta E_0 =0.1=0.1 V/m) and its orientation (Δθ\Delta \theta =0.1o=0.1^o). The potential barriers arising from a spatially modulated electric field are observed to cause significant distortions in the Talbot patterns when the modulation length (λ\lambda') is equal to the de Broglie wavelength (λdB\lambda_{dB}). Sidebands are observed in the Talbot pattern due to the efficient transfer of energy from the oscillating field to the wave packet when the frequency of oscillation (ω\omega) is of the order of ω0\omega_0 (=2π/T0=2\pi/T_0), where T0T_0 is the interaction time. This study will be helpful in uniform electric field-controlled precision metrology, developing a highly sensitive electric field sensor based on Talbot interference, and precisely aligning the matter wave optical setup. Furthermore, the sidebands in the Talbot fringe can be used as a precise tool as momentum splitter in matter wave interferometry.Comment: 14 pages, 13 figure

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    Non-Linear Lattice

    Get PDF
    The development of mathematical techniques, combined with new possibilities of computational simulation, have greatly broadened the study of non-linear lattices, a theme among the most refined and interdisciplinary-oriented in the field of mathematical physics. This Special Issue mainly focuses on state-of-the-art advancements concerning the many facets of non-linear lattices, from the theoretical ones to more applied ones. The non-linear and discrete systems play a key role in all ranges of physical experience, from macrophenomena to condensed matter, up to some models of space discrete space-time

    Quantum Computing for Fusion Energy Science Applications

    Full text link
    This is a review of recent research exploring and extending present-day quantum computing capabilities for fusion energy science applications. We begin with a brief tutorial on both ideal and open quantum dynamics, universal quantum computation, and quantum algorithms. Then, we explore the topic of using quantum computers to simulate both linear and nonlinear dynamics in greater detail. Because quantum computers can only efficiently perform linear operations on the quantum state, it is challenging to perform nonlinear operations that are generically required to describe the nonlinear differential equations of interest. In this work, we extend previous results on embedding nonlinear systems within linear systems by explicitly deriving the connection between the Koopman evolution operator, the Perron-Frobenius evolution operator, and the Koopman-von Neumann evolution (KvN) operator. We also explicitly derive the connection between the Koopman and Carleman approaches to embedding. Extension of the KvN framework to the complex-analytic setting relevant to Carleman embedding, and the proof that different choices of complex analytic reproducing kernel Hilbert spaces depend on the choice of Hilbert space metric are covered in the appendices. Finally, we conclude with a review of recent quantum hardware implementations of algorithms on present-day quantum hardware platforms that may one day be accelerated through Hamiltonian simulation. We discuss the simulation of toy models of wave-particle interactions through the simulation of quantum maps and of wave-wave interactions important in nonlinear plasma dynamics.Comment: 42 pages; 12 figures; invited paper at the 2021-2022 International Sherwood Fusion Theory Conferenc

    Octopus, a computational framework for exploring light-driven phenomena and quantum dynamics in extended and finite systems

    Get PDF
    Over the last few years, extraordinary advances in experimental and theoretical tools have allowed us to monitor and control matter at short time and atomic scales with a high degree of precision. An appealing and challenging route toward engineering materials with tailored properties is to find ways to design or selectively manipulate materials, especially at the quantum level. To this end, having a state-of-the-art ab initio computer simulation tool that enables a reliable and accurate simulation of light-induced changes in the physical and chemical properties of complex systems is of utmost importance. The first principles real-space-based Octopus project was born with that idea in mind, i.e., to provide a unique framework that allows us to describe non-equilibrium phenomena in molecular complexes, low dimensional materials, and extended systems by accounting for electronic, ionic, and photon quantum mechanical effects within a generalized time-dependent density functional theory. This article aims to present the new features that have been implemented over the last few years, including technical developments related to performance and massive parallelism. We also describe the major theoretical developments to address ultrafast light-driven processes, such as the new theoretical framework of quantum electrodynamics density-functional formalism for the description of novel light-matter hybrid states. Those advances, and others being released soon as part of the Octopus package, will allow the scientific community to simulate and characterize spatial and time-resolved spectroscopies, ultrafast phenomena in molecules and materials, and new emergent states of matter (quantum electrodynamical-materials)

    Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design

    Software for the frontiers of quantum chemistry : An overview of developments in the Q-Chem 5 package

    Get PDF
    This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange–correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear–electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an “open teamware” model and an increasingly modular design.This article summarizes technical advances contained in the fifth major release of the Q-Chem quantum chemistry program package, covering developments since 2015. A comprehensive library of exchange-correlation functionals, along with a suite of correlated many-body methods, continues to be a hallmark of the Q-Chem software. The many-body methods include novel variants of both coupled-cluster and configuration-interaction approaches along with methods based on the algebraic diagrammatic construction and variational reduced density-matrix methods. Methods highlighted in Q-Chem 5 include a suite of tools for modeling core-level spectroscopy, methods for describing metastable resonances, methods for computing vibronic spectra, the nuclear-electronic orbital method, and several different energy decomposition analysis techniques. High-performance capabilities including multithreaded parallelism and support for calculations on graphics processing units are described. Q-Chem boasts a community of well over 100 active academic developers, and the continuing evolution of the software is supported by an "open teamware" model and an increasingly modular design.Peer reviewe
    corecore