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ABSTRACT

The finite­difference time­domain (FDTD) method and its generalized variant (G­FDTD)

are efficient numerical tools for solving the linear and nonlinear Schrödinger equations be­

cause not only are they explicit, allowing parallelization, but they also provide high­order

accuracy with relatively inexpensive computational costs. In addition, the G­FDTDmethod

has a relaxed stability condition when compared to the original FDTD method. It is im­

portant to note that the existing simulations of the G­FDTD scheme employed analytical

solutions to obtain function values at the points along the boundary; however, in simula­

tions for which the analytical solution is unknown, theoretical approximations for values at

points along the boundary are desperately needed. Hence, the objective of this dissertation

research is to develop absorbing boundary conditions (ABCs) so that the G­FDTD method

can be used to solve the nonlinear Schrödinger equation when the analytical solution is

unknown.

To create the ABCs for the nonlinear Schrödinger equation, we initially determine

the associated Engquist­Majda one­waywave equations and then proceed to develop a finite

difference scheme for them. These ABCs are made to be adaptive using a windowed Fourier

transform to estimate a value of the wavenumber of the carrier wave. These ABCs were

tested using the nonlinear Schrödinger equation for 1D and 2D soliton propagation aswell as

Gaussian packet collision and dipole radiation. Results show that these ABCs perform well,

but they have three key limitations. First, there are inherent reflections at the interface of the

iii



iv

interior and boundary domains due to the different schemes used the two regions; second, to

use the ABCs, one needs to estimate a value for the carrier wavenumber and poor estimates

can cause even more reflection at the interface; and finally, the ABCs require different

schemes in different regions of the boundary, and this domain decomposition makes the

ABCs tedious both to develop and to implement.

To address these limitations for the FDTD method, we employ the fractional­order

derivative concept to unify the Schrödinger equation with its one­way wave equation over

an interval where the fractional order is allowed to vary. Through careful construction of

a variable­order fractional momentum operator, outgoing waves may enter the fractional­

order region with little to no reflection and, inside this region, any reflected portions of the

wave will decay exponentially with time. The fractional momentum operator is then used

to create a fractional­order FDTD scheme. Importantly, this single scheme can be used for

the entire computational domain, and the scheme smooths the abrupt transition between

the FDTD method and the ABCs. Furthermore, the fractional FDTD scheme relaxes the

precision needed for the estimated carrier wavenumber. This fractional FDTD scheme is

tested for both the linear and nonlinear Schrödinger equations. Example cases include a

1D Gaussian packet scattering off of a potential, a 1D soliton propagating to the right, as

well as 2D soliton propagation, and the collision of Gaussian packets. Results show that

the fractional FDTD method outperforms the FDTD method with ABCs.
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CHAPTER 1

INTRODUCTION

It is well­known that the time­dependent Schrödinger equation (SE) models the propagation

of waves, particles, as well as solitons in scientific fields such as nonlinear optical and elec­

tromagnetic media, quantum superconductors, fluid mechanics, Bose­Einstein condensates,

polariton fluids, plasma physics, DNA energy transport, and deepwater roguewaves [1–13].

The SE and nonlinear SE (NSE) can be expressed jointly as

i∂tψ −∇2ψ + V ψ + λ|ψ|q−1ψ = 0, (1)

where i =
√
−1, ψ = ψ(t,x) is a complex­valued function of the time variable t and

the n­dimensional position vector x, and ∇2 is the Laplace operator, and V is a potential

[2]. For λ = 0, we have the SE, and when V = 0 we have the NSE. The integer q ≥

3 determines the order of the nonlinear coupling, while the real constant λ can be either

positive or negative corresponding to repulsive or attractive behavior, respectively [14, 15].

For V = 0, well­known soliton solutions exist for both positive and negative values of λ.

For λ < 0, wave disturbances, known as bright solitons, exist as excitations on top of a zero

density background medium. For λ > 0, wave disturbances, known as dark solitons, exist

as areas of lower excitation in a constant density background. In this study, we consider

only the attractive case (λ < 0) as the repulsive case requires entirely different boundary

considerations due to the constant density background [2, 14, 16]. For λ < 0, the NSE
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permits bright hyperbolic secant solutions. In one dimension (1D), the following is a well­

known soliton solution to the NSE:

ψ(x, t) = a|2/λ|1/2 sech (a (x− 2kt)) eikxe−i(a2−k2)t (1.1)

where a > 0 and k is real. Later on, we will use these soliton solutions (and similar 2D

solitons) to test the validity of our numerical methods.

The G­FDTD method is an extension of the FDTD method which provides a way

to relax the stability condition of the FDTD method, and it provides higher­order temporal

accuracy while not drastically increasing the computational cost [17, 18]. Finally, both the

FDTD and G­FDTDmethods are explicit schemes which allow for easy parallelization. It is

important to note that the existing simulation of the G­FDTD scheme employed analytical

solutions to obtain function values at the points along the boundary; however, in simulations

for which the analytical solution is unknown, theoretical approximations for values at points

along the boundary are desperately needed. Hence, it requires us to develop absorbing

boundary conditions (ABCs) so that the G­FDTDmethod can be used to solve the nonlinear

Schrödinger equation when the analytical solution is unknown.

There are many sophisticated ABCs proposed for the SE [19–28]. In particular,

Zhang et al. [29, 30] used the operator splitting method to design the ABCs for the 1D and

2D SE on unbounded domains. Notably, Antoine et al. used time­fractional operators with

fractional order of 1/2 to derive the artificial boundary condition for 1D cubic nonlinear SE

on unbounded domains [31]. Other approaches to design the ABCs for SE on unbounded

domains can be found in [16, 32–45] and the references therein.
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It should be pointed out that many ABCs attempt to approximate the solution along

the boundary using some assumed functional form. However, if the outgoing wave does

not sufficiently satisfy the assumed form, there can be substantial reflection at the interface

of the interior and boundary domains. To overcome this troublesome issue, our intuition is

to somehow transform from the SE into the one­way wave equation (that has transparent

boundary conditions; abbreviated TBCs) by introducing an idealized variable­order frac­

tional momentum operator, which allows the order of the fractional momentum to decrease

gradually from the SE to the one­way wave equation through a fractional momentum layer

(FML). In so doing, we aim to smooth the abrupt transition. As such, through careful

construction of the FML, we hope that the reflected waves will decay rapidly and the total

accumulated error inside the physical region is thereby reduced.

Objective. The objective of this dissertation research is to develop two boundary methods

so that the FDTD and G­FDTD method can be used to solve the linear and nonlinear SE

when the analytical solution is unknown. The first method is an ABC that is based on

the solely on the Engquist­Majda one­way wave equations. The second method is a novel

technique that unifies the Schrödinger equation with its one­way wave equation through the

use of the fractional­order derivative concept.

For the first method, to develop the ABCs, we discretize the Engquist­Majda one­

way wave equations to create a finite difference scheme. The ABCs are made to be adaptive

using a windowed Fourier transform to estimate a value of the wavenumber of the carrier

wave, a parameter that is needed for the ABC. While the obtained ABCs provide good

results when computing with the FDTD method, they have three key limitations. First,

there is inherent reflection at the interface of the interior and boundary domains due to
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the different schemes used in region. Second, to use the ABCs, one needs to estimate

a value for the carrier wavenumber and poor estimates can cause even more reflection

at the interface. Finally, the ABCs require different schemes in different regions of the

boundary, and this domain decomposition makes the ABCs tedious both to develop and

to implement; moreover, as the dimensionality of the SE increases, the number of edges –

hence the number required of ABCs – increases rapidly.

To address these limitations for the ABCs, we employ the fractional­order derivative

concept to unify the Schrödinger equation with its one­way wave equation over an interval

where the fractional order is allowed to vary. Through careful construction of a variable­

order fractional momentum operator, outgoing waves may enter the fractional­order region

with little to no reflection and, inside this region, any reflected portions of the wave will

decay exponentially with time. The fractional momentum operator is then used to create a

fractional­order FDTD scheme. Importantly, this single scheme can be used for the entire

computational domain, and the scheme smooths the abrupt transition between the FDTD

method and the ABCs. Furthermore, the fractional FDTD scheme relaxes the precision

needed for the estimated carrier wavenumber.

Organization. The organization of this dissertation is structured as follows:

Chapter 1 provides a brief overview and motivation for this research by (1) describ­

ing areas of applications of the Schrödinger equation, (2) discussing the existing numerical

solutions and their limitations, (3) introducing the need for wave­absorption methods when
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numerically solving the Schrödinger equation on physically unbounded domains in particu­

lar absorbing boundary conditions; and, (4) explaining the limitations of absorbing bound­

ary conditions and (5) giving a road map for using fractional­order techniques for wave

absorption. This chapter also provides an overview for the structure of this dissertation.

Chapter 2 serves as an introduction to the linear and nonlinear Schrödinger equa­

tions. It also discusses the main numerical methods that are used throughout this study,

and it provides an overview of relevant fractional derivative techniques used in the study.

Additionally, the advantages of GPU computing over CPU computing are discussed.

Chapter 3 develops the one­way wave equations for the 1D and 2D cases. Next,

we discuss the near­boundary treatment so that the ABC can be used with the Generalized

Finite­Difference Time­Domain method for solving the nonlinear Schrödinger equation.

Then, since the ABCs require certain parameters, we discuss the heuristic we use for de­

termining those parameters and a method for adaptively choosing parameters. Finally,

we develop the scheme for the absorbing boundary conditions by using finite difference

techniques.

Chapter 4 gives the tests and numerical examples of the ABC method. These

experiments include simulations of nonlinear SE for 1D and 2D soliton propagation as well

as Gaussian packet collision.

Chapter 5 introduces a symbolically idealized fractional­order momentum operator

that unifies the SEwith its one­waywave equation. The idealized operator is then developed

through careful consideration of the behavior of fractional momentum operators along the

left and right boundaries. Finally, the fractional FDTDmethod is developed by determining

the discrete version of the fractional SE using finite difference techniques.
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Chapter 6 gives the tests and numerical examples for the fractional FDTD scheme.

These experiments include 1D soliton propagation, 1D particle interacting with a potential,

as well as 2D soliton propagation and Gaussian packet collision.

Chapter 7 concludes this dissertation and provides future direction in research.



CHAPTER 2

BACKGROUND OVERVIEW

This chapter provides an overview of the linear and nonlinear Schrödinger equations as

well as the G­FDTD method which can be used for accurate simulation. We also discuss

boundary methods such as absorbing boundary conditions and provide motivation for the

new fractional FDTDmethod and the fractional momentum layer. Furthermore, the relevant

topics from fractional calculus are discussed and several fractional derivatives are intro­

duced. Finally, we discuss the advantages of GPU computing for scientific applications.

2.1 Schrödinger Equations

The linear Schrödinger equation (SE) is an important equation in physics and chemistry as

well as other science and engineering disciplines. The linear SE describes the time evolution

of non­relativistic massive particles interacting with potentials [46]. With ℏ = 1 andm = 1
2
,

linear SE is given by

i∂tψ = p̂2ψ + V ψ, (2.1)

where i =
√
−1, ψ = ψ(x, t) is a complex wave function of the position vector x =

⟨x1, . . . , xn⟩ and the time coordinate t. The momentum operator is given by p̂ = −iℏ∇

where∇ is the gradient, p̂2 = p̂ · p̂, and V = V (x, t) describes a potential.

7
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The nonlinear Schrödinger equation (NSE) characterizes quasi­monochromaticwave

phenomena that appears in weakly nonlinear, dispersive media where dissipative processes

are negligible [2]. The NSE can be expressed as

i∂tψ = p̂2ψ − λ|ψ|q−1ψ. (2.2)

The NSE appears in the literature of mathematical physics when describing the behavior

of Bose­Einstein condensates, superconductors, nonlinear optical media, plasmas, DNA

energy transport, as well as deep­water rogue waves [2–11]. The integer q ≥ 3 determines

order of the nonlinear coupling, and the proportionality constant λ can be either positive

or negative corresponding to defocusing or focusing behavior, respectively [14, 15]. For

q = 3, soliton solutions exist for both positive and negative values of λ. For λ < 0,

wave disturbances, known as bright solitons, exist as excitations on top of a zero density

background. For λ > 0, wave disturbances, known as dark solitons, exist as areas of lower

excitation on top of a constant, non­zero background. In this study, we consider only the

focusing case (λ < 0) as the defocusing case requires different considerations [2, 14, 16, 47].

For λ < 0, the NLSE permits bright hyperbolic secant solutions. The following soliton is a

known solution for the 1D case:

ψ(x, t) = a|2/λ|1/2 sech (a (x− 2kt)) eikxe−i(a2−k2)t (2.3a)

where a > 0 and k is real. Additionally, for the 2D case, the following soliton solution is

permitted:

ψ(x, t) = a|2/λ|1/2 sech (a · (x− 2tk)) eik·xe−i(k2−a2)t (2.3b)
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where x = ⟨x, y⟩, a = aûa, k = kûk, for some unit vectors ûa and ûk. Letting V =

V + λ|ψ|q−1, then Eqs. (2.1) and (2.2) can be unified with the following equation

i∂tψ = p̂2ψ + Vψ, (2.4)

where λ = 0 corresponds to the linear case and V = 0 corresponds to the nonlinear case.

Continuity Equation and Conservation Law. We will show that any function that sat­

isfies Eq. (2.4), will also satisfy conservation of probability. Specifically, any solution to

Eq. (2.4) also satisfies a continuity equation. Thereby, we can prove that total probability is

conserved, and for any volume Σ, the total probability can change if and only if probability

flows through the boundary of that region, ∂Σ.

By multiplying Eq. (2.4) by the conjugate function ψ̄, multiplying the conjugate of

Eq. (2.4) by ψ, then taking the difference of the results, one may obtain that solution to the

SE satisfies the following continuity equation:

∂t|ψ|2 +∇ · j = 0, (2.5)

where the probability current is defined as j = −i
(
ψ̄∇ψ − ψ∇ψ̄

)
[46]. Now, if we assume

ψ(x, y, t) = ψ0(x, y, t)e±ik·x where k is a constant vector, then we obtain |ψ(x, y, t)| =

|ψ0(x, y, t)| and j = 2|ψ|2k. Hence, the continuity equation simplifies to be

∂t|ψ|2 + 2k · ∇|ψ|2 = 0. (2.6)

In the 1D case, the above equation further simplifies to ∂t|ψ|2 + 2k∂x|ψ|2 = 0.

To obtain the conservation law, we integrate over some volume Σ and use the

divergence theorem to find

d
dt

∫
Σ

|ψ|2dV +

∮
∂Σ

j · ds = 0. (2.7)
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For unbounded domains such as IR2,
∮
∂Σ

j · ds = 0 and∫
Σ

|ψ|2dV = constant. (2.8)

2.2 FDTD and G­FDTD Methods

As stated previously, there are many explicit numerical methods for solving the NSE [17, 18,

27, 48–81]. Namely, these include the spectral and pseudospectral methods [55–57], finite

difference methods [58–70], space­time finite­element methods [71], quadrature discretiza­

tion methods [72–75], and finite­difference time­domain (FDTD) methods [17, 18, 27, 76–

81].

In this study, we use the Generalized Finite­Difference Time­Domain (G­FDTD)

method developed by Dai andMoxley et al. [18, 27, 77–80]. We choose to use the G­FDTD

method not only because it is explicit and thus allows parallelization, but also because it

provides high­order accuracy with relatively inexpensive computation. Furthermore, the

G­FDTD method has a relaxed stability condition when compared to the original FDTD

method [17, 18, 27].

2.2.1 1D Case for the FDTD Method

The one­dimensional FDTD method for the linear SE is presented by Sullivan in [17].

Recall that the 1D SE is given by

iℏ∂tψ = − ℏ2

2m
∂2x + V(x, t)ψ. (2.9)

The SE is then split into real valued functions ψR and ψI where ψ = ψR + iψI giving the

coupled equations

∂tψR = +

(
ℏ
2m

∂2x − ℏ−1V
)
ψI, (2.10a)
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∂tψI = −
(

ℏ
2m

∂2x − ℏ−1V
)
ψR. (2.10b)

To obtain the FDTD method, we evaluate the real and imaginary parts of ψ at the point

(xi, tn+1/2) and let ψ(xi, tn) be approximated by ψni . Using the finite difference approxima­

tions ∂tψ|
tn+1/2
xi ≈ (ψn+1

i − ψni )/∆t and ∂2xψ|
tn+1/2
xi ≈ (ψ

n+1/2
i+1 − 2ψ

n+1/2
i + ψ

n+1/2
i−1 )/∆x2,

we obtain the following numerical scheme:

[ψR]
n+1
i − [ψR]

n
i = +

(
µ̃δ2x − ℏ−1Vn+1/2

i

)
[ψI]

n+1/2
i , (2.11a)

[ψI]
n+1
i − [ψI]

n
i = −

(
µ̃δ2x −

1

∆tℏ
Vn+1/2
i

)
[ψR]

n+1/2
i , (2.11b)

where µ̃ = ∆t/∆x2µ, µ = ℏ/2m, and δ2x is the second­order central difference operator

defined by

δ2xfi = fi+1 − 2fi + fi−1. (2.12)

The FDTD method is the inspiration for and a special case of the G­FDTD method that

follows.

2.2.2 1D Case for the G­FDTD Method

The derivation of the G­FDTD method is similar to the development of the Lax­Wendroff

scheme for hyperbolic equations [82]. To start, consider a sufficiently smooth function

f = f(t) and some small time step ∆t, then we have following Taylor series expansion

f(t±∆t/2) =
∞∑
n=0

(±1)n
∆tn

2nn!
f (n)(t). (2.13)

The above expansion may be used to obtain the following sum where the even terms vanish,

f(t+∆t/2)− f(t−∆t/2) = 2
∞∑
n=0

∆t2n+1

22n+1(2n+ 1)!
f (2n+1)(t) (2.14)
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which simplifies as

f(t+∆t/2)− f(t−∆t/2) =
∞∑
n=0

∆t2n+1

4n(2n+ 1)!
f (2n+1)(t). (2.15)

Letting t→ t−∆t yields

f(t)− f(t−∆t) =
∞∑
n=0

∆t2n+1

4n(2n+ 1)!
f (2n+1)(t−∆t/2). (2.16)

From Eq. (2.16), it is clear that we need to determine expressions for the odd­order temporal

derivatives in order to have increased accuracy in determining how the system will evolve

at each time step. Truncating the series at the termm =M , then the we have the finite sum

that follows:

f(t)− f(t−∆t) =
M∑
m=0

∆t2m+1

4m(2m+ 1)!
f (2m+1)(t−∆t/2) + O

(
∆t2M+3

)
. (2.17)

At onset, determining expressions for these time derivatives is not trivial; however,

by making some approximations, the expressions will become easier to handle. Now,

consider the one dimensional (1D) SE given by

iℏ∂tψ = − ℏ2

2m
∂2xψ + V(x, t)ψ. (2.18)

Solving for ∂tψ yields

∂tψ = − i
ℏ
Hψ. (2.19)

where H = − ℏ2
2m
∂2x + V(x, t) is a (possibly nonlinear) Hamiltonian. This gives our first

temporal derivative. To find the third­order temporal derivative, we first need to find the

second­order one. The second­order temporal derivative can be obtained by differentiating

Eq. (2.19) with respect to time. For now, we will take special care to consider the commu­

tation relation of the Hamiltonian and the time derivative operator ∂tH = H∂t + Vt where
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Vt = ∂V
∂t
. Then, the second temporal derivative is given by

∂2t ψ = ∂t(∂tψ) = − i
ℏ
∂t Hψ = − i

ℏ

(
H∂t +

i
ℏ
Vt
)
ψ = − 1

ℏ2
(
H2 + iℏVt

)
ψ. (2.20)

Furthermore, the third temporal derivative is given by

∂3t ψ = − 1

ℏ2
∂t
(
H2 + iℏVt

)
ψ =

i
ℏ3
(
H3 − ℏ2Vtt + iℏ(HVt + 2VtH)

)
ψ, (2.21)

where Vtt = ∂V
∂t
. At this point, it is clear that finding higher and higher temporal derivatives

can quickly become intractable without some assumptions. However, forM = 1, we have

ψ(t)− ψ(t−∆t) = −i∆t
ℏ
Hψ(t−∆t/2) +

i∆t3

24ℏ3
H3ψ(t−∆t/2)

+
∆t3

24ℏ
(HVt + 2VtH − Vtt)ψ(t −∆t/2). (2.22)

In [18], through a process known as linearization, the authors assume that V is

independent of t, that is ∂V
∂t

= 0 (or equivalently the Hamiltonian commutes with the time­

derivative operator). In this way, the mathematics becomes much more simple, but the

G­FDTD method still provides increased accuracy. In particular, the expressions for the

temporal derivative are given as ∂mt ψ = (−i
ℏ )

mHmψ, which yields the update equation

ψ(t)− ψ(t−∆t) = i
M∑
m=0

(−1)m+1∆t2m+1

4m(2m+ 1)!
H2m+1ψ(t−∆t/2). (2.23)

Letting ψn = ψ(tn) where tn = n∆t, we have

ψn − ψn−1 = i
M∑
m=0

(−1)m+1∆t2m+1

4m(2m+ 1)!
H2m+1ψn−1/2, (2.24)

which we may separate into real and imaginary components using ψn = [ψR]
n + i[ψI]

n to

obtain the coupled equations that follow:

[ψR]
n = [ψR]

n−1 +
M∑
m=0

(−1)m∆t2m+1

4m(2m+ 1)!
H2m+1[ψI]

n−1/2, (2.25)



14

[ψI]
n = [ψI]

n−1 −
M∑
m=0

(−1)m∆t2m+1

4m(2m+ 1)!
H2m+1[ψR]

n−1/2. (2.26)

What remains now is to find appropriate finite difference approximations for the Hamil­

tonian operator. Letting H|t=tn−1/2
x=xi = ∂2x − Vn+1/2

i where xi = a + i∆x, i = 0, . . . , N ,

xN = b, the 1D G­FDTD method is given as follows:

[ψR]
n+1/2
i = [ψR]

n−1/2
i +

M∑
m=0

(−1)m

4m(2m+ 1)!

(
µxD

2
x −

∆t

ℏ
Vn+1
i

)2m+1

[ψI]
n
i , (2.27a)

[ψI]
n+1/2
i = [ψI]

n−1/2
i +

M∑
m=0

(−1)m+1

4m(2m+ 1)!

(
µxD

2
x −

∆t

ℏ
Vn+1
i

)2m+1

[ψR]
n
i , (2.27b)

[ψR]
n+1
i = [ψR]

n
i +

M∑
m=0

(−1)m

4m(2m+ 1)!

(
µxD

2
x −

∆t

ℏ
Vn+1/2
i

)2m+1

[ψI]
n+1/2
i , (2.27c)

[ψI]
n+1
i = [ψI]

n
i +

M∑
m=0

(−1)m+1

4m(2m+ 1)!

(
µxD

2
x −

∆t

ℏ
Vn+1/2
i

)2m+1

[ψR]
n+1/2
i , (2.27d)

for n = 0, 1, 2, 3 . . . , where µx = ∆t/ℏ∆x2 and D2
x is a finite­difference approximation

for the 1D Laplacian. In the original paper [18],D2
x was the fourth­order central difference

operator given as

D2
xψj = − 1

12
(ψj+2 − 16ψj+1 + 30ψj − 16ψj−1 + ψj−2) . (2.28)

Notice that forM = 0 the G­FDTD method reduces to the FDTD method. The truncation

error is O(∆t2M+2 +∆x4), and the stability condition for this method is given as∣∣∣∣∣
M∑
m=0

(−1)m

(2m+ 1)!

(
8

3
µx +

V p−1∆t

2

)2m+1
∣∣∣∣∣ ≤ c < 1, (2.29)

where c, V, T are real constants such that c ∈ [0, 1) and max(xj ,tn)∈S |ψnj | < V where

S = R1 × (0, T ) [18].

2.2.3 2D Case for the G­FDTD Method

Similarly, for the two dimensional (2D) case, we consider a bounded rectangular region

R2 ⊂ IR2 and assume that ψ = ψ(x, y, t) is integrable overR2 where ψ = ψR + iψI for real
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valued functions ψR = ψR(x, y, t) and ψI = ψI(x, y, t). Then, with ψR(xj, yk, tn) ≈ [ψR]
n
jk

and ψI(xj, yk, tn) ≈ [ψI]
n
jk, the 2D G­FDTD scheme is given as follows [18, 27]:

[ψR]
n+1/2
jk = [ψR]

n−1/2
jk +

M∑
m=0

(−1)m

4m(2m+ 1)!

(
D2 −∆tVnjk

)2m+1
[ψI]

n
jk, (2.30a)

[ψI]
n+1/2
jk = [ψI]

n−1/2
jk +

M∑
m=0

(−1)m+1

4m(2m+ 1)!

(
D2 −∆tVnjk

)2m+1
[ψR]

n
jk, (2.30b)

[ψR]
n+1
jk = [ψR]

n
jk +

M∑
m=0

(−1)m

4m(2m+ 1)!

(
D2 −∆tVn+1/2

jk

)2m+1

[ψI]
n+1/2
jk , (2.30c)

[ψI]
n+1
jk = [ψI]

n
jk +

M∑
m=0

(−1)m+1

4m(2m+ 1)!

(
D2 −∆tVn+1/2

jk

)2m+1

[ψR]
n+1/2
jk , (2.30d)

where D2 = σxD
2
x + σyD

2
y, σx = ∆t/∆x2, σy = ∆t/∆y2, and D2

x and D2
y are finite­

difference approximations for the second derivative of ψ with respect to x and y, respec­

tively. In the original paper, D2
x and D2

y were the fourth­order central difference operator.

That is,

D2
xψ

n
jk = − 1

12

(
ψnj+2k − 16ψnj+1k + 30ψnjk − 16ψnj−1k + ψnj−2k

)
, (2.31a)

D2
yψ

n
jk = − 1

12

(
ψnjk+2 − 16ψnjk+1 + 30ψnjk − 16ψnjk−1 + ψnjk−2

)
. (2.31b)

The G­FDTD method has had promising results [18, 27, 77–80]; therefore, we

would like to extend the method to include cases where the solution along the boundary

is unknown; in particular, the case where the equation is not physically bounded.

2.2.4 Methods to Solve the Schrödinger Equation on Unbounded Physical Domains

Due to the unavoidable, inherent limitations of computing, especially when simulating

unbounded physical domains, it is necessary to truncate the physical domain and impose a

computational boundary. The computational boundary is imposed purely for the simulation;
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therefore, it would be transparent to waves in the analytical solution. At this stage, there

are a few options as follows:

(i) Lose simulation accuracy. If no further action is taken, the domain of the accurate

unbounded simulation will repeatedly shrink after each application of the Laplacian

operator. This is because the discrete Laplacian operator is a kernel convolution, and,

in general, kernel convolutions need points outside the image (or domain) to calculate

points within the image.

(ii) Use wrapping. One may use wrapping to “glue” the boundary edges of the simu­

lation to one another. This turns our domain into a topological quotient space, and

specific wrapping done will affect the topology of the simulation [83]. By using

wrapping, it is possible to remove the imposed boundary; however, the new imposed

topology does not necessarily represent the physical domain. However, this is useful

for simulations on domains such as infinite crystal lattices [84].

(iii) Use an endpoint boundary method. One may use a separate numerical scheme

where the Laplacian is calculated not using a midpoint method but rather an endpoint

method. Critically, however, one must ensure that linear system is diagonally dom­

inant. Additionally, the difference between the interior scheme and the boundary

schemes may cause reflections at the interface of the two separate methods.

(iv) Use a separate equation. One may use a separate boundary equation such as a one­

way wave equation to calculate the time update; however, the analytical solution

would generally have reflections due at the interface; moreover, there will likely be

reflections at the interface due to the difference in the numerical schemes as well.
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(v) Use padding. One may pad the simulation before each application of the Lapla­

cian; however, one must be careful in choosing a particular padding scheme. The

padding method can be created using the boundary conditions given in the problem

such as the standard Dirichlet, Neumann, or Robin boundary conditions; however,

because the boundary that we consider is not physical, but, rather, it is imposed

by the computational method, the aforementioned standard boundary conditions are

insufficient. One popular method for padding the boundary is the use of absorbing

boundary conditions (or artificial boundary conditions; both abbreviated ABCs). For

any particular (two­way) wave equation, ABCs can be created from the associated

Engquist­Majda one­way wave equations. Crucially, it should be noted that may

ABCs pad the boundary after the time step has been calculated.

Absorbing Boundary Conditions. Currently, one of the most powerful methods to over­

come the challenge of an unbounded physical domain is the use of the artificial boundary

method which allows for simulation on truncated domains. The artificial boundary method

truncates the unbounded domain and partitions the truncated domain into the following

two parts: (1) the bounded interior domain which contains the region of physical interest,

and (2) the bounded exterior domain which encompasses the interior domain. Suitable

artificial boundary conditions (also called absorbing boundary conditions; both abbreviated

as ABCs) are developed based on the properties of outgoing waves in the boundary region.

Instead of the SE, the ABCs are imposed on the exterior domain and one may obtain a

numerical solution to the computationally bounded problem (with ABCs) that is a good

approximation to that of the original unbounded problem. Thus, this artificial boundary

method allows for the computational domain to be finite while limiting the reflection of
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waves at the boundary. Hence, accumulated error due to reflected waves can be mitigated

even for extended simulation times.

There are many sophisticated ABCs proposed for the SE [19–28]. In particular,

Zhang et al. [29, 30] used the operator splitting method to design the ABCs for the 1D and

2D SE on an unbounded domain. Notably, Antoine et al. used time­fractional operators

with fractional order of 1/2 to derive the artificial boundary condition to solve the 1D cubic

nonlinear SE on unbounded domains [31]. Other approaches to design the ABCs for SE on

unbounded domains can be found in [16, 32–45] and the references therein.

Many ABCs attempt to approximate the solution along the boundary using some

assumed functional form. However, if the outgoing wave does not sufficiently satisfy the

assumed form, there can be substantial reflection at the interface of the interior and boundary

domains. Moreover, each for each simulation edge, one needs to develop a unique ABC.

Therefore, one must decompose the domain into several pieces, which quickly becomes

tedious for larger dimensions.

Fractional Momentum Layer. To overcome the issue of reflection caused by the interface

of the interior and boundary domains, we transform the SE into its associated one­way

wave equation (with transparent boundary conditions; abbreviated TBCs) by introducing

an idealized variable­order fractional momentum operator, which allows the order of the

fractional momentum to decrease gradually from the SE to the one­way wave equation

through a fractional momentum layer (FML) as shown in Fig. 2.1 below. In so doing, we

aim to smooth the abrupt transition. As such, through careful construction of the FML

and variable­order fractional operators, the reflected portions of outgoing waves will decay

rapidly. Thereby, the total accumulated error inside the physical region is reduced.
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a− L− ϵ a− L a b b+ L b+ L+ ϵ

SE FML TBCFMLTBC

Figure 2.1: Diagram of 1D implementation of the FML. The SE is used in the domain
of physical interest; the TBC is used on the computational boundaries; and the FML is
sandwiched between the two.

2.3 Fractional­Order Derivatives and Approximations Thereof

So that the ideas behind the fractional momentum layer can be more easily understood, we

will now discuss relevant concepts from fractional calculus. While there are a plethora of

fractional derivatives, only the Caputo fractional derivative (and its numerical approxima­

tion) will be utilized in the latter portions of this manuscript. Even so, in this section, we

will define several other derivatives to put our choice of the Caputo derivative into context.

Gamma Function. The gamma function allows for a natural extension of the factorial

function to non­integer and complex numbers. The gamma function for positive integers is

defined as Γ(n) = (n− 1)! and, for positive real numbers, the it can be expressed as

Γ(α) =

∫ ∞

0

uα−1e−u du. (2.32)

It is well known that the gamma function over the complex plane is then defined as the

analytic continuation of the equation above. The gamma function is holomorphic over the

complex plane except on the set of non­positive integers {0} ∪ Z− where the function has

simple poles. These poles are easy to see from Euler’s reflection formula expressed as

Γ(z)Γ(1− z) =
π

sin(πz)
, (2.33)

which allows for the easy evaluation of the gamma function at negative values. A plot of

the gamma function is given in Fig. 2.2.
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Figure 2.2: Plot of the gamma function Γ(x).

2.3.1 Fractional­Order Derivatives

For this dissertation research, the computation will use what is known as the L2 approx­

imation of the Caputo fractional­order derivative. However, we will take time to discuss

several other fractional­order derivatives so that this choice may be contextualized later.

The other derivatives of note are the Grünwald­Letnikov derivative, the Fourier derivative,

the Liouville derivative, the Riemann derivative, and the Riesz derivative.

Grünwald­Letnikov Derivative. The Grünwald­Letnikov (G­L) derivative is one of the

more easily understood approximations for a fractional­order derivative. It is a generaliza­

tion of the limit definition of the derivative. Recall that

d
dx
f(x) = lim

h→0

f(x+ h)− f(x)

h
, (2.34)

and

d2

dx2
f(x) = lim

h→0

f(x+ 2h)− 2f(x+ h) + f(x)

h2
. (2.35)

Indeed, the forward difference definition of the nth order derivative of f is expressed as

dn

dxn
f(x) = lim

h→0
h−n

n∑
k=0

(−1)k
(
n

k

)
f(x+ (n−m)h). (2.36)
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Now, to extend this into the fractional­order case we let n→ α which yields

dα

dxα
f(x) = lim

h→0
h−α

∞∑
k=0

(−1)k
(
α

k

)
f(x+ (α− k)h), (2.37)

where, for non­integer α, the binomial coefficient is defined via the gamma function as(
α
k

)
= Γ(1+α)

Γ(1+k)Γ(1+α−k) . The above equation can be expanded about αh to obtain the G­L

derivative as

dα

dxα
f(x) = lim

h→0
h−α

∞∑
k=0

(−1)k
(
α

k

)
f(x− hk) + O

(
h1−α

)
. (2.38)

For 0 ≤ α < 1, the error term vanishes in the limit leaving the G­L derivative as

dα

dxα
f(x) = lim

h→0
h−α

∞∑
k=0

(−1)k
(
α

k

)
f(x− hk). (2.39)

Notice that for any particular evaluation point, x, the G­L derivative cannot be expressed

exactly using only points in a small neighborhood about x. For computation, one may

truncate the sum whenever the coefficient h−α
(
α
k

)
is within an error tolerance. For example,∣∣(α

k

)∣∣ < σh may be a good choice for some σ such that 0 < σ ≪ 1. Using the reflection

formula given in Eq. (2.33)(
α

k

)
=

Γ(1 + α)

Γ(1 + k)Γ(1 + α− k)
=

Γ(1 + α)Γ(k − α)

πΓ(1 + k)
sin(π(k − α))

= −(−1)k
Γ(1 + α)Γ(k − α)

πΓ(1 + k)
sin(πα). (2.40)

Hence, we must choose k so that
∣∣∣Γ(1+α)Γ(k−α)πΓ(1+k)

sin(πα).
∣∣∣ < σh, or equivalently,

Γ(k − α)

Γ(1 + k)
<

σπh

Γ(1 + α)| sin(πα)|
. (2.41)

Using Stirling’s approximation, bounds for the gamma function are given as
√
2πnnne−n <

Γ(1 + n) < nn+1/2e1−n, and it follows that for k > 1 + α

Γ(k − α)

Γ(1 + k)
≥

√
k − α− 1(k − α− 1)k−α−1e−k+α+1

√
2πkkke−k
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=
e1+α√
2π

(
1− 1 + α

k

)k+1/2

(k − α− 1)−1−α

≥ e1+α√
2π

(k − α− 1)−1−α (2.42)

Hence, we may choose to truncate the sum in the G­L derivative at the term N such that

e1+α√
2π

(N − α− 1)−1−α <
σπh

Γ(1 + α)| sin(πα)|
. (2.43)

Isolating N , we find

N > 1 + α + e
(
Γ(1 + α)| sin(πα)|

σh
√
2π3

) 1
1+α

. (2.44)

Fourier Derivative. The Fourier derivative is another easily understood fractional order

derivatives. It is derived by generalizing the properties of the integer­order derivatives under

the Fourier transform. That is, let f(x) be a function and let f̂(k) be the Fourier transform

of f defined by

f̂(k) =
1√
2π

∫ ∞

−∞
f(x)e−ikx dx, (2.45)

then we may represent f as the inverse Fourier transform of f̂ defined as

f(x) =
1√
2π

∫ ∞

−∞
f̂(k)eikx dk. (2.46)

Then, the Fourier representation of the first derivative of f is given by

d

dx
f(x) =

1√
2π

∫ ∞

−∞
ikf̂(k)eikx dk. (2.47)

Indeed, if n is an integer, then the nth derivative of of f has a Fourier representation as

dn

dxn
f(x) =

1√
2π

∫ ∞

−∞
(ik)nf̂(k)eikx dk. (2.48)

Now, let α be a real constant, and allow n→ α, then we define the fractional­order operator

dα

dxα
f(x) =

1√
2π

∫ ∞

−∞
(ik)αf̂(k)eikx dk. (2.49)
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Liouville Derivative. The Liouville derivatives are the first­order derivative of the Liou­

ville integrals and are given by

L
−∞Dα+n

x f(x) =
d
dx

1

Γ(1− α)

∫ x

−∞

f(ξ)

(x− ξ)α
dξ (2.50a)

L
xD

α+n
∞ f(x) =

d
dx

1

Γ(1− α)

∫ −∞

x

f(ξ)

(x− ξ)α
dξ (2.50b)

where 0 < α < 1.

Riemann Derivative. The Riemann derivatives are the first­order derivative of the Liou­

ville integrals and are given by

R
0D

α
xf(x) =

d
dx

1

Γ(1− α)

∫ x

0

f(ξ)

(x− ξ)α
dξ (2.51a)

R
xD

α
0f(x) =

d
dx

1

Γ(1− α)

∫ 0

x

f(ξ)

(x− ξ)α
dξ (2.51b)

where 0 < α < 1. To define higher­order fractional derivatives in both the Liouville and

Riemann sense, techniques introduced by Caputo or Riesz are needed.

Caputo Derivative. The Liouville­Caputo derivative, herein referred to only as the Caputo

derivative, is defined for all fractional orders α+ n where 0 ≤ α ≤ 1 and n ∈ N. The left­

and right­handed Caputo derivatives are given by

C
−∞Dα+n

x f(x) =
1

Γ(1− α)

∫ x

−∞

f (n+1)(ξ)

(x− ξ)α
dξ (2.52a)

C
xD

α+n
∞ f(x) =

1

Γ(1− α)

∫ ∞

x

f (n+1)(ξ)

(x− ξ)α
dξ (2.52b)

Riesz Derivative. The Riesz derivative uses both the left and right­handed Liouville deriva­

tives to obtain an operator which approaches the second­order derivative. The Riesz deriva­

tive is given as follows:

RZD2α
x = −

L
−∞Dα

x +
L

−∞Dα
x

2 cos(πα/2)
. (2.53)
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It should be pointed out that as α → 1 we have RZD2α
x → ∂2x; however, a similar result does

not hold true for α → 1/2. Explicitly, as α → 1/2, RZD2α
x ̸→ ∂x.

2.3.2 Lagrange Approximations

The Lagrange approximations provide accurate approximations of the fractional

derivative for fractional orders within interval [0, 2]. In particular, L1 approximation is

used for fractional orders within the interval [0, 1], and the L2 is used for fractional orders

within the interval [1, 2].

L1 Approximation. The L1 approximation of the Caputo derivative uses the Lagrange

polynomial of order 1 to approximate the function f over an small interval of size h [85].

This method is reminiscent of compound trapezoidal rule for calculating an integral. How­

ever, rather than integrating the Lagrange polynomial over each interval, one may approxi­

mate the first­order derivative as a constant over each interval; therefore, only a fractional

kernel is left inside the integrand. The fractional kernel is of the form
∫ b
a
(ξ − x)−α dξ.

For, 0 < α < 1 and x ≤ a ≤ b, then the following result follows directly from the

anti­derivative:∫ b

a

(ξ − x)−α dξ =
(b− x)1−α − (a− x)1−α

1− α
. (2.54)

Now, we will begin to develop an approximation for the function f over a small

interval [xj, xj+1] where xj = jh. The first­order Lagrange approximation of the function

f is given by the polynomial

P (x) =
x− xj
xj+1 − xj

fj+1 +
x− xj+1

xj − xj+1

fj

=
x− xj
h

fj+1 −
x− xj+1

h
fj =

fj+1 − fj
h

x +
xj+1 + xj

h
(2.55)
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where fj = f(xj). Since P (x) is a first­order polynomial, P ′(x) =
fj+1−fj

h
is constant;

hence, first­order derivative inside the integral of the Caputo derivative can be approximated

as a constant over a small interval.

To determine the error, from this approximation, let Rj(x) = f(x) − P (x) be the

error (or remainder) term. Then, Rj(xj) = R(xj+1) = 0, and R′′
j (x) = f ′′(x). Define a

function new function g such that

g(u) := Rj(u)−
(u− xj)(u− xj+1)

(x− xj)(x− xj+1)
Rj(x). (2.56)

Then, g(xj) = g(xj+1) = g(x) = 0, implying that, on the interval [xj, xj+1], g(u) has at

least 3 zeros in the interval. By Rolle’s theorem, g′(u) has at least 2 zeros on the interval

(xj, xj+1), and g′′(u) has at least one zero on the interval. For any particular value of x ∈

(xj, xj+1), let vj ∈ (xj, xj+1) be such that g′′(vj) = 0, then

0 = g′′(vj) = f ′′(vj)−
2

(x− xj)(x− xj+1)
Rj(x), (2.57)

therefore, for some value of vj in the interval

Rj(x) =
1

2
(x− xj)(x− xj+1)f

′′(vj) (2.58)

Now, we consider the magnitude of the error over the interval.

|Rj(x)| =
1

2
|(x− xj)(x− xj+1)f

′′(vj)|

≤ 1

2
|(xj+1 + xj

2
− xj)(

xj+1 + xj
2

− xj+1)f
′′(vj)|

≤ 1

8
(xj+1 − xj)

2|f ′′(vj)|

=
1

8
h2|f ′′(vj)| (2.59)

Therefore, the magnitude of the error due to this approximation is O (h2). In [85], Sun

et al. derive an expression for the integral over some finite interval. We will take a similar
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approach, but we will instead derive an approximation for the infinite interval, and then

truncate the infinite sum later. This difference in approach will lead to slightly different

numerical approximations. Let h > 0 be small, then xj = jh and xj − xk = xj−k for

all k = Z. We will now replace the single integral in the Caputo derivative by the sum of

integrals over the small intervals. Letting f(xj) = fj , aα0 = 1, and aαk = (k+1)1−α−k1−α

for k ≥ 1, we obtain the approximation for the Caputo derivative that follows:

C
−∞Dα

xj
f(xj) =

1

Γ(1− α)

∫ xj

−∞

f ′(ξ)

(xj − ξ)α
dξ

=
1

Γ(1− α)

∞∑
k=0

∫ xj−xk

xj−xk+1

f ′(ξ)

(xj − ξ)α
dξ

=
1

Γ(2− α)

∞∑
k=0

fj−k − fj−k−1

h

∫ xj−k

xj−k−1

1

(xj − ξ)α
dξ

+
1

Γ(1− α)

∞∑
k=0

∫ xj−k

xj−k−1

R′
j−k−1(ξ)

(xj − ξ)α
dξ

=
−1

Γ(2− α)

∞∑
k=0

fj−k − fj−k−1

h

[
x1−αk − x1−αk+1

]
+O(h2−α)

≈ −1

Γ(2− α)

1

hα

∞∑
k=0

(fj−k − fj−k−1)
[
(k)1−α − (k + 1)1−α

]
=

1

Γ(2− α)

1

hα

∞∑
k=0

ã1−αk (fj−k − fj−k−1)

=
1

Γ(2− α)

1

hα

[
aα0fj +

∞∑
k=1

ãαkfj−k −
∞∑
k=0

ãkfj−k−1

]

=
1

Γ(2− α)

1

hα

[
fj +

∞∑
k=1

ãαkfj−k −
∞∑
k=1

ãαk−1fj−k

]

=
1

Γ(2− α)

1

hα

[
fj +

∞∑
k=1

(ãαk − ãk−1)fj−k

]

=
1

Γ(2− α)

1

hα

∞∑
k=0

b̃αkfj−k, (2.60)
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where b̃α0 = 1, b̃α1 = 21−α − 2, and b̃αk = (k + 1)1−α − 2k1−α + (k − 1)1−α for k ≥ 2.

Similarly, the forward Caputo fractional derivative is given by

C
xj
Dα

∞f(xj) =
1

Γ(1− α)

∫ ∞

xj

f ′(ξ)

(ξ − xj)α
dξ

=
1

Γ(1− α)

∞∑
k=0

∫ xj+xk+1

xj+xk

f ′(ξ)

(ξ − xj)α
dξ

=
1

Γ(2− α)

∞∑
k=0

fj+k+1 − fj+k
h

∫ xj+k+1

xj+k

1

(xj − ξ)α
dξ

+
1

Γ(1− α)

∞∑
k=0

∫ xj+k+1

xj+k

R′
j+k(ξ)

(xj − ξ)α
dξ

=
1

Γ(2− α)

∞∑
k=0

fj+k+1 − fj+k
h

[
x1−αk+1 − x1−αk

]
+O(h2−α)

≈ 1

Γ(2− α)

1

hα

∞∑
k=0

(fj+k+1 − fj+k)
[
(k + 1)1−α − (k)1−α

]
=

1

Γ(2− α)

1

hα

∞∑
k=0

ã1−αk (fj+k+1 − fj+k)

=
1

Γ(2− α)

1

hα

[
−ãα0fj +

∞∑
k=0

ãαkfj+k+1 −
∞∑
k=1

ãαkfj+k

]

=
1

Γ(2− α)

1

hα

[
−fj +

∞∑
k=1

ãαk−1fj+k −
∞∑
k=1

ãαkfj+k

]

=
−1

Γ(2− α)

1

hα

[
fj +

∞∑
k=1

(ãαk − ãk−1)fj+k

]

=
−1

Γ(2− α)

1

hα

∞∑
k=0

b̃αkfj−k. (2.61)

From this, we define the finite­difference operators

∇α
x̄fj :=

1

Γ(2− α)

∞∑
k=0

b̃αkfj−k (2.62a)

∇α
xfj :=

−1

Γ(2− α)

∞∑
k=0

b̃αkfj+k. (2.62b)

Recall that b̃α0 = 1, b̃α1 = 21−α − 2, and b̃αk = (k + 1)1−α − 2k1−α + (k − 1)1−α for k ≥ 2,

and notice that for k ≥ 1 we have limα→0 b̃
α
k = 0. Additionally, limα→1 b̃

α
1 = −1, and, for
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k ≥ 2, limα→1 b̃
α
k = 0. Therefore, limα→1∇α

x̄fj = ∇x̄fj = fj − fj−1 and limα→1∇α
xfj =

∇xfj = fj+1 − fj . Also, limα→0∇α
x̄fj = fj and limα→0∇α

xfj = −fj . With the above

definitions, the L1 finite difference approximations may be compactly written as follows:

C
−∞Dα

xj
f(xj) =

1

hα
∇α
x̄f(xj) + O

(
h2−α

)
, (2.63a)

C
xj
Dα

∞f(xj) =
1

hα
∇α
xf(xj) + O

(
h2−α

)
, (2.63b)

The error of O (h2−α) for Eq. (2.63), was shown by Sun et al. in [86].

L2 Approximation. The L2 approximation is used to calculate the Caputo derivative for

orders within the interval [1,2]. Let xj = jh, then, on the interval [xj−1, xj+1], the first­

order Lagrange approximation of the function f is given by the polynomial

P (x) =
x− xj
xj+1 − xj

x− xj−1

xj+1 − xj−1

fj+1 +
x− xj+1

xj − xj+1

x− xj−1

xj − xj−1

fj

+
x− xj
xj−1 − xj

x− xj+1

xj−1 − xj+1

fj−1 (2.64)

which has the second derivative P ′′(x) = 1
h2
(fj+1 − 2fj + fj−1). Following our procedure

for the L1 approximation, we have

C
−∞Dα+1

xj
f(xj) =

1

Γ(1− α)

∫ xj

−∞

f ′′(ξ)

(xj − ξ)α
dξ

=
1

Γ(1− α)

∞∑
k=0

∫ xj−xk

xj−xk+1

f ′′(ξ)

(xj − ξ)α
dξ

=
1

Γ(2− α)

∞∑
k=0

fj−k+1 − 2fj−k + fj−k−1

h2

∫ xj−k

xj−k−1

1

(xj − ξ)α
dξ

+
1

Γ(2− α)

∞∑
k=0

∫ xj−k

xj−k−1

R′′
j−k−1(ξ)

(xj − ξ)α
dξ

=
1

Γ(2− α)

1

h1+α

∞∑
k=0

ãαk
fj−k+1 − 2fj−k + fj−k−1

h2
+O(h3−α)

≈ 1

Γ(2− α)

1

hα+1

∞∑
k=0

ãαk (fj−k+1 − 2fj−k + fj−k−1)
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=
1

Γ(2− α)

1

hα+1

∞∑
k=0

ãαk (fj−k+1 − fj−k)

− 1

Γ(2− α)

1

hα+1

∞∑
k=0

ãαk (fj−k − fj−k−1)

=
1

h1+α
(∇α

x̄fj+1 −∇α
x̄fj)

=
1

hα+1
∇α
x̄(fj+1 − fj)

=
1

hα+1
∇α
x̄∇xfj (2.65)

Similarly, for the right­handed Caputo derivative, we have

C
xj
Dα+1

∞ f(xj) =
1

Γ(1− α)

∫ ∞

xj

f ′′(ξ)

(ξ − xj)α
dξ

=
1

Γ(1− α)

∞∑
k=0

∫ xj+xk+1

xj+xk

f ′′(ξ)

(ξ − x)α
dξ

=
1

Γ(2− α)

∞∑
k=0

fj−k+1 − 2fj−k + fj−k−1

h2

∫ xj+k+1

xj+k

1

(ξ − xj)α
dξ

+
1

Γ(2− α)

∞∑
k=0

∫ xj+k+1

xj+k

R′′
j+k(ξ)

(xj − ξ)α
dξ

=
1

Γ(2− α)

1

hα+1

∞∑
k=0

ãαk
fj+k+1 − 2fj+k + fj+k−1

h2
+O(h3−α)

≈ 1

Γ(2− α)

1

hα+1

∞∑
k=0

ãαk (fj+k+1 − 2fj+k + fj+k−1)

=
1

Γ(2− α)

1

hα+1

∞∑
k=0

ãαk (fj+k+1 − fj+k)

− 1

Γ(2− α)

1

h1+α

∞∑
k=0

ãαk (fj+k − fj+k−1)

=
1

h1+α
(∇α

xfj+1 −∇α
xfj)

=
1

hα+1
∇α
x(fj+1 − fj)

=
1

hα+1
∇α
x∇x̄fj (2.66)
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Now we define the new finite­difference operators for 1 ≤ α ≤ 2 as follows:

∇α
x̄x = ∇α−1

x̄ ∇x, and ∇α
xx̄ = ∇α−1

x ∇x̄ (2.67)

Notice these limiting cases for operators defined in Eq. (2.67),

lim
α→2

∇α
x̄x = δ2x, and lim

α→1
∇α
x̄x = +∇x, (2.68a)

lim
α→2

∇α
xx̄ = δ2x, and lim

α→1
∇α
xx̄ = −∇x̄, (2.68b)

where δ2xfj = fj+1−2fj+fj−1 is the second­order central difference operator. Importantly,

lim
α→2

∇α
x̄x +∇α

xx̄

2
= δ2x. (2.69)

Interestingly, we also have the result

lim
α→1

∇α
x̄x +∇α

xx̄ = ∇x −∇x̄ = δ2x. (2.70)

Non­Locality and Computational Complexity. The non­locality of the fractional deriva­

tive means that the L1 and L2 approximations are fairly computationally expensive. How­

ever, there is a new paradigm of using graphical processing units (GPUs) for scientific

applications. Utilizing GPUs to compute these derivatives (in bulk) offers a speedup in

performance over CPU calculations. Moreover, finite difference methods, in general, have

seen great speedups due to the development of GPU computing.

2.4 GPU Computing

The use of GPUs for scientific computing is rising because they allow for parallel computing

using many computational cores as compared with a central processing unit (CPU). Exem­

plified by the fact that GPU clock­speeds are reported in MHz while CPU clock­speeds

are reported in GHz, CPU clock­speeds are significantly faster than GPU clock­speeds;
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however, GPUs have many, many more computational cores than CPUs. Hence, GPUs

can perform many simultaneous parallel computations in bulk which can reduce the total

amount of computation time [41, 87, 88]. Since explicit numerical methods for solving

SEs are inherently parallel, it is convenient to utilize GPU computing to greatly decrease

computation time. The decreased computation times allow for more rapid testing during

the development of numerical schemes, as well as more rapid simulation in general once a

scheme has been finalized.

GPU/CPU Comparisons. It is notoriously difficult to fairly compare the speedup that

a GPU will provide over a CPU. While there have been many articles claiming GPU­

speedups on the order of 10x­1000x, these reports have been shown to be inflated for various

reasons. In 2010, Lee et al. showed that the average GPU­speedup was 2.5x for certain

algorithms by taking into account factors such as using contemporary processors, overhead,

and optimizations [87]. Nevertheless, GPU­enabled scientific computing has had a strong

impact on the field of computational physics [89]. In a more modern analysis, Buber et al.

showed that, for machine learning applications, the speedups up to 5x could be obtained

[88]. Fortunately, in 2018, Chen et al. showed that certain machine learning neural network

models (in particular, convolutional neural networks) are analogous to explicit methods for

solving differential equations [90]. Therefore, the GPU speedups obtained through the data

parallelism of neural networks can be expected in kind for explicit finite difference methods.

2.5 Chapter Summary

In this section, we have discussed the Schrödinger equation, the G­FDTD method for solv­

ing the Schrödinger equation, as well as several existing boundary methods. In particular,
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we discussed absorbing boundary conditions, and we laid the framework for the fractional

momentum layer by introducing the concept of fractional derivatives. Finally, we have

discussed the advantages of GPU computing for scientific applications, specifically the

application of explicit finite difference methods.



CHAPTER 3

ABSORBING BOUNDARY CONDITIONS

In this chapter, explicit absorbing boundary conditions (ABCs) are presented for the recently

developed Generalized Finite­Difference Time­Domain (G­FDTD) method for solving the

nonlinear Schrödinger equation so that the method can be used on unbounded domains

when the analytical solution along the boundary is unknown. The ABC scheme results from

the Box­like discretization of Engquist­Majda one­way wave equations. Using the energy­

weighted wave­number parameter selection method, the ABCs are made to be adaptive. By

simulating solitons onto the computational boundary, the reflection coefficient is numeri­

cally shown to be a function of the incoming soliton’s wavenumber and other simulation

parameters. Furthermore, a parallelized algorithm is developed for implementing the G­

FDTD method with ABCs. The algorithm, when implemented on a GPU, is shown to give

up to a 200­times speedup for large simulations as compared with using a CPU. Examples

are given to show the applicability of the algorithm1.

3.1 One­Way Wave Equations

The derivation for the ABCs begins similarly to the explicit methods in [25, 27]. Addi­

tionally, the scheme is similar to the Mur ABC [33, 39] and relies on the discretization

techniques from the Box scheme. We choose to use the Box scheme techniques over a
1The derivation in this chapter has been published in the journal Computer Physics Communications [44].

33
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more naïve approach to ensure that, in the 1D case, the ABCs are defined for all input

wavenumbers k, especially zero, and, in the 2D case, the east/west and north/south ABCs

are defined regardless of the angle subtended by the input wave vector k and the x­axis.

It should be noted that while our derivation technique is different from the one used by

Zhang et al., our continuous boundary conditions are equivalent to the ones of second­order

developed in [29, 30]. The main difference lies in the discrete boundary scheme. Since

Zhang et al. developed their scheme to be incorporated with an implicit linearized Crank­

Nicolson interior scheme, the boundary scheme they developed is also implicit. We develop

our ABCs to be explicit since they are to be incorporated with the G­FDTD method which

is explicit. Another difference lies in the near­boundary treatment since the interior scheme

used by Zhang et al. only needs to approximate two grid points of the boundary, whereas

the G­FDTD scheme requires (4M + 2) grid points where M is from the expressions for

the 1D and 2D G­FDTD methods given by Eqs. (2.27) and Eq. (2.30), respectively. Hence,

we need a method to approximate the solutions at the other 4M points.

3.2 One­Way Wave Equations for 1D Case

To develop the 1D case, we first construct an Engquist­Majda (EM) one­way wave equation

[32, 34]. Recall that the 1D NSE 2 is given by

i∂tψ − ∂2xψ + λ|ψ|2ψ = 0. (3.1)
2Indeed, the NSE presented here is slightly different than the one originally stated in Eq. (2.2) as sign

on the kinetic energy term ∂2
x is reversed. The NSE presented here is the NSE that is used in the original

G­FDTD paper [18]. This sign reversal is equivalent to the transformation composite transformation t → −t
and λ → −λ. In any case, this does not significantly affect the derivation.
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Assuming that, on the boundary, the wave packet is approximately an outgoing sinusoidal

wave of the following form:

ψ(x, t) = ψ0(t)e±ikxx. (3.2)

Using the above ansatz, the canonical momentum along the x­direction is given by

p̂xψ = −i∂xψ = ±kxψ. (3.3)

Recasting the above equation as a single operator, we find (i∂x ± kx)ψ = 0. Generally,

wave functions will have more than one wavenumber [25]; hence, for a wave function with

two wavenumbers κ1 and κ2 that are aligned (κ1κ2 > 0), we have

(i∂x ± κ1)(i∂x ± κ2)ψ = 0. (3.4)

If the twowavenumbers are different for a particular outgoingwave, then, by parameterizing

for those two wavenumbers can allow each wave component to be absorbed; however, if the

outgoing waves is monochromatic, then one may set κ1 = κ2 and the wave can be absorbed

to second order [27]. Expanding out the operator product in Eq. (3.4), we find

−∂2xψ ± icx∂xψ + Vxψ = 0. (3.5)

where cx = |κ1 + κ2| and Vx = κ1κ2. Here, cx is related to the group velocity of the wave,

and Vx is an effective potential. Solving Eq. (3.5) for ∂2xψ and substituting the result into

the NSE in Eq. (3.1) yields the EM one­way wave equation as

∂tψ ∓ cx∂xψ = λ|ψ|p−1ψ − Vxψ. (3.6)
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It should be pointed out that Eq. (3.6) is equivalent to the second­order continuous boundary

conditions developed in [29]. The EM one­way wave equation can be easily extended to

the 2D case.

3.3 One­Way Wave Equations for 2D Case

To determine the EM one­way wave equations for the 2D case, recall that the 2D NSE3 is

given by

i∂tψ − ∂2xψ − ∂2yψ + λ|ψ|p−1ψ = 0. (3.7)

It is important to note that when obtaining the one­way wave equations, only the portions

of the Laplacian that represent coordinates normal to the boundary need to be substituted

for using equations similar to Eq. (3.5) on page 35. To develop the one­way wave equations

for the x­direction, we substitute Eq. (3.5) into Eq. (3.7) to find

(∂t ∓ cx∂x)ψ = i
(
λ|ψ|p−1 − Vx

)
ψ − i∂2yψ, (3.8)

which is the 2D analog of equation Eq. (3.6). It should be pointed out that Eq. (3.8) is

equivalent to the second­order continuous boundary conditions developed in [30]. Now,

switching the roles of x and y in the above equation, we obtain

(∂t ∓ cy∂y)ψ = i
(
λ|ψ|p−1 − Vy

)
ψ − i∂2xψ. (3.9)

For the 1D case, it should be pointed out that the G­FDTD scheme in Eq. (2.27) requires

information about the value of ψ at (4M + 2) many points on both the left­ and right­side

boundaries of the computational domain. These values must be known before using the

G­FDTD scheme. Similarly, for the 2­D case implemented on an J × K grid, Eq. (2.30)
3As in the previous section, the NSE presented here is the one from the original paper that develops the

G­FDTD method [18].
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requires information about the value of ψ at J · (4M + 2) many points on both the north

and south boundaries, andK · (4M +2) many points on both the east and west boundaries.

This requires developing absorbing boundary conditions for providing the values at those

boundary points if the analytical solution is unknown. In the present study, we choose

M = 1 in Eq. (2.27) and Eq. (2.30) so that the truncation error of the G­FDTD scheme is

O(∆t4+∆x4), and, in the next section, we will develop absorbing boundary conditions for

this case.

3.4 Absorbing Boundary Conditions

Using the EM one­way wave equations from the previous section, we will develop discrete

absorbing boundary conditions for the 1D and 2D cases, respectively. Our derivation is

similar to the one presented by Cole et al. in [39].

3.4.1 1D Case for Absorbing Boundary Conditions

We will now derive the absorbing boundary conditions for the 1D case by proceeding in

a similar fashion to that of the ABCs developed in [39]. Let tn = n∆t, xj = j∆x, and

define the operators dx and Ax such that dxf(x) = f(x + ∆x/2) − f(x − ∆x/2) and

Axf(x) = f(x+∆x/2)+ f(x−∆x/2). Then, f ′(x) ≈ 1
∆x
dxf(x), f ′(t) ≈ 1

∆t
dtf(t), and

f(x) ≈ 1
2
Axf(x). Hence, we have the following discrete absorbing boundary condition(

dt ∓
cx∆t

∆x
dx

)
ψ(x, t) = i

∆t

2

(
λ

2p−1
|Axψ(x, t)|p−1 − Vx

)
· Axψ(x, t). (3.10)

To ease notation, let b be an index such that the point xb lies inside the boundary region.

And let a = b± 1 be the index such that the point xa is just inside the interior region. Now,

letm be the index such that xm = xb+xa
2

, then, ψm ≈ ψb+ψa

2
= 1

2
Axψm. Additionally, note

that ψn+1/2 ≈ ψn+1+ψn

2
. If we evaluate Eq. (3.10) at the point (xm, tn+1/2) and let c̃x = cx∆t

∆x
,
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we have the following:

(
dtAxψ

n+1/2
m ∓ c̃xAtdxψ

n+1/2
m

)
= i∆t

(
λ

2p−1

∣∣Axψn+1/2
m

∣∣p−1 − Vx

)
· Axψn+1/2

m . (3.11)

Expanding the operators on the left­hand side of the above equation, we obtain the following

(
ψn+1
b + ψn+1

a − ψnb − ψna
)
+ c̃x

(
ψn+1
b − ψn+1

a + ψnb − ψna
)

= i∆t

(
λ

2p−1

∣∣Axψn+1/2
m

∣∣p−1 − Vx

)
· Axψn+1/2

m (3.12)

Since dxψm has opposite signs on opposite boundaries, Eq. (3.12) holds true on both bound­

aries [39]. Further simplifying and solving for ψn+1
b , we obtain the 1D absorbing boundary

condition as

ψn+1
b = ψna +

1− c̃x
1 + c̃x

(
ψnb − ψn+1

a

)
+ i

∆t

1 + c̃x

(
λ

2p−1

∣∣Axψn+1/2
m

∣∣p−1 − Vx

)
· Axψn+1/2

m . (3.13)

In order to use the boundary condition with the G­FDTD, we must separate the real and

imaginary components by and substituting ψnj = [ψR]
n
i + i[ψI]

n
i back into the ABC. Doing

this, we obtain the 1D discrete absorbing boundary conditions compatible with the G­FDTD

scheme as

[ψR]
n
b = [ψR]

n−1
a + σx([ψR]

n−1
b − [ψR]

n
a)

− ∆t

1 + c̃x
Nx

[
Axψ

n−1/2
m

]
· Ax[ψI]

n−1/2
m , (3.14a)

[ψI]
n
b = [ψI]

n−1
a + σx([ψI]

n−1
b − [ψI]

n
a)

+
∆t

1 + c̃x
Nx

[
Axψ

n−1/2
m

]
· Ax[ψR]

n−1/2
m , (3.14b)

[ψR]
n+1/2
b = [ψR]

n−1/2
a + σx([ψR]

n−1/2
b − [ψR]

n+1/2
a )
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− ∆t

1 + c̃x
x2Nx [Axψ

n
m] · Ax[ψI]

n
m, (3.14c)

[ψI]
n+1/2
b = [ψI]

n−1/2
a + σx([ψI]

n−1/2
b − [ψI]

n+1/2
a )

+
∆t

1 + c̃x
Nx [Axψ

n
m] · Ax[ψR]

n
m, (3.14d)

where σx = 1−c̃x
1+c̃x

and Nx [ψ] =
λ

2p−1 |ψ|p−1 − Vx. As shown in the next section, one may

easily extend this ABC scheme to the 2D case.

3.4.2 2D Case for Absorbing Boundary Conditions

The 2D case for the ABCs proceed in a similar method to the 1D case, but we now include

the y­portion of the Laplacian. To this end, we define the second­order central difference

operator δ2yf(y) = f(y +∆y)− 2f(y) + f(y −∆y). Then f ′′(y) ≈ 1
∆y2

δ2yf(y) and(
dt ∓

cx∆t

∆x
dx

)
ψ(x, y, t)

= i
∆t

2

(
λ

2
|Axψ(x, y, t)|p−1 − Vx −

1

∆y2
δ2y

)
· Axψ(x, y, t). (3.15)

Evaluating at the point (xm, yk, tn+1/2) and using the same conventions to ease notation as

in the 1D case, we find

(dtAx ∓ c̃xAtdx)ψ
n+1/2
mk

= i∆t

(
λ

2p−1
|Axψn+1/2

mk |p−1 − Vx −
1

∆y2
δ2y

)
· Axψn+1/2

mk (3.16)

where c̃x = cx∆t
∆x

. Solving for ψn+1
bk , we find the 2D ABC for the east­ and west­side

boundaries which are given by

ψn+1
bk = ψnak +

1− c̃x
1 + c̃x

(ψnbk − ψn+1
ak )

+ i
∆t

1 + c̃x

(
λ

2p−1
|Axψn+1/2

mk |p−1 − Vx −
1

∆y2
δ2y

)
· Axψn+1/2

mk . (3.17)
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Similarly, one may find the 2D ABC for the north­ and south­side boundaries. Now, we

proceed by separating ψ into its real and imaginary components, and then follow a similar

procedure as before. Then, the east and west absorbing boundary conditions given in

Eq (3.18), and the north and south boundary conditions are given in Eq (3.19). With

µx =
∆t
∆x2

, µy = ∆t
∆y2

, σx = 1−c̃x
1+c̃x

, and σy = 1−c̃y
1+c̃y

, the ABCs are given as follows:

[ψR]
n
bj = [ψR]

n−1
aj + σx([ψR]

n−1
bj − [ψR]

n
aj)

− 1

1 + c̃x

(
∆tNx

[
Axψ

n−1/2
mj

]
− µyδ

2
y

)
· Ax[ψI]

n−1/2
mj , (3.18a)

[ψI]
n
bj = [ψI]

n−1
aj + σx([ψI]

n−1
bj − [ψI]

n
aj)

+
1

1 + c̃x

(
∆tNx

[
Axψ

n−1/2
mj

]
− µyδ

2
y

)
· Ax[ψR]

n−1/2
mj , (3.18b)

[ψR]
n+1/2
bj = [ψR]

n−1/2
aj + σx([ψR]

n−1/2
bj − [ψR]

n+1/2
aj )

− 1

1 + c̃x

(
∆tNx [Axψ

n
mk]− µyδ

2
y

)
· Ax[ψI]

n
mj, (3.18c)

[ψI]
n+1/2
bj = [ψI]

n−1/2
aj + σx([ψI]

n−1/2
bj − [ψI]

n+1/2
aj )

+
1

1 + c̃x

(
∆tNx

[
Axψ

n
mj

]
− µyδ

2
y

)
· Ax[ψR]

n
mj, (3.18d)

and

[ψR]
n
ib = [ψR]

n−1
ia + σy([ψR]

n−1
ib − [ψR]

n
ia)

− 1

1 + c̃y

(
∆tNy

[
Ayψ

n−1/2
im

]
− σxδ

2
x

)
· Ay[ψI]

n−1/2
im , (3.19a)

[ψI]
n
ib = [ψI]

n−1
ia + σy([ψI]

n−1
ib − [ψI]

n
ia)

+
1

1 + c̃y

(
∆tNy

[
Ayψ

n−1/2
im

]
− σxδ

2
x

)
· Ay[ψR]

n−1/2
im , (3.19b)
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[ψR]
n+1/2
ib = [ψR]

n−1/2
ia + σy([ψR]

n−1/2
ib − [ψR]

n+1/2
ia )

− 1

1 + c̃y

(
∆tNy [Ayψ

n
im]− σxδ

2
x

)
· Ay[ψI]

n
im, (3.19c)

[ψI]
n+1/2
ib = [ψI]

n−1/2
ia + σy([ψI]

n−1/2
ib − [ψI]

n+1/2
ia )

+
1

1 + c̃y

(
∆tNy [Ayψ

n
im]− σxδ

2
x

)
· Ay[ψR]

n
im. (3.19d)

It should be pointed out that the appropriate ABC for each boundary edge needs be applied

sequentially at each of the (4M + 2) many points. Applying these boundary conditions

sequentially is not ideal when using a GPU. To further speed up the calculation, we employ

a parallelizable near­boundary treatment described in the following section.

3.5 Near­Boundary Treatment

The absorbing boundary conditions must be applied sequentially; hence, it is beneficial to

determine the value of ψ at as many points as possible using a parallelizable method. Since

the G­FDTD method is parallelizable, we developed a method to implement the G­FDTD

method near the boundary by decreasing the order of the temporal truncation error.

As mentioned previously, the G­FDTD scheme requires the value of ψ at (4M +2)

points on each of the left­ and right­side boundaries for the 1D case. To overcome this, we

develop near­boundary treatments for the 1D case involving domain decomposition, and,

similarly, we develop near­boundary treatments for the 2D case. In this way, the ABC only

needs to be used to determine the value of the outermost two points for each boundary. The

domain decomposition used for 1D and 2D are shown in Fig. 3.1.

For the right­side boundary of the 1D case, to use the G­FDTD method on a grid

containing (J +1) points withM =Mmax in Eq. (2.27), we pad the computational domain
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x0 x1

G-FDTD

(M = Mmax)

. . .

xJ−1 xJ xJ+1 xJ+2

G-FDTD

(M = Mmax − 1)

xJ+3 xJ+4

. . .
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(M = 0)

xB−2 xB−1 xB

ABC
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CNW

CSW

(b)

D1

D0
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CNE

. . .

...

. . .
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. . .
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. . .
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. . .
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. . .
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. . .

...

. . .

...

(c)

Figure 3.1: (a) Illustration (to scale) of the 1D G­FDTD implementation with ABC for
arbitrary Mmax in the main computational region. For brevity, B = 4Mmax + 1. (b)
Illustration (not to scale) of the 2D G­FDTD implementation with ABC whereMmax = 1.
(c) Illustration (to scale) of the northeast corner of the 2D implementation.
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with (4M+2) points on the left and decompose the new computational domain into (Mmax+

1) regions. Shown in Fig. 3.1a, the main computational domain consists of (J + 1) points

labeled x0, . . . , xJ andM in Eq. (2.27) is set to beMmax for all calculations in this region.

The first subdomain of the padding region consists of the four points xJ+1, · · · , xJ+4 and

uses theG­FDTDmethodwithM in Eq. (2.27) set to be (Mmax−1) for all calculations in this

region. Similarly, the second subdomain of the padding region consists of the four points

xJ+5, · · · , xJ+8 and uses the G­FDTD method withM in Eq. (2.27) set to be (Mmax − 2).

This continues until there are only two points left in the total padding region towhich one can

apply the absorbing boundary conditions. A similar process can be applied to the boundary

on the left side.

Shown in Fig. 3.1b and Fig. 3.1c is a similar padding and decomposition process for

the 2D case withM = 1 in the main computational region. The main difference from the

1D case is that, in the 2D case, all padding subregions are connected except for the regions

in which the ABC is applied. The disconnectedness of the ABC is due to the inherent

directionality of the ABCwhich depends on the normal direction of the boundary edge. The

inherent directionality implies that each boundary edge requires its own tailored ABC. This

decomposition can easily be extended to cases whereM > 1 as in the 1D case described

previously.

Now that the near boundary treatment is established, it is necessary to determine the

values of the ABC parameters cx, cy, Vx, Vy.



44

3.6 ABC Parameter Choice

It is necessary to determine the appropriate values for cx and Vx in the one­way wave

equation, Eq. (3.6), so that solutions to our boundary conditions also satisfy the 1D version

of the continuity equation Eq. (2.5). To this end, multiplying Eq. (3.6) by the conjugate

function ψ̄ and multiplying the conjugate equation of Eq. (3.6) by ψ then adding the results

yields the following differential equation

∂t|ψ|2 + cx∂x|ψ|2 = 0. (3.20)

Notice that the above equation has the same form as the continuity equation Eq. (2.6). In

particular, if we choose cx = 2kx where kx is the wavenumber of the carrier wave, then the

continuous boundary condition will satisfy the continuity equation. We still have freedom

to choose κ1 and κ2 so long as they have the same sign and satisfy the condition

κ1 + κ2 = 2kx. (3.21)

Now, consider the 1DNSE and Engquist­Majda (EM) equations. Construct operatorsQ and

Q′ to be the NSE and EM operators, respectively, such that Qψ = (i∂t −∇2 + λ|ψ|p−1)ψ

and Q′ψ = (i∂t ∓ icx∂x + λ|ψ|p−1 − Vx + (∂2x −∇2))ψ. Suppose that the wave function

is a plane wave then ψ(x, y, t) = f(y, t)e±ikx. Suppose that we choose κ1 and κ2 such

that κ1 = κ − ∆κ and κ2 = κ + ∆κ, then cx = 2κ and Vx = κ2 − ∆κ2. By calculating

the difference between the operators Q and Q′, we obtained an estimate of the error (and

possible reflection) due to an incorrect choice of wavenumber. Below, this difference is

given as follows:

(Q−Q′)ψ = −(∂2x ∓ icx∂xψ − Vx)ψ



45

= (k2 − cxk + Vx)ψ

= (k2 − 2kκ+ κ2 −∆κ2)ψ

= ((k − κ)2 −∆κ2)ψ. (3.22)

By Eq. (3.21) and Eq. (3.22), to absorb an incoming sinusoidal wave with wavenumber k,

we should choose cx = 2k and Vx = k2 (equivalent to κ = k and ∆κ = 0) to satisfy

Qψ = Q′ψ.

Now, suppose that we have preemptively parameterized the boundary condition

before the velocity of the incoming wave is known. With κ1 = κ2 = k0, we have cx = 2k0

and Vx = k20 . Now, consider a wave of the form ψ(x, y, t) = f(y, t)e±ikx impacting the

boundary. By a similar procedure as for Eq. (30), we find that (Q − Q′)ψ = (k − k0)
2ψ.

Hence, for sinusoidal waves, the smaller the difference between the exact and prescribed

wavenumbers ∆k = (k − k0), the more accurate the boundary conditions should be.

Notice that the prescribed parameters cx = 2k0 and Vx = k20 are not affected by

any transverse component of the velocity. Therefore, we should be able to choose the pairs

(cx, Vx) and (cy, Vy) independently.

3.7 Adaptive Parameter Selection

If the wavenumber of the impacting wave is not known, one may use the energy­weighted

wave­number parameter selection method proposed by Xu et al. in [38] and used by Zhang

et al. in [29, 30]. This approximation begins with a windowed Fourier transform also

known as a Gabor transform. The Gabor transform is defined as follows:

ψ̂(k) =

∫ xr

xℓ

w(x)ψ(x)e−ikxdx =

∫ xr

xr−b
ψ(x)e−ikxdx, (3.23)
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where the window function is given by

w(x) =


1, x ∈ [xr − b, xr],

0, x ̸∈ [xr − b, xr].

(3.24)

Then, the approximate value for k is given by

k0 =

∫∞
0
ξ|ψ̂(ξ)|mdξ∫∞

0
|ψ̂(ξ)|mdξ

. (3.25)

Based on their experiments, Xu et al. recommended usingm = 4.

3.7.1 Computational Procedure

Usually, finite difference methods calculations are performed sequentially on a Central

Processing Unit (CPU) that is present in every computer [91]. There has been a recent shift

in scientific computing to perform calculations in parallel on a GPU. This shift is brought

on due to the ability of a GPU to perform large volumes of calculations in parallel given

that each of the calculations is sufficiently similar [92]. Whereas a CPU is designed to do

many sequential calculations very quickly, a GPU aims to reduce the collective time taken

to do many parallel calculations [93]. As a consequence, even though a GPU will have

slower clock speeds and smaller memory bandwidth that of a contemporary CPU, the GPU

can outperform the CPU for parallel computation on large data sets.

To employ the computational power from the GPU, we use PyOpenCL. PyOpenCL

is a Python interface to OpenCL, which is written in C. Additionally, OpenCL is an open­

source, cross­platform parallel programming API compatible with both CPUs and GPUs

[91, 94–97]. By contrast, there is another GPU programming paradigm, CUDA, which is a

proprietary software package developed to be used specifically with NVIDIAGPUs. While

PyOpenCL allows access to OpenCL, it still requires some knowledge of C inasmuch as
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all GPU kernels must be written in C or Fortran; however, one can use Python function

wrappers to call compiled C kernels which will allow simple customized access to GPU

functionality through Python. In this way, we are able to take advantage of the clarity and

ease­of­use of the Python programming language as well as quick computation provided by

a compiled programming language.

We developed an algorithm that utilizes PyOpenCL to implement the G­FDTD and

absorbing boundary conditions on the GPU. Fig. 3.3 and Fig. 3.2, respectively, show the

pseudocode and flowchart of the parallel algorithm for implementing the G­FDTD method

with ABC with Mmax = 1 in the 2D case. The algorithm represented by the pseudocode

and flowchart is described as follows: First, use the G­FDTD scheme with M = 1 to

calculate the values inside the interior regionD1, and use the G­FDTD scheme withM = 0

to calculate the annular region D0. Then, use the ABC to calculate the values in each

boundary region, DN , DS, DE, DW . Since the ABC must be calculated sequentially, one

may iterate over the ABC twice to update the values of the outermost points. Now, we

replace the values in the initialized arrays with the newly calculated values in the correct

temporal order and repeat for the desired number of time steps. This is outlined in Fig. 3.3,

where GFDTDw computes the G­FDTD method with M = w, and ABC computes the

appropriate ABC for each boundary.

Before the algorithm can be implemented, there are several steps necessary for setup.

In particular, one must prepare the CPU (host) to send instructions to the GPU (device),

and load values into the device memory. A basic setup for adding two vectors in parallel is

included in Fig. 3.4.
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input: ψn−1
jk , ψ

n−1/2
jk

if (j, k) ∈ D1, use g-fdtd method with
M = 1 to calculate ψn

j,k

else if (j, k) ∈ D0, use g-fdtd method with
M = 0 to calculate ψn

j,k

else, set ψn
j,k = 0

output: ψn
jkG-FDTD

input: ψn+1
jk

if (j, k) ∈ D0 ∪D1, do nothing.

else if (j, k) ∈ Dn, use North abc
to calculate ψn

j,k

else if (j, k) ∈ De, use East abc
to calculate ψn

j,k

else if (j, k) ∈ Ds, use South abc
to calculate ψn

j,k

else if (j, k) ∈ Dw, use West abc
to calculate ψn

j,k

elseelse, set ψn
j,k = 0

output: ψn
jkABC

n < N?

output: ψ
N+1/2
jk

n n+ 1

YES

NO

initialize schemes: λ,k2,∆x,∆y,∆t

input: ψ0
jk , ψ

1/2
jk , n = 0

START

input: ψ
n−1/2
jk , ψn

jk

if (j, k) ∈ D1, use g-fdtd method with

M = 1 to calculate ψ
n+1/2
j,k

else if (j, k) ∈ D0, use g-fdtd method with

M = 0 to calculate ψ
n+1/2
j,k

else, set ψ
n+1/2
j,k = 0

output: ψ
n+1/2
jkG-FDTD

input: ψ
n+1/2
jk

if (j, k) ∈ D0 ∪D1, do nothing.

else if (j, k) ∈ Dn, use North abc

to calculate ψ
n+1/2
j,k

else if (j, k) ∈ De, use East abc

to calculate ψ
n+1/2
j,k

else if (j, k) ∈ Ds, use South abc

to calculate ψ
n+1/2
j,k

else if (j, k) ∈ Dw, use West abc

to calculate ψ
n+1/2
j,k

elseelse, set ψ
n+1/2
j,k = 0

output: ψ
n+1/2
jkABC

END

Figure 3.2: High­level flowchart of the algorithm used for the 2­D G­FDTD with ABC.
Here,D1 is the main computation region whereM = 1 andD0 is the square annular region
where M = 0. Each domain with a cardinal direction as a subscript refers to the side
boundary. Refer to Fig. 3.1 on page 42 for an illustration ofD0,D1,DN ,DE ,DS , andDW .
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Algorithm 1 : How to Implement G-FDTD Method with ABC

input : ψ0, ψ1/2, N
output : ψN

parameters
:

λ,k2,∆x,∆y,∆t

1 initialization
2 n ← 0
3 d = dimension(ψ0)
4 ψ1

jk ← zero˙ array(d)

5 ψ
3/2
jk ← zero˙ array(d)

6 computation
7 while n <= N do
8 for ν = 1, 3/2 do
9 G-FDTD

10 forall (j, k) do
11 if (j, k) ∈ D1 then
12 ψν

jk ← GFDTD1 ψν−1/2, ψν−1, j, k

13 else if (j, k) ∈ D0 then
14 ψν

jk ← GFDTD0 ψν−1/2, ψν−1, j, k

15 else
16 ψν

jk ← 0

17 end
18 ABC
19 forall (j, k) do

20 ψν
jk ← ABC ψν , ψ

ν−1/2
jk , ψν−1, j, k

21 end

22 end
23 update
24 n ← n+ 1
25 for ν = 1, 3/2 do
26 forall (j, k) do
27 ψν−1

jk ← ψν
jk

28 end

29 end

30 end

Figure 3.3: Pseudocode for an algorithm for implementing the G­FDTDmethod with ABC
in parallel.
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Figure 3.4: Example code for adding two vectors in parallel using PyOpenCL.
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3.8 Chapter Summary

This section developed absorbing boundary for the G­FDTD method for solving the NSE

were for both the 1D and 2D cases as well as near boundary treatments. The ABCs, however,

require parameters cx and Vx, and the reasonable choices of values for those parameters

were presented which depend on the wavenumber of the impinging wave. A method was

discussed to make the parameter selection adaptive. Moreover, this chapter discusses the

computational procedure for the GPU implementation of the G­FDTD method with ABCs.



CHAPTER 4

NUMERICAL RESULTS FOR ABC METHOD

In this section, we first analyze the reflection coefficient of solitons impacting the boundary

as a function of wavenumber, and as several simulation variables are varied. These variables

include the spacial resolution of the simulation, the wavenumber used to calculate cx and

Vx, and the width of the window in the Gabor transform. We also compare our ABC with

the implicit ABC developed by Zhang et al.. [29] by measuring the reflection coefficients

of each. We then analyze the timing of the parallel algorithm when implemented on a GPU

and multicore CPU, and a serialized version of the algorithm implemented on a CPU 1.

Finally, we provide several numerical examples including 1D and 2D soliton propagation,

2D Gaussian packet collision, and 2D dipole radiation.

4.1 Testing the ABC

To analyze the performance of the ABCs, we define the reflection coefficient R as

R =

∫ b
a
|ψ(x, τ)|2dx∫ b

a
|ψ(x, 0)|2dx

, (4.1)

where τ is some time step after initial reflection of the soliton off the boundary, but before

it has impacted the opposite boundary. Without computational boundaries imposed by

truncated domains, solitons would propagate freely through the boundary; therefore, the

reflection coefficient is a measure of the absolute global error introduced into the system
1The results in this chapter have been published in the journal Computer Physics Communications [44]
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by the imposed boundaries. A perfectly absorbing boundary would have a reflection coeffi­

cient of R = 0, and R = 1 is consistent with Dirichlet and Neumann boundary conditions.

Hence, the smaller the value of R, the greater the performance of the boundary conditions.

Four cases were proposed for analyzing the performance of the ABCs. For all cases,

we utilized the reflection coefficient given in Eq. (4.1). For each case, we used the nonlinear

SE given by

i∂tψ − ∂2xψ − 2|ψ|2ψ = 0, (4.2)

and the time step was chosen to be ∆t = (∆x)2/10. We considered initial conditions such

that the exact solution is given by

ψ(x, t; k) = sech(x− 15− 2kt)e−ik(x−15)ei(k2−1)t, (35)

whereψ is parameterized by the wavenumber k and is propagating to the right on the domain

[−20, 20]. The ABCwas implemented on the right­side boundary. Fifty values were chosen

from the range [1,10] as values for k, and those k­values were used to parameterized solitons

used for the initial conditions of 50 different simulations. We chose the range [1, 10] since

it represents an order of magnitude increase in k without having solitons so slow that they

took too long to approach the boundary or so fast that they quickly accrued numerical error.

Test Case 1. We tested how the reflection coefficient changes with the number of grid

points N used in the simulation. We did this by choosing a value of N and calculating

the reflection coefficients for each of the aforementioned 50 simulations. The value of the

wavenumber k0 used to precondition the ABC was chosen to be exact (k0 = k for each

soliton) and we chose cx = 2k0 and Vx = k20 . This was done for N = 200, 300, 400, 500.
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From Fig. 4.1a, we can see that, for small wavenumber k, the reflection coefficient

is not greatly affected by the choice of N as all plots are clustered for small k. We can also

see that there is a minimum to each of the reflection coefficient curves and the location of

the minimum is dependent on the number of points used in the simulation. In particular,

for larger values of N , the minimum of R obtains a smaller value and occurs at a larger

wavenumber. Hence, while the number of grid points does not significantly change the

reflection of solitons with smaller values of k, a finer spacial grid is needed in order to

absorb solitons with larger values of k. This is consistent with the fact that larger frequencies

require more sampling points for accurate reconstruction.

Test Case 2. We varied the wavenumber used to precondition the ABC. In this way, we

can test the performance of the ABC if the velocity is not chosen particularly well. For this

case, we setN = 400, and we chose to use wavenumbers of k0 = 1, 2, 5, 10 to precondition

the ABC with cx = 2k0 and Vx = k20 . For each value of k0, we calculated the reflection

coefficient for each of the 50 different initial conditions.

It can be seen in Fig. 4.1b that choosing a good approximation k0 is important. The

black dashed line represents the baseline reflection coefficient for when the wavenumber is

chosen exactly (k0 = k). Large differences from the exact wavenumber k and prescribed

wavenumber k0 are still able to absorb the majority of the soliton, but 30­40% of the wave

may be reflected back into the computational domain. That being said, small variations

from the exact value k do not significantly change the order of the reflection coefficient.

Test Case 3. We considered the adaptive case, and in particular, how the width of the

window used in the Gabor transform affects the reflection coefficient. This test will allow

for an appropriate window width to be determined. Here, we kept N = 400, and hence
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Figure 4.1: Reflection coefficient as a function of the wavenumber k of the incoming
soliton as (a) the total number of points used in the simulation varies, (b) the ABC was
preconditioned with the various wavenumbers k0, (c) the window width b̃ of the Gabor
transform was varied for the adaptive case, and (d) the ABC was compared with implicit
scheme developed by Zhang et al.[29].



56

∆x = 0.1. When implementing the Gabor transform numerically, we chose values of b =

0.1, 0.2, 0.5 where b is the width of the window in the Gabor transform on page 45. We

define b̃ = b/∆x to be the number points that were taken to be nonzero in the discrete

Gabor transform. Then, for each of the 50 values of k, we tested the case where b̃ = 1, 2, 5.

From Fig. 4.1c, we can see how the reflection coefficient varies as the width of

the window used in the Gabor transform varies. The black dashed line in Fig. 4.1c is the

baseline reflection coefficient for when the wavenumber is approximated exactly (k0 = k).

Remarkably, using the adaptive method with the window width b̃ = 1 is entirely sufficient

to approximate k! In fact, there is little difference between the case where b̃ = 1 and the

case where the exact boundary conditions were prescribed at onset. This may be because

solitons are nearly monochromatic [18]. While using a window width of one is nearly as

good as prescribing the exact boundary conditions, solitons with larger values of k can be

absorbed more readily with larger window widths. On the other hand, solitons with smaller

values of k are reflected more readily. Hence, for simulations where smaller wavenumber

are not a concern, a larger windowwidth could be used to decrease the reflection coefficient

of solitons with larger k.

Test Case 4. We compared our method with the second­order implicit ABC developed

by Zhang et al. [29]. For each value of k, we preconditioned our ABC and the implicit

ABC with the exact wavenumber k0 = k and N = 400. We then ran the G­FDTD

scheme with each boundary condition. It should be pointed out that, since the ABC by

Zhang et al. is implicit, this calculation was not performed on the GPU since separating the

real and imaginary parts of the scheme would have been fairly complicated. This means

that in programing language without easily implemented support for complex floats, this
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computation is lengthy and difficult to program. For this reason, this calculation was done

using standard scientific Python libraries.

From Fig. 4.1d, we can see that there is little difference between the ABC scheme

developed in this study and the second­order ABC scheme developed by Zhang et al. [29].

Importantly, even though the presented ABC is explicit, the difference between their reflec­

tion coefficients is negligible in the regimes that we tested.

4.2 Testing the Parallel Algorithm

To determine the performance of the algorithm on the GPU with respect to the algorithms

on the CPU, we compare the total real­world time it takes to compute one unit of simulation

time on the processor. We perform the G­FDTD method with ABCs using three different

implementations: 1) a serialized version of the algorithm implemented in Python using

standard optimizations for NumPy (that is the standard Python linear algebra library) per­

formed on a CPU (Py­CPU), 2) the algorithm implemented in Python and parallelized with

PyOpenCL that utilizes the multicore parallel processing on the CPU (CL­CPU), and 3) the

algorithm implemented in Python and parallelized with PyOpenCL that utilizes the parallel

processing on the GPU (CL­GPU). Both the CL­GPU and CL­CPU are implementations of

the parallelized algorithm described previously, but Py­CPU only uses standard scientific

Python libraries.

Each method was timed by implementing a simulation using the G­FDTD with

ABC for several step sizes, ∆x. The simulation was 2­D, so there were roughly 1/(∆x)2

operations per time step. Additionally, the time step chosen for each simulation was ∆t =

(∆x)2/10. Therefore, the number of individual float calculations to simulate a single unit
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of simulation time should be proportional to 1/(∆x)4. Since the Py­CPU implementation is

non­parallel, we expected that the total amount of real­world time necessary for the simula­

tion complete is proportional to 1/(∆x)4. Both the CL­CPU and CL­GPU implementations

can perform more calculations at once, therefore, we should see smaller exponents for

1/∆x.

The algorithm was tested for performance on an Intel Core i7 CPU with four cores

and a clock speed of 2.8 GHz. The GPU used was an AMD Radeon R9 M370X, which has

640 cores and a clock speed of 800 MHz. The initial condition for each simulation was set

to be zero everywhere since the time to complete any floating­point operation was roughly

independent of the actual value of the float. We used various values of ∆x and ∆t =

(∆x)2/10. The simulation was run for integer part of 1/∆t time steps. These simulations

were performed several times for each value of ∆x.

The top of Fig. 4.2 shows the plots of average total time­performance data collected

while using our computational procedure for the 2­D case. The datasets were produced

by measuring the real­world time necessary to compute one unit of time in the simulation.

Since we chose∆t ∝ (∆x)2, and the simulation is two­dimensional, we should expect that

the total real­world time necessary to calculate a unit of time Ttotal is proportional to
(

1
∆x

)4
for sequential processing.

We found that each of the data sets roughly followed a power law with respect to

the linear resolution 1/∆x. Table 1 shows the parameters for the power law fits assuming

the form Ttotal = 10b
(

1
∆x

)m for each data set. For sequential processing, the time needed

scales as expected, while for parallel processing the total time does not grow as quickly

with respect to 1/∆x as the sequential CPU.
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Figure 4.2: Top: Average total computation time needed to calculate one unit of time for
the 2­D NLSE using the G­FDTD method with ABC plotted versus the linear resolution
used. Bottom: The speed­up (CPU Timing/GPU Timing) versus linear resolution.
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Table 4.1: Parameters for Power Law Fitting for GPU/CPU Comparisons.

Method Powerm Constant b
Py­CPU 3.990 ­7.395
CL­CPU 3.696 ­7.855
CL­GPU 3.342 ­6.674

The bottom of Fig. 4.2 shows the relative speedup in the calculation when using

the GPU over both sequential and parallelized CPU implementations. The GPU for small

data sets calculates more slowly than the parallelized CPU, however, it outperforms the

parallelized CPU for large data sets leveling off near a speedup factor of two. Compared

with the non­parallelized CPU implementation, the GPU provides substantial speedup. In

particular, for large data sets, the speedup factor is nearly 200!

4.3 Numerical Examples

To test the applicability of our new computational procedure, five examples were tested.

These include a 1D bright soliton, two 2­D bright solitons, a collision of Gaussian wave

packets, and dipole radiation. For all cases, we chose the ABC parameters cx, cy, Vx, and

Vy by examining the wavenumber or wavevector of the carrier wave of the wave function

that is to be absorbed.

Example 4.1 (1D NSE, Soliton Propagation).We implemented the ABC using with the

1D bright soliton solution presented in [18]. The G­FDTD was used to calculate the NSE

with λ = −2 and p = 3, where the analytical solution can be expressed as ψ(x, t) =

sech(x + 10 − 4t)e−i(k2(x+10)−3t) with k2 = 2. In our computation, 400 grid points were

used to evenly span the domain −20 ≤ x ≤ 20, and ∆t was insured to satisfy the stability
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condition for the G­FDTD method. Fig. 4.3 shows different solutions to the NSE with the

initial conditions given by the analytical solution at t = 0 and t = ∆t/2.

From Fig. 4.3a, we can see that, for the analytical solution, the wave passes directly

through the boundary without reflection near t = 7.5. In Fig. 4.3b, where the boundaries

are set equal to zero, the wave reflects off the boundaries at t = 7.5 and t = 17.5, but has

little distortion when it is away from the boundaries. For Fig. 4.3c, the G­FDTD scheme

with domain decomposition in the interior, and the analytical solution on the boundaries,

one can see that the wave is almost completely absorbed near t = 7.5, and the reflection

part of the wave begins to disperse. In Fig. 4.3d, we implemented the G­FDTD scheme

with absorbing boundary conditions. In this example, we found that the wavenumber of the

carrier wave is 2; therefore, we chose cx = 2k2 = 4 and Vx = k22 = 4. In the ABC, we used

these parameters on the right­side boundary and set the left­side boundary to be zero at all

times. One can see that the wave is mostly absorbed at t = 7.5; however, there is still some

visible reflection. The amount of reflection is greater than that of Fig. 4.3c, but is still very

small compared to the initial magnitude of the wave.

Example 4.2 (2D NSE, Soliton Propagation). For the example shown in Fig. 4.4 and

Fig. 4.5 on pages 64 and 66 respectively, we considered the 2D NSE given as

i∂tψ − ∂2xψ − ∂2yψ − 2|ψ|2ψ = 0, (4.3)

and a bright soliton traveling diagonally towards the northeast corner. In our computation,

the domain was chosen to be −20 ≤ x, y ≤ 20 with a 400×400 point grid evening spaced

across the domain to give ∆x = ∆y = 0.1 and a time step of ∆t = (∆x)2/32.
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Figure 4.3: (Example 4.1) Space­time plot of a simulation of the propagation of a 1D bright
soliton |ψ(x, t)|with p = 3, λ = −2where (a) the analytical solution was calculated, (b) the
G­FDTD method was used with boundary points set to zero, (c) the G­FDTD method was
used with boundary values given by the analytical solution, and (d) the G­FDTD method
was used with ABC on the boundary.
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Case 1. For this case, we chose the initial conditions corresponding to the soliton

solution ψ(x, y, t) = sech (k1 · x− 8t)e−i(k2·x−6t) where k1 = ⟨1, 1⟩ and k2 = ⟨2, 2⟩.

Notice that the x­ and y­components for each of k1 and k2 are the same. In Fig. 4.4a, the G­

FDTDmethod was used and all values on the boundary were calculated using the analytical

solution. The simulation in Fig. 4.4b has all boundary values are all set to zero. To produce

Fig. 4.4c, we used absorbing boundary conditions on all boundaries with cx = cy = Vx =

Vy = 4. The value of these parameters was calculated exactly as in the 1D example. One can

see from Fig. 4.4c that analytical solution on the boundary produces very small distortions

beginning at t = 0.6 which accumulate as the wave propagates. When the boundary values

are set to zero, one can see from Fig. 4.4b that a large amount of error that forms around

t = 0.6 as a high­frequency reflection. This is because points which were nonzero initially

were set to zero after the first time step. At t = 1.2, one can see the circular ripples near

⟨x, y⟩ = ⟨18, 2⟩ and ⟨x, y⟩ = ⟨2, 18⟩. This may be due to the solution undergoing wave­

collapse caused by the wave interfering with its reflection. The wave continues reflect off

the boundary at t = 1.8 and by t = 2.4 the errors from reflection have nearly obscured

the soliton from view. At t = 3.0, nearly the entire wave has been reflected back into

the computational domain. When the absorbing boundaries are used, as seen in Fig. 4.4c,

similar small distortions appear as compared with the case that used the analytical boundary.

At t = 3.0, the distortions are roughly an order of magnitude larger, locally, than that of

the simulation using the analytical solution; however, they are several orders of magnitude

smaller than in the simulation using values of zero along the boundary.

Case 2. Now we consider the case where k1,x ̸= k1,y and k2,x ̸= k2,y. This time,

we chose k1 = ⟨
√
6
2
,
√
2
2
⟩ and k2 = ⟨

√
2,
√
6⟩, then we chose the initial conditions such



64

(a)

−2 −1 0 1

x/10

−2

−1

0

1

2

y
/1
0

t = 0.0

−2 −1 0 1

x/10

t = 0.6

−2 −1 0 1

x/10

t = 1.2

−2 −1 0 1

x/10

t = 1.8

−2 −1 0 1

x/10

t = 2.4

−2 −1 0 1

x/10

t = 3.0

10−5

10−4

10−3

10−2

10−1

100

−2 −1 0 1

x/10

−2

−1

0

1

2

y
/1
0

t = 0.0

−2 −1 0 1

x/10

t = 0.6

−2 −1 0 1

x/10

t = 1.2

−2 −1 0 1

x/10

t = 1.8

−2 −1 0 1

x/10

t = 2.4

−2 −1 0 1

x/10

t = 3.0

(b)

−2 −1 0 1

x/10

−2

−1

0

1

2

y
/1
0

t = 0.0

−2 −1 0 1

x/10

t = 0.6

−2 −1 0 1

x/10

t = 1.2

−2 −1 0 1

x/10

t = 1.8

−2 −1 0 1

x/10

t = 2.4

−2 −1 0 1

x/10

t = 3.0

10−5

10−4

10−3

10−2

10−1

100

(c)

−2 −1 0 1

x/10

−2

−1

0

1

2

y
/1
0

t = 0.0

−2 −1 0 1

x/10

t = 0.6

−2 −1 0 1

x/10

t = 1.2

−2 −1 0 1

x/10

t = 1.8

−2 −1 0 1

x/10

t = 2.4

−2 −1 0 1

x/10

t = 3.0

10−5

10−4

10−3

10−2

10−1

100

Figure 4.4: (Example 4.2, Case 1). Simulation of soliton propagating diagonally toward
the boundary using G­FDTD method with p = 3, λ = −2, ∆t = (∆x)2/32 where (a) the
analytical solution was used on boundary, (b) the boundary values were set to zero, and (c)
the boundaries were calculated using ABCs.
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that exact solution was given by ψ(x, y, t) = sech
(
k1 · x− 4

√
3t
)
e−i(k2·x−6t). We used

the G­FDTD scheme with ABCs where the parameters for the ABCs were chosen to be

cx = 2k2,x = 2
√
2, cy = 2k2,y = 2

√
6, Vx = k22,x = 2, Vy = k22,y = 6. In Fig. 4.5a,

the boundary values were set to be zero, and the simulation became unstable just before

t = 1.8. This instability is likely due to the errors caused by the soliton reflecting back

into the computational domain. In Fig. 4.5b, the soliton is able to freely pass through the

boundary with little reflection. This example is particularly important since it shows that a

soliton can still be absorbed even when the group and phase velocities are not aligned and

have different x­ and y­components.

Example 4.3 (2D NSE, Gaussian Packet Collision). Illustrated in Fig. 4.6 on page 68, we

used the same grid as in the second and third examples but used ∆t = (∆x)2/16 instead.

We again used the G­FDTD method with the ABC to solve the NSE given by Eq. (4.3).

We collided two Gaussian packets, initially separated by a distance of 20 units, each with a

standard deviation of 2 units and a wave vectors of k = ⟨±2, 0⟩ so that they would travel in

opposite directions toward one another. As a consequence, we chose cx = cy = Vx = Vy =

4 similar to the previous two examples. Fig. 4.6a is a simulation using the G­FDTDmethod

with points on the boundary set to zero, and for Fig. 4.6b ABC was used to compute points

on the boundary. At t = 0 and t = 3.0 the wave is significantly far from the boundary that

little reflection has occurred. However, by t = 6.0 the simulation with boundary points set

to zero has already formed a high­frequency interference pattern due to reflection while the

simulation using the ABC only has an interference pattern due to the packets themselves

interfering. At t = 12, the simulation in Fig. 4.6b shows that the wave still is near the

boundary; however, it is impossible to determine this in Fig. 4.6a. At t = 15, the wave is
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nearly completely absorbed in Fig. 4.6b, but in Fig. 4.6a nearly the entire wave has been

reflected into the computational domain as error.

Example 4.4 (2D NSE, Dipole Radiation). As shown in Fig. 4.7, we examined the behav­

ior of the NSE given by Eq. (4.3) with in­phase dipole disturbances. We chose ∆t = 0.01,

and used the same grid as before. We chose the dipole distance to be 2 and chose the angular

frequency ω = 6. We then chose cx = cy = Vx = Vy = 4 as before. Fig. 4.7a shows a

simulation of the described dipole radiation using G­FDTD without ABCs and Fig. 4.7b

shows the same simulation with ABCs. At t = 1.2 and t = 2.4, the simulations are fairly

similar since both of the waves have yet to interact with the boundary. At t = 3.6, one

can see that the ABC allows the waves to pass through the boundary, while the simulation

with the boundaries set to zero has developed interference artifacts due to reflection. At

t = 4.8 and t = 6.0 the ABC allows the wave to pass through the boundary and the dipole

interference pattern remains visible throughout the simulation, but in the simulation with

boundaries set to zero the dipole interference structure is obscured due to reflection from

the boundaries.

4.4 Chapter Summary

We have shown that the G­FDTD method along with the ABCs presented in Chapter 3

allows for the simulation of the NSE on unbounded domains. Using several test cases, we

have determined appropriate parameters to use with ABC depending on the wavenumber

of the impinging wave. We have also tested a method by which one can make the ABC

adaptive by determining the value of the wavenumber by way of a Gabor transform. Fur­

thermore, we have tested the method using several numerical examples including 1D and
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2D soliton propagation, as well as the collision of 2D Gaussian packets, and 2D dipole

radiation.



CHAPTER 5

FRACTIONAL MOMENTUM OPERATOR
AND THE FRACTIONAL FDTD SCHEME

The ABC method was developed specifically for the G­FDTD implementation of the NSE

because ABC already exists for the G­FDTD method for the linear SE [27]. That being

said, there are three key disadvantages to the using the ABC method: (1) there is inherent

reflection due to the interface of two differential equations, (2) the ABC requires tedious

domain decomposition, (3) one must guess the wave number of the incoming wave fairly

accurately, or there can be substantial reflections at the boundary.

We will attempt to remedy these three issues through the introduction of a fractional

momentum operator which smooths the transition between the interior and exterior schemes

for both the linear and nonlinear cases. Since this method is novel and will be applied to

both the linear and nonlinear cases, we will use the more simple FDTD scheme as the

interior scheme rather than the more complicated G­FDTD scheme. We do this to show

that the method works for a base case, and more higher­order accuracy methods based on

this approach can be created later.

5.1 Fractional Momentum Operator

We first write the SE and NSE into a single expression as

iℏ∂tψ =
1

2m
p̂x

2ψ + Vψ, (5.1)

71



72

where ψ = ψ(x, t) is a complex wave function, p̂x = −iℏ∇ is the momentum operator, and

V = λ|ψ|2 + V (x, t). Here, λ = 0 corresponds to the linear SE and V = 0 corresponds to

the NSE While, under a standard discretization scheme, the SE does not have transparent

boundary conditions, there are two corresponding TBCs in the form of one­way wave

equations with imaginary restoring terms that can be written as [33, 34, 39]

iℏ∂tψ = cxp̂xψ +Nψ, (5.2)

where cx = ±ℏκ/2m for some real wave number κ. The goal is to gradually transform

Eq. (5.1) into Eq. (5.2) over a small region, so that outgoing waves can exit the domain

of physical interest (or computed physical domain) without reflection. For this reason, we

unify Eq. (5.1) and Eq. (5.2) by introducing a symbolically ideal fractional SE as

iℏ∂tψ =
cx

(2mcx)α
p̂αx p̂xψ +Nψ, (5.3)

where p̂αx is a complex­rotated, two­sided fractional differential operator [50, 98] with 0 ≤

α ≤ 1which will be defined explicitly later. We will use the left­ and right­handed variable

order fractional Caputo derivatives proposed by Almeida et al. in [99], which may be

expressed concisely as follows:

D
α(x)

x± f(x) =
±1

Γ(1− α(x))

∫ ∞

0

f ′(x∓ ξ)

ξα(x)
dξ. (5.4)

Note that Eq. (5.4) reduces to the standard Caputo derivatives if α has no dependence on

x, and that the Caputo derivative of a constant is zero [99–101]. For ease of notation, we

define ∂αx± = D
α(x)

x± . The space­fractional derivative normally used for the fractional SE is

the Riesz derivative [100, 102–104]; however, for the Riesz derivative, limα→1
RZD2α

x ̸= ∂x

which makes it insufficient for our purposes.
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To see how Eq. (5.3) works, let ψ(x, t) = ei(kx−ωt) where k and ω may be real or

complex. Suppose for now thatα does not depend on x, then ∂αx±ψ = (±ik)αψ [100], where

zα = |z|αeiα arg(z) and arg(z) represents the argument of the complex number z. Due to the

existence of left­ and right­handed fractional derivatives, there are left­ and right­handed

fractional momentum operators p̂αx± , which we define as

p̂αx± = (∓iℏ)α∂αx± . (5.5)

Under this definition, it holds that limα→1 p̂
α
x±ψ = p̂xψ and limα→2 p̂

α
x±ψ = p̂2xψ. Also,

it can be seen that p̂αx± p̂
β
x±ψ = p̂α+βx± ψ. In particular, we have the factorizations p̂2xψ =

p̂α+1
x± p̂1−αx± ψ = p̂αx± p̂xp̂

1−α
x± ψ.

Approximate Analytical Solution. Suppose that, a priori, we know that k0 ≈ k, then it

follows that p̂1−αx± ψ = (∓iℏ)1−α(±ik0)
1−αψ and

p̂2xψ ≈ (∓iℏ)1−α(±ik0)
1−αp̂α+1

x± ψ, (5.6)

where p̂α+1
x± = p̂αx± p̂x. Now, by substituting the above equation into Eq. (5.1) where we let

V = 0, we have the fractional­order equation for a free particle given as follows:

iℏ∂tψ =
1

2m
(∓iℏ)1−α(±ik0)

1−αp̂αx± p̂xψ. (5.7)

With the ansatz ψ(x, t) = ei(kx−ωt), we solve Eq. (5.7) by obtaining the dispersion relation.

ℏωψ =
1

2m
(∓iℏ)1−α(±ik0)

1−αp̂αx± p̂xψ

=
1

2m
(∓iℏ)2(±ik0)

1−α∂αx±∂xψ

=
1

2m
(∓iℏ)1−α(±ik0)

1−α · (∓iℏ)α(±ik)α · (−iℏ)(ik)ψ

= ∓ ℏ2

2m
(±ik0)

1−α(±ik)α(ik)ψ

= − ℏ2

2m
(±ik0)

1−α(±ik)α(±ik)ψ
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= − ℏ2

2m
(±ik0)

1−α(±ik)α+1ψ. (5.8)

Assuming that ψ is nontrivial (ψ(x, t) ̸= 0) we find the dispersion relations for each FMO.

ω = − ℏ
2m

(±ik0)
1−α(±ik)α+1. (5.9)

Refining the dispersion relation, we obtain

ω = − ℏ
2m

(±ik0)
1−α(±ik)α+1

= − ℏ
2m

|k0|1−αei(1−α) arg(±ik0)|k|α+1ei(α+1) arg(±ik)

= − ℏ
2m

|k0|1−α|k|α+1ei(arg(±ik)+arg(±ik0))eiα(arg(±ik)−arg(±ik0)). (5.10)

This dispersion relation expands as

ω = − ℏ
2m

|k0|1−α|k|α+1ei(arg(±ik0)+arg(±ik))e−iα(arg(±ik0)−arg(±ik)). (5.11)

Provided that k and k0 are real, the previous equation splits into the following two cases:

ω =


+ ℏ

2m
|k0|1−α|k|α+1, kk0 ≥ 0,

− ℏ
2m

|k0|1−α|k|α+1e±iπα sign(k), kk0 < 0,

(5.12)

where sign(·) represents the signum function. This gives the solutions

ψ(x, t) =


ei(kx−ω0t), kk0 ≥ 0,

ei(kx+ωαt)e−rt, kk0 < 0,

(5.13)

where ω0 =
ℏ
2m

|k0|1−α|k|α+1, ωα = ω0 cos(πα) and r = ±ω0 sin(πα) sign(k). Each of the

momentum operators has an inherent directionality; therefore, in order to have the fractional

momentum point in the correct direction, we need to ensure that k0 is in the outward pointing

direction normal to the boundary. This implies that we should choose k0 > 0 on the right

boundary and k0 < 0 on the left boundary.
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We will now consider the stability of the analytical solution. For now, we will only

consider the right boundary. For reflected waves on the right boundary, k < 0; however,

we have already chosen k0 > 0, therefore, kk0 < 0. Hence, the solution is only stable if

r ≥ 0. Since sin(πα) ≥ 0 for 0 ≤ α ≤ 1, and sign(k) = −1 for reflected waves, we must

choose the lower sign on r which implies that we should use the momentum operator p̂x− .

Using a similar argument, we must choose p̂x+ on the left boundary. Surprisingly, while we

set out to find a stable method to gradually transition between Eq. (5.1) and Eq. (5.2) over

a small region, it follows that any waves that are reflected inside the region are adsorbed

exponentially with time.

Idealized Operator. To implement the unified equation Eq. (5.3) on a computed physical

domain of [a, b], we pad each side with a boundary region of length L in which α(x) is

allowed to gradually vary whichwe refer to as a fractional momentum layer (FML). Another

small padding region of size ε is required in which ψ follows the TBC (one­way wave

equation). Fig. 2.1 is a diagram of this padding. We define the weight function w+(x) as

follows: w− = 0 for x < a, w− = 1/2 for a ≤ x ≤ b, and w− = 1 for x > b. Additionally,

we define the weight function w+(x) = |1 − w−(x)|. For convenience, we define the

kinetic energy operator T̂ = 1
2m
p̂2x and use Eq. (5.6) (with appropriate choices of k0) to

find a fractional approximation. To this end, let k−0 and k+0 be choices of k0 from Eq. (5.6)

for the left and right boundaries, respectively, where we assume that k+0 = −k−0 = κ with

κ > 0. We approximate the kinetic energy operator as

T̂ψ =
1

2m
p̂2xψ

=
1

2m
(w+p̂2x + w−p̂2x)ψ
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≈ 1

2m
(w+(−iℏ)1−α(+ik−0 )1−αp̂α+1

x+ + w−(iℏ)1−α(−ik+0 )
1−αp̂α+1

x− )ψ

=
1

2m
(w+(−iℏ)1−α(−iκ)1−αp̂αx+ p̂x+ + w−(iℏ)1−α(−iκ)1−αp̂αx− p̂x−)ψ

=
1

2m
(−iκ)1−α(w+(−iℏ)1−αp̂αx+ + w−(iℏ)1−αp̂αx−)p̂xψ

= − iℏ
2m

(−iκ)1−α(w+∂αx+ − w−∂αx−)p̂xψ

= − iℏκ1−α

2m
e−iπ(1−α)/2(w+∂αx+ − w−∂αx−)p̂xψ

= − i(ℏκ)1−α

2m
e−iπ(1−α)/2ℏα(w+∂αx+ − w−∂αx−)p̂xψ

= −(ℏκ)1−α

2m
eiπα/2ℏα(w+∂αx+ − w−∂αx−)p̂xψ (5.14)

From above, a convenient definition for our idealized fractional momentum operator is

p̂αx = −ℏαeiπα/2
(
w+∂αx+ − w−∂αx−

)
, (5.15)

with the limits limα→1 p̂
α
x = p̂x and limα→0 p̂

α
x = −(w+ − w−). Moreover, the kinetic

energy operator can be written as T̂ ≈ cx
(2mcx)α

p̂αx p̂x where cx = ℏκ/2m. From this, we

obtain the following variable­order fractional SE in Eq. (5.3) which can be expanded as

iℏ∂tψ = i
ℏ2

2m
κ1−αeiπα/2

(
w+∂αx+ − w−∂αx−

)
∂xψ +Nψ, (5.16)

where α = α(x). This can be extended into 2D by considering weight functions w±
x , w

±
y ,

wave numbers κx, κy, and fractional­orders αx, αy along each direction to obtain

iℏ∂tψ = i
ℏ2

2m

(
κ1−α

x

x eiθ
x

∂α
x

x ∂x + κ1−α
y

y eiθ
y

∂α
y

y ∂y
)
ψ +Nψ, (5.17)

where ∂αx

x = w+
x ∂

αx

x+ − w−
x ∂

αx

x− , α
x = αx(x), θx = παx/2, and so on. Note that superscript

x on α and θ are not powers, but rather just indicate the x­direction1. Similarly, one may

extend the unified equation to 3D and higher dimensions as well as systems of SEs.
1While the superscript notation seems strange at the moment–indeed denoting these as αx and θx would

be more pleasing to the eye–the chosen notation will help to prevent diacritical overload once we transition
to the discrete case.
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It is important to note that the ultimate goal of this research is not simply to solve the

fractional SE as that (as well as similar research) has been done many times before [49–54].

Rather, the goal is to utilize variable­order fractional calculus to create purely computational

techniques that more accurately and more efficiently solve the standard SE and NSE on

unbounded domains. Moreover, this method may provide a way to develop novel boundary

conditions for simulating other differential equations on unbounded domains.

5.2 1D Fractional FDTD Method

There are various iteratively explicit numerical methods for solving the SE [48–54], namely,

spectral and pseudospectral methods [55–57], finite difference methods [58–70], space­

time finite­element methods [71], quadrature discretization methods [72–75], and finite­

difference time­domain (FDTD) methods [17, 18, 27, 75–81]. We choose to use the FDTD

method because it is simple and explicit allowing for easy parallelization.

To develop the FDTD scheme with FML for solving Eq. (5.16), we begin by sep­

arating the equation into the real and imaginary components. We define the diffusion

coefficient, and the fractional diffusion coefficient to be µ = ℏ/2m and µα = µκ1−α,

respectively. Then we let ψ = ψR + iψI where ψR and ψI are real valued, and we let

θ = πα/2. Finally, by defining the fractional operator Dα+1
x =

(
w+∂αx+ − w−∂αx−

)
∂x we

obtain a compact expression for the real­valued coupled differential equations as follows:

(
∂t − µα cos(θ)Dα+1

x

)
ψR = −

(
µα sin(θ)Dα+1

x − ℏ−1N
)
ψI, (5.18a)(

∂t − µα cos(θ)Dα+1
x

)
ψI = +

(
µα sin(θ)Dα+1

x − ℏ−1N
)
ψR. (5.18b)

Now, to obtain the discrete version of in Eq. (5.16), we let N be a natural number and let

x0 = a − L − ε, h = b−a+2L+2ε
N

, and xi = a − L − ε + ih, i = 0, 1, . . . , N . Additionally,
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denote the number of points used in the physical domain as N0 =
b−a
h
. We now use the L2

approximation for the Caputo fractional derivative given in [85]. To avoid Richardson­like

instabilities in the numerical scheme, we must careful in choosing our temporal evaluation

points as we proceed [82]. We evaluate the left­hand sides at the points (xi, tn) and the

right­hand sides at the points (xi, tn+1/2). This evaluation is given as

(
∂t − µα cos(θ)Dα+1

x

)
ψR
∣∣
xi,tn

= −
(
µα sin(θ)Dα+1

x − ℏ−1N
)
ψI
∣∣
xi,tn+1/2

, (5.19a)(
∂t − µα cos(θ)Dα+1

x

)
ψI
∣∣
xi,tn

= +
(
µα sin(θ)Dα+1

x − ℏ−1N
)
ψR
∣∣
xi,tn+1/2

. (5.19b)

Using the first order forward difference approximation for the time derivative, and the L2

approximation for the fractional derivative we have Then, the FDTD method for solving

the 1D fractional­order SE is given by

(
∇t − µα cos(θ)δ

αi+1
x

)
[ψR]

n
i = −

(
µα sin(θ)δ

αi+1
x − ℏ−1N n+1/2

i

)
[ψI]

n+1/2
i , (5.20a)(

∇t − µα cos(θ)δ
αi+1
x

)
[ψI]

n
i = +

(
µα sin(θ)δ

αi+1
x − ℏ−1N n+1/2

i

)
[ψR]

n+1/2
i , (5.20b)

where [ψR]
i
n = ψR(xi, tn), [ψI]

i
n = ψI(xi, tn), and δαi+1

x is fractional Laplacian operator is

defined as

δαi+1
x = w+∇αi

x̄ ∇x + w−∇αi
x ∇x̄ (5.21)

where ∇xfi = fi+1 − fi is the first­order forward difference operator, ∇x̄fi = fi+1 − fi is

the first­order backward difference operator, and the fractional operators are defined as

∇αi
x̄ fi :=

1

Γ(2− αi)

∞∑
k=0

b̃αi
k fi−k (5.22)

∇αi
x fi :=

−1

Γ(2− αi)

∞∑
k=0

b̃αi
k fi+k. (5.23)
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where b̃αi
0 = 1, b̃αi

1 = 21−αi − 2, and b̃αi
k = (k + 1)1−αi − 2k1−αi + (k − 1)1−αi for k ≥ 2.

Now, Eq. (5.20) can be expanded out as

[ψR]
n+1
i − [ψR]

n
i = µ̃cαi

δαi+1
x [ψR]

n
i − µ̃sαi

δαi+1
x [ψI]

n+1/2
i + Ñ n+1/2

i [ψI]
n+1/2
i , (5.24a)

[ψI]
n+1
i − [ψI]

n
i = µ̃cαi

δαi+1
x [ψI]

n
i + µ̃sαi

δαi+1
x [ψR]

n+1/2
i − Ñ n+1/2

i [ψR]
n+1/2
i , (5.24b)

where µ̃cαi
= µαi

∆t cos(παi/2)/h
α+1, µ̃sαi

= µαi
∆t sin(παi/2)/h

α+1and Ñi = ∆tℏ−1Ni.

Limiting Cases. Notice that when αi → 1, we have δαi+1
x → δ2x, µ̃cαi

→ 0 and µ̃cαi
→ µ̃

where µ̃ = ∆tµ/h2. Then, the fractional FDTD method becomes the standard FDTD

method given as

[ψR]
n+1
i − [ψR]

n
i = −

(
µ̃δ2x − Ñ n+1/2

i

)
[ψI]

n+1/2
i , (5.25a)

[ψI]
n+1
i − [ψI]

n
i = +

(
µ̃δ2x − Ñ n+1/2

i

)
[ψR]

n+1/2
i . (5.25b)

Notice also that when αi → 0, we have δαi+1
x → ∇x on the right­side boundary,

and δαi+1
x → −∇x̄ on the left­side boundary, and µ̃cαi

→ 0 and µ̃cαi
→ µ̃κ. On the left­

hand boundary, the fractional FDTD method becomes a downwind solution to a hyperbolic

equation (Engquist­Majda one­way wave equation) given as

[ψR]
n+1
i − [ψR]

n
i =

(
−µ̃κ∇x − Ñ n+1/2

i

)
[ψI]

n+1/2
i , (5.26a)

[ψI]
n+1
i − [ψI]

n
i =

(
−µ̃κ∇x − Ñ n+1/2

i

)
[ψR]

n+1/2
i . (5.26b)

On the right­hand boundary, the fractional FDTD method becomes an upwind solution to a

hyperbolic equation given as

[ψR]
n+1
i − [ψR]

n
i =

(
+µ̃κ∇x̄ + Ñ n+1/2

i

)
[ψI]

n+1/2
i , (5.27a)

[ψI]
n+1
i − [ψI]

n
i =

(
+µ̃κ∇x̄ − Ñ n+1/2

i

)
[ψR]

n+1/2
i . (5.27b)
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Using a similar argument, we may obtain a fractional FDTD scheme for the 2D unified

equation in Eq. (5.17).

5.3 2D Fractional FDTD Method

In a similar fashion to the 1D case, we may obtain a fractionla FDTD scheme for the 2D

unified equation in Eq. (5.17) by splitting ψ into real and imaginary parts. In so doing, we

obtain the following coupled equations

(
∂t − µαx cos(θx)Dαx+1

x − µαy cos(θy)Dαy+1
y

)
ψR

= −
(
µαx sin(θx)Dαx+1

x + µαy sin(θy)Dαy+1
y − ℏ−1N

)
ψI, (5.28a)

(
∂t − µαx cos(θx)Dαx+1

x − µαy cos(θy)Dαy+1
y

)
ψI

= −
(
µαx sin(θx)Dαx+1

x + µαy sin(θy)Dαy+1
y − ℏ−1N

)
ψR, (5.28b)

Similar to the 1D case, we obtain the 2D fractional FDTD method:

(
∇t − µ̃cαx

i
δ
αx
i +1

x − µ̃cαy
j
δ
αy
j+1

y

)
[ψR]

n
ij

= −
(
µ̃sαx

i
δ
αx
i +1

x + µ̃sαy
j
δ
αy
j+1

y − Ñ n+1/2
ij

)
[ψI]

n+1/2
ij , (5.29a)

(
∇t − µ̃cαx

i
δ
αx
i +1

x − µ̃cαy
j
δ
αy
j+1

y

)
[ψI]

n
ij

= +
(
µ̃sαx

i
δ
αx
i +1

x + µ̃sαy
j
δ
αy
j+1

y − Ñ n+1/2
ij

)
[ψR]

n+1/2
ij , (5.29b)

where µ̃cαx
i
= κ

1−αx
i

x µ∆t cos(θx)/hα
x
i +1, αxi = αx(xi), and so on 2.

2While Eq (5.29) may seem a bit overwhelming, in practice, the 2D case is easy to implement after having
already created numerical fractional derivative operators for the 1D case.
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5.4 Discussion

We introduce this fractional FDTD method to address the three key disadvantages of the

ABC method. By developing the fractional FDTD method, we have addressed the first

disadvantages but introduced some others. Firstly, there is inherent reflection due to the

interface of the G­FDTD and ABC methods. Not only does the fractional FDTD method

smooth the transition between the two interior and boundary schemes by way of a fractional

momentum layer (FML), but also we showed that any reflected waves inside the FML will

decay rapidly with time. Secondly, the ABC requires tedious domain decomposition to

implement. For the fractional FDTD method, all domain decomposition is handled by the

fractional momentum operator. We have yet to address the choice of wave number needed

as a parameter for the FML, nor howwell it needs to be known for the method to be effective.

This will be addressed through numerical experiments in the next chapter.

The disadvantages of the fractional FDTD scheme are as follows: (1) The FDTD

scheme is nonlocal, therefore the computation times are longer for sequential computing;

however, this can be mitigated through parallel computing. (2) Both stable fractional mo­

mentum operators and stable fractional FDTD methods are tedious to create; however, they

are easy to implement. This is unlike the FDTD method with ABCs which are both tedious

to create and tedious to implement. (3) There is not currently a way to implement the

fractional FML with the higher­order Laplacian operator used in the G­FDTD method;

however, that is not to say that such an operator is impossible.
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5.5 Chapter Summary

In this chapter, we have derived an expression for a fractional momentum operator in 1D

and 2D and we developed a fractional FDTD scheme for solving the linear and nonlinear

Schrödinger equation on an unbounded domain. We also discussed the disadvantages of

the ABC method and how the fractional FDTD method resolves some of those issues while

introducing other disadvantages. Those disadvantages have been addressed, and remedies

have been provided where applicable.



CHAPTER 6

NUMERICAL RESULTS FOR FRACTIONAL FDTD METHOD

In this chapter, we employ the FDTD scheme with FML to simulate the propagation of

both solitons and particles. Before we can begin examples, there are several parameters for

the FML that must be determined. Having determined those parameters we proceed with

examples of soliton and particle propagation, and Gaussian packet collision.

6.1 Parameter Selection

Several parameters must be provided in order to use the fractional FDTD scheme. These

parameters include the functional form of α, the value of the velocity parameter κ, and the

size of the padding layers L and ε.

Choice of Function for α. As stated previously, there is no preferred choice for how α

varies in the fractional region; however, we need to ensure thatα is piecewise smooth, that is,

α is at least once continuously differentiable. Let ε, L > 0, and consider the computational

domain [a−L− ε, b+L+ ε] where [a, b] is the domain of physical interest, [a−L, a] and

[b, b+L] are the fractional regions, and [a−L− ε, a−L] and [b+L, b+L+ ε] are regions

where transparent boundary conditions are used. Then, the following function is piecewise

smooth:

83
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α(x) =



0, x ≤ a− L,

σ
(
a−x
L

)
, a− L < x < a,

1, a ≤ x ≤ b,

σ
(
x−b
L

)
, b < x < b+ L,

0, x ≥ b+ L,

(6.1)

where σ(x) is a smooth function satisfying σ(0) = 1 and σ(1) = σ′(0) = σ′(1) = 0. A

visual breakdown of the different regions is shown in Fig. 2.1. While a linear functionwould

be nice to use, the α generated from that linear function would not satisfy the piecewise

smooth conditions. Instead, it is convenient to choose σ to be a monotonically decreasing

sigmoid function. A few appropriate choices for σ are listed as follows:

1. (Cubic Spline). A cubic spline is uniquely determined by the piecewise smooth condi­

tions (σ1(0) = 1, σ(1) = σ′(0) = σ′(1) = 0) and is given as

σ(u) = 2u3 − 3u2 + 1. (6.2)

This spline was primarily used for all of our simulations; however, there are more simple

and sophisticated functional forms.

2. (Sinusoid). A sinusoidal curve can easily satisfy the piecewise smooth conditions, how­

ever, care should be taken to ensure the sinusoid is monotonic on the interval; hence, we

use only half of the period. The sinusoidal sigmoid is as follow:

σ2(u) = cos2
(πx

2

)
. (6.3)

There is little difference between the cubic spline and the above sinusoid. In particular,

their root­mean­squared difference is given by(∫ 1

0

(σ1(u)− σ2(u))
2 du

)1/2

=

√
69

280
− 24

π4
≈ 0.006708
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Moreover, both σ1(1/2) = σ2(1/2) = 1/2. If one wishes to change the half­way point

for the spline, a more sophisticated function is required.

3. (Piecewise Quadratic Spline). Let q be a real number in the interval (0, 1). Then, there

is a family of two­region piecewise quadratic functions satisfying the piecewise smooth

conditions needed for α. These functions are parameterized by q and are given as

σ3(u; q) =

{
1− 1

q
x2, 0 ≤ x ≤ q,

1
1−q (x− 1)2, q ≤ x ≤ 1.

(6.4)

The halfway point for this sigmoid is given by uq, where

uq =

{
1−

√
(1− q)/2, q ≤ 1/2,√

q/2, q ≥ 1/2,
(6.5)

so that σ3(uq; q) = 1/2. Notice that, if q = 1/2, then, uq = 1/2 also. Looking at

the limiting cases of the above equation where q → 0 or q → 1, it is clear to see that

|uq − 1
2
| <

√
2−1
2
. Furthermore, the inflection point of the sigmoid occurs at u = q,

therefore, the maximum max0≤u≤1 |σ′
3(u; q)| = |σ′

3(q; q)| = 2.

Shown in Fig. 6.1 is a plot of the sigmoid functions σ1(u), σ2(u) and σ3(u; 1/2);

however, it is not easy to distinguish the different sigmoids. To see the differences in the

sigmoids, Fig. 6.2 shows the same plot, but the function f(u) = 1 − u is subtracted from

each sigmoid.
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Figure 6.1: Plot of the sigmoid functions σ1(u), σ2(u), and σ3(u). The linear function
that satisfies the continuity conditions, but not the piecewise smooth conditions, has been
plotted as a black dashed line.
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Figure 6.2: Plot of the sigmoid functions σ1(u), σ2(u), and σ3(u) where the function
f(u) = 1− u has been subtracted from each sigmoid.
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To show how the parameter q affects the sigmoid σ3(u; q), we have included Fig. 6.3

on page 88 which shows σ3(u; q) for various values of q. The limiting cases where q = 1

and q = 0 have also been plotted as red dashed lines.

While we have discussed three different choices of sigmoid, for simplicity, we used

the cubic spline on both the left and right boundaries.

Value for ε. For the outermost padding regions [a− L− ε, a− L] and [b+ L, b+ L+ ε],

the value of ε only needs to be large enough so that the fractional operator has a sufficient

number of function­values to be accurate. In our experience, ε ≈ 10h is sufficient.

Parameter Sweep. To determine appropriate choices for κ and L, we used the fractional

FDTD scheme with FML to simulate 1D solitons of various momenta impacting FMLs

of various widths. Specifically, we ran a sweep over the wavenumbers 1 ≤ k ≤ 10, the

velocity parameters 1 ≤ κ ≤ 10, and the width parameters 1 ≤ L ≤ 8. The grid spacing

was chosen to be h = 0.1, and we chose ε = 10h. As our effectiveness metric, we used the

reflection coefficient defined by

R∗(k;L, κ) =

∫ b
a
|ψ∗(x, t)|2 dx∫ b

a
|ψ0(x, t)|2 dx

, (6.6)

where ψ∗ is a stand­in for ψ0, ψABC, or ψFML. Each function was calculated using the same

initial conditions ψ0, ψABC, or ψFML, but the methods were different. The wave function ψ0

obtained by using the same initial conditions, but setting the boundary values to be zero,

ψABC was obtained by using the ABC method on the boundary, and ψFML was obtained by

using the FML on the boundary. Similarly,R∗ is a stand­in forR0,RABC, andRFML. Notice

that R0 = 1 by definition.
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Figure 6.3: Plot of the sigmoid function σ3(u; q), for various parameters q. The inflection
point for each sigmoid is given by the point (q, 1 − q) and is labeled as a black dot. For
each sigmoid, the parameter q is simply the u­coordinate of the inflection point.
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For the sweep of numerical experiments described below, ψFML obtained by using

the initial condition describes a soliton with a wavenumber of k and the simulation param­

eters were chosen to be κ and L. We performed a sweep over the intervals k ∈ [0, 10],

κ ∈ [0, 10], and L ∈ [0, 8]. Of course, R∗(k;L, κ) has a three­dimensional input, so it

is difficult to visualize; therefore, for further analysis, we reduced the dimensionality to

two by (1) taking the maximum over the parameter L, (2) taking the maximum over the

parameter κ, (3) restricting the data to κ = k. After applying the restriction κ = k, the

data no longer seemed to depend on the value of k; therefore, we took a maximum over all

values of k to obtain a function for the reflection coefficient R which only depends on L.

Test Case 1. To see how the parameter κ affects the absorption, we vary k and κ and take

the maximum of the reflection coefficients produced by all lengths L that we considered.

Fig. 6.4 shows the plot ofmax1≤L≤8R(k;L, κ), where one can see that there is little effect

on the absorption by κ. However, roughly, the best absorption coefficients can be gotten by

setting κ = k. Additionally, the choice of κ = k has physical significance for an incident

wave of the form ψ(x) = eikx. Notice that the kinetic energy k1−αp̂α+1
x± ψ = ±k2ψ is

conserved for all 0 ≤ α ≤ 1.

Test Case 2. To see how the parameter L affects the absorption, Fig. 6.5 shows the plot

of the maximum max1≤κ≤10R(k;L, κ). While there is no obvious choice of L, it is clear

that increasing L will decrease the reflection coefficient. Considering that larger widths

correspond to more gradual transitions from the Schrödinger equation to the one­way wave

equation, this result is expected.

Test Case 3. If we limit the sweep data only to the slice where κ = k, shown in Fig. 6.6,

it is easy to see that, for this choice, the reflection coefficient is nearly independent of the
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wavenumber of the incident soliton. Fig. 6.7 shows the semi­log plotmax1≤k≤10R(k;L, κ)

as a function of L. From this, we were able to see that there is an approximately linear

dependence between the logarithm of the reflection coefficient and L.

Determining L. Using linear regression on the log­transformed data from Test Case 3,

the fit roughly follows the equation R = e2.045−3.003L which we may solve for L to find a

function for L in terms of R which can be expressed as

L1(R) = 0.6812− 0.7667 · log(R), (6.7)

and if R = ∆x2. Hence, if the tolerance for global error due to reflection is Rtol, then

L should be chosen such that L = L1(Rtol). While the widths prescribed by Eq. (4.5)

may be a relatively large percentage of the width physical, the FDTD scheme with FML is

implemented on a GPU in our computation; therefore, the large width does not significantly

increase the computational time.

6.2 Numerical Examples

This section presents 1D and 2D examples of the fractional FDTD method and

compares the results to the exact solution (when possible), and the FDTD method with

the ABCs presented in Chapter 3.

The 1D simulations were performed using Python with the standard linear algebra

module Numpy. For the 2D simulations, we compare the FML with the recently developed

ABC [44]. Each of the 2D simulations was performed on a GPU. For the simulations

using the fractional FDTD method with FML, we used TensorFlow, a GPU­enabled tensor

framework originally developed for machine learning [105]. However, due to the necessity
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of domain decomposition for the ABC, the FDTD method with ABC was more easily

implemented using PyOpenCL [106].

6.3 Examples in 1D

Example 6.1 (NSE, 1D Soliton). Consider the NSE given by

i∂tψ = p̂2xψ − 2|ψ|2ψ, (6.8)

and a 1D soliton propagating to the right with the initial conditions ψ(x, 0) = ψ0(x, 0) and

ψ(x,∆t/2) = ψ0(x,∆t/2) where

ψ0(x, t) = sech(x− 4t)ei(2x−3t), (6.9)

and the physical domain is given by −20 ≤ x ≤ 15.5. These initial conditions describe a

soliton moving to the right; therefore, to absorb this right­traveling wave, we will use the

fractional FDTD scheme given by Eq. (5.20). Using what knowledge from the numerical

experiments in the previous section, we determined the following parameters for the FML.

By examining the wavenumber in Eq. (4.2), we let κ = 2. After deciding the tolerable order

of reflection to be Rtol = 10−4, we used the equation for L and rounded to choose L = 4.

The mesh for this simulation was defined by h = 0.05 and ∆t = h2/5 and the outermost

width was chosen to be ε = 10h. This gives the FML to be the interval [15.5, 20] in our

computation.

Fig. 6.8 shows |ψ(x, t)|2 for a soliton where the fractional FDTD method with FML

was employed as well as a plot of α(x). One can see from the figure that the soliton stays

intact while it is in the physical domain (t ≤ 10). At t = 12, even though the soliton began

to enter the FML, there is no visible reflection at the interface. At t = 14, the soliton has
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fully entered the FML.While there are clear distortions to the waveform, there are no visible

reflections at the computational boundary. At t = 16, the wave continues to propagate out of

the computational domain without reflection due to the transparent computation boundary.

For t > 18, the wave is no longer inside the computational boundary, and, at t = 20, the

reflection coefficient for this simulation was calculated to be R = 5.6 · 10−4 which is the

same order as Rtol.

Example 6.2 (SE, 1D Particle). Consider the SE given by

i∂tψ = p̂2xψ + V ψ (6.10)

on the interval [−20, 20].where the potential is defined by V = 0 if x < 0 and V = 16 if

x ≥ 0 and a 1D particle propagating to the right with initial conditions ψ(x, 0) = ψ0(x, 0)

and ψ(x,∆t/2) = ψ0(x,∆t/2) where

ψ0(x, t) = e−(x−2kt)2ei(kx−k2t), (6.11)

where wave number is given by k = 5. We consider the physical domain to be [−20, 17.5].

Since V = 0 on the left boundary, we let κ = κ− = k = 5. Since V = 16 on the right

boundary, we let κ = κ+ =
√
k2 − V = 3. The mesh for this simulation was defined

by h = 0.05 and ∆t = h2/10. After deciding the order for the reflection coefficient

to be Rmax = 10−3, we chose L = 3, and the width of the outermost layer was chosen

to be ε = 10h. Hence, for this computation, the FML was implemented on the interval

(17.5, 19.5) and the TBC was used on the interval [19.5, 20].

Shown in Fig. 6.9, we can see that the particle hits the potential barrier around t = 2.

At t = 6, the particle begins to enter the FML and propagate outside the computational
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domain. At t = 20, the reflection coefficient for this simulation was calculated to be R =

8.4 · 10−3 which a similar order as Rtol.

6.4 Examples in 2D

In this section we present three distinct 2D examples.

Reflection in 2D. For 2D simulations, the results forL1(Rtol)would only apply to 1D slices

of the simulation. As such, the total global reflection in 2D is approximated by

Rtol = N0e2.045−3.003L, (6.12)

where N0 = b−a
h
. Letting Rtol be the expected reflection, we found that we should choose

L such that L = L1(Rtol/N0).

Example 6.3 (NSE, 2D Solitons).We considered the 2D Schrödinger equation

i∂tψ = (p̂2x + p̂2y)ψ + λ|ψ|2ψ (6.13)

where the physical domain is given by [−20, 20]×[−20, 20]. We tried two different solutions

both of which have initial conditions that describe solitons traveling towards the northeast

corner. The first case is a soliton where the phase and group velocities are aligned. The

second case is a soliton where the group and phase velocities are not aligned.

Case 1. For this case, we chose λ = −4, and the initial conditions were given by the

equation ψ(x, y, 0) = ψ0(x, y, 0) and ψ(x, y,∆t/2) = ψ0(x, y,∆t/2) where

ψ(x, y, t) = sech (x+ y − 5− 8t) e2i(x+y−5−3t). (6.14)

The mesh for this simulation was defined by h = 0.1 and ∆t = h2/10, and ε = 10h = 1.

We chose κx = κy = 2 to be the wave numbers along the x­ and y­directions respectively.

Since N0 = 400 for this simulation, by choosing Rtol ≈ 10−4 for our reflection tolerance
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means that L(Rtol/N0) = 5.74 which we will round up to choose L = 6. With ε = 1, this

gave a computational domain of [−27, 27] × [−27, 27] where the FML is implemented in

regions with 20 < |x| < 26 or 20 < |y| < 26.

The results for this example are shown in Fig. 6.10. Fig. 6.10a shows the exact

solution limited to the physical domain where the wave propagated freely outside the com­

putational domain. Fig. 6.10b shows the FDTD solution with ABC where cx = cy = Vx =

Vy = 4, and Fig. 6.10c shows the FDTD solution with FML. At t = 3, the global reflection

for the FDTDmethod with ABC wasRABC = 0.3277, and, for the fractional FDTDmethod

with FML, the reflection was RFML = 0.2930.

Fig. 6.11 shows an enlarged snapshot at t = 3. From this figure, one sees that ABC

does absorb the wave; however, there is a high­frequency reflection visible towards the back

of the wave. This high­frequency reflection is not present when using the FDTD method

with FML. While the wave is distorted when using the FML, this distortion is primarily

confined to the FML and does not substantially reenter the physical domain interest. The

distortion is because inside the FML the wave slows down in the normal direction causing

refraction.

As shown in Fig. 6.12, we ran the FML simulation for a bit longer until t = 14

to show that the wave does, in fact, leave the computational domain. The final reflection

coefficient for the fractional FDTD method with FML was calculated to be RFML|t=14 =

2 · 10−3 which is slightly larger than Rtol. This is may be because purely 2D, nonlinear

effects are not accounted for in the Eq. (6.12) because it was obtained based on an empirical

formula.
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Case 2. Now consider the NSE, but with λ = −2. For this case, the initial conditions were

based on

ψ(x, y, t) = sech

(√
3

2
(x− 15) +

1

2
y − 2

√
6t

)
ei(

√
2(x−15)+

√
6y−7t). (6.15)

Unlike the previous initial conditions, these describe a soliton with group and phase veloc­

ities that are not aligned. For the simulation, we used the same mesh and padding regions

as in Case 1. Since the soliton has different wave numbers for the x­ and y­directions, we

chose κx =
√
2 and κy =

√
6.

Fig. 6.13a shows the exact solution limited to the physical domain, where the wave

propagated freely outside the computational domain. In Fig. 6.13b the FDTD method with

ABC where cx = 2
√
2, cy = 2

√
6, Vx = 2, Vy = 6. Fig. 6.13c shows the fractional FDTD

method with FML. At t = 3, one can see that the ABC solution produces reflection back

into the physical domain which distorts of the soliton. However, the FML does not exhibit

the same reflection. At t = 5, the solution using ABC reflects off the corner, while the

solution using FML does not reflect back into the physical domain.

Example 6.4 (NSE, Collision of 2D Gaussian Packets). For the final example, we simu­

lated the collision of two wave packets propagating under the NSE given as follows:

∂tψ = (p̂2x + p̂2y)ψ − 2|ψ|2ψ, (6.16)

where the initial conditions were given by ψ(x, y, 0) = ψ0(x, y, 0) and ψ(x, y,∆t/2) =

ψ0(x, y,∆t/2) with ψ0 = ψ+ + ψ− and

ψ±(x, y, t) =
1

4
√
9π

e−((x±10)2+y2)/18ei(∓kx−k2t). (6.17)
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Here, the wavenumber was chosen to be k = 4, and the physical domain was given by

[−20, 20]×[−20, 20]. Themesh for this simulationwas defined byh = 0.1 and∆t = h2/10,

and we let ε = 10h = 1. We chose κx = κy = k. The width parameter was chosen to be

δ = 3 from which Eq. (4.11) predicts a reflection coefficient Rmax ≈ 0.3. Given ε and δ as

described, the computational domain is [−24, 24]× [−24, 24].

The results for this example are shown in 6.14. Fig. 6.14a shows the plot of the

solution where boundary values are set to be zero. Fig. 6.14b shows the solution obtained

based on the FDTD method with ABC where cx = cy = Vx = Vy = 4. Fig. 6.14c

shows the solution obtained based on the fractional FDTD method with FML. For all cases,

the solution is similar up to t = 2.4 since the wave packets have not had time to reflect

off the computational boundary. After = 3.6, the solutions begin to differ. One can see

that the solution with boundaries set to zero allows the entire wave to be reflected back

into the computational domain. The FDTD method with ABC allows the majority of the

wave to propagate freely; however, there is a very small amount of reflection back into

the physical domain. The fractional FDTD method with FML shows no visible reflection

at this scale. The reflection coefficients were calculated to be RABC|t=6 = 2 · 10−3 and

RFML|t=6 = 2 · 10−6. The value of RFML is five orders of magnitude smaller than what is

predicted by our 2D calculation for L. Again, this is likely due to the because the equation

was calculated empirically.

6.5 Discussion

Not only does the fractional FDTD method with FML outperform the FDTD method with

ABC, but also from Fig. 6.6 it appears that one may increase the size of L to obtain an
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arbitrarily small reflection coefficient. Moreover, from Fig. 6.4, for solitons with larger

momenta k, the reflection coefficient is not heavily dependent on the particular choice

of κ as long as κ is sufficiently large. This addresses the final key disadvantage of the

ABC method. For each method, the FDTD method with ABC provided larger reflection

coefficients, than the fractional FDTD method with FML. Notably, for simulation with the

2D Gaussian packets, the reflection coefficient for the FDTD method with ABC was 1000

times larger than the reflection coefficient for the fractional FDTD method with FML.

6.6 Chapter Summary

In this chapter, discussed methods to determine the parameters for the fractional FDTD

method with FML. We showed that the fractional FDTD method with FML provides a

solution to the disadvantage FDTD method with ABC discussed in the beginning and end

of Chapter 5. We also tested the method with several numerical examples including 1D

particle propagation, 1D and 2D soliton propagation, as well as the collision of Gaussian

packets in 2D.



CHAPTER 7

CONCLUSION

In this dissertation, we have addressed the problem of using the FDTD method and G­

FDTD on unbounded domains. To do so, we developed two boundary methods for solving

the linear and nonlinear Schrödinger equation. The first method is an ABC based on the

Engquist­Majda one­way wave equations. While this method performs well and can be

made to be adaptive, there are three key disadvantages to the using the ABC method: (1)

there is inherent reflection due to the interface of two differential equations, (2) the ABC

requires domain decomposition which is tedious to develop and implement especially in

higher dimensions, and (3) one must guess the wave number of the incoming wave fairly

accurately, or there can be substantial reflection at the boundary.

To address these challenges, the second method introduces a fractional­order mo­

mentum operator, from which a fractional FDTD scheme can be developed. By allowing

the order of the fractional momentum to vary gradually over a fractional momentum layer

so that the SE is transformed into its associated one­way wave equations, we smooth the

transition between the interface which addresses the first issue. The second issue is ad­

dressed by the fractional momentum operator itself. Any domain decomposition is handled

within the operator, and is mainly determined by the fractional order, therefore, when

implementing the fractional FDTDmethod, there is no need to consider each boundary edge.
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The third issue is addressed by considering the effects the fractional Schrödinger equation

has on outgoing waves versus incoming waves. If constructed carefully, outgoing waves are

allowed to pass through the FML freely and exit the simulation, while incoming waves are

absorbed exponentially with time. Therefore, as long as the transition is gradual enough–

that is, the width of the FML is chosen to be sufficiently large–any reflected portions of

outgoing waves will decay before reentering the domain of physical interest. In some cases,

we found that the fractional FDTDmethodwith FMLwould reduce the reflection coefficient

by a factor of 1000 as compared to using the FDTD method with ABC.

Future research into this topic may include exploring a generalized fractional FDTD

method with FML, as well as other methods to improve the accuracy simulations such

as fractional fourth­order central difference operator like the one introduced in Eq. (2.28).

More broadly, this fractional FDTD method with FML provides a novel approach to creat­

ing boundary conditions to solve partial differential equations on unbounded domains. It

may be fruitful to explore the application of this method to other wave equations such as

Maxwell’s equations for electromagnetism or the Klein­Gordon and Dirac equations.



REFERENCES

[1] D. H. Peregrine. Two­dimensional superfluid flows in inhomogeneous Bose­Einstein
condensates. J. Austral. Math. Soc. Ser. B, 25:16–43, 1983.

[2] C. Sulem and P.­L. Sulem. The Nonlinear Schrödinger Equation: Self­Focusing and
Wave Collapse, volume 139 of Applied Mathematical Sciences. Springer­Verlag,
New York, 1999.

[3] Z. Yan, V. V. Konotop, A. V. Yulin, andW.M. Liu. Two­dimensional superfluid flows
in inhomogeneous Bose­Einstein condensates. Phys. Rev. E, 85:016601, 2012.

[4] A. G. Kalocsai and J. W. Haus. Nonlinear Schrödinger equation for optical media
with quadratic nonlinearity. Phys. Rev. A, 49:574–585, 1994.

[5] Y. Shi, A. E. Borovik, and J. E. Hearst. Elastic rod model incorporating shear
and extension, generalized nonlinear Schrödinger equation, and novel closed­form
solutions for supercoiled DNA. J. Phys. Chem., 103:3166–3183, 1995.

[6] P. Ao, D. J. Thouless, and X.­M. Zhu. Nonlinear Schrödinger equation for
superconductors. Mod. Phys. Lett. B, 9:755–761, 1995.

[7] S. F. Mingaleev, P. L. Christiansen, Y. B. Gaididei, M. Johansson, and K.Ø .
Rasmussen. Models for energy and charge transport and storage in biomolecules.
J. Biol. Phys., 25:41–63, 1999.

[8] T. C. Bishop, R. Cortez, and O. O. Zhmudsky. Investigation of bend and shear waves
in a geometrically exact elastic rod model. J. Comput. Phys., 193:642–665, 2004.

[9] M. Ablowitz, I. Bakirtas, and B. Ilan. On a class of nonlocal nonlinear Schrödinger
equations and wave collapse. Eur. Phys. J. Spec. Top., 147:343–362, 2007.

[10] A. Chabchoub, N. Hoffmann, M. Onorato, and N. Akhmediev. Super rogue waves:
Observation of a higher­order breather in water waves. Phys. Rev. X, 2:011015, 2012.

[11] N.K.Vitanov, A. Chabchoub, andN.Hoffmann. Deep­water waves: on the nonlinear
Schrödinger equation and its solutions. J. Theoret. Appl. Mech., 43:43–54, 2013.

[12] W.­M. Liu and E. Kengne. Schrödinger Equations in Nonlinear Systems. Springer
Nature, Singapore, 1st edition, 2019.

111



112

[13] W. Yu, W. Liu, H. Triki, Q. Zhou, A. Biswas, and M. R. Belić. Control of dark and
anti­dark solitons in the (2+1)­dimensional coupled nonlinear Schrödinger equations
with perturbed dispersion and nonlinearity in a nonlinear optical system. Nonlinear
Dyn., 97:471–483, 2019.

[14] W. J. Sonnier and C. I. Christov. Strong coupling of Schrödinger equations:
Conservative scheme approach. Math. Comp. Simulat., 69:514–525, 2005.

[15] W. Bao. Ground states and dynamics of multicomponent Bose–Einstein condensates.
SIAM Multiscale Model. Simul., 2:210–236, 2004.

[16] R. M. Caplan and R. Carretero­González. A modulus­squared Dirichlet boundary
condition for time­dependent complex partial differential equations and its applica­
tion to the nonlinear Schrödinger equation. SIAM J. Sci. Comput., 36:A1–A19, 2014.

[17] D. M. Sullivan. Electromagnetic Simulation Using the FDTD Method. Wiley­IEEE
Press, Hoboken, NJ, 2nd edition, 2013.

[18] F. I. Moxley, III, D. Chuss, and W. Dai. A generalized finite­difference time­domain
scheme for solving nonlinear Schrödinger equations. Comput. Phys. Commun., 184:
1834–1841, 2013.

[19] I. Alonso­Mallo and N. Reguera. Discrete absorbing boundary conditions for
Schrödinger­type equations: Construction and error analysis. SIAM J. Numer. Anal.,
41:1824–1850, 2003.

[20] I. Alonso­Mallo and N. Reguera. Discrete absorbing boundary conditions for
Schrödinger­type equations: Practical implementation. Math. of Comput., 73:127–
142, 2003.

[21] J. Szeftel. Absorbing boundary conditions for nonlinear scalar partial differential
equations. Comput. Methods. Appl. Mech. and Engr., 195:3760–3775, 2006.

[22] C. Zheng. Exact nonreflecting boundary conditions for one­dimensional cubic
nonlinear Schrödinger equations. J. Comput. Phys., 215:552–565, 2006.

[23] S. Jiang and L. Greengard. Efficient representation of nonreflecting boundary
conditions for the time­dependent Schrödinger equation in two dimensions. Commun.
Pure Appl. Math., 61:261–288, 2007.

[24] A. Zisowsky and M. Ehrhardt. Discrete artificial boundary conditions for nonlinear
Schrödinger equations. Math. Comput. Model., 47:1264–1283, 2008.

[25] Z. Chen, J. Zhang, and Z. Yu. Solution of the time­dependent Schrödinger equation
with absorbing boundary conditions. J. Semicond., 30:012001, 2009.



113

[26] X. Antoine, C. Besse, and P. Klein. Absorbing boundary conditions for general
Schrödinger equations. SIAM J. Sci. Comput., 33:1008–1033, 2011.

[27] F. I. Moxley, III, F. Zhu, and W. Dai. A generalized finite­difference method
with absorbing boundary condition for solving a time­dependent linear Schrödinger
equations. AJCM, 2:163–172, 2012.

[28] B. Wang and D. Liang. The finite difference scheme for nonlinear Schrödinger
equations on unbounded domain by artificial boundary conditions. Appl. Numer.
Math., 128:183–204, 2018.

[29] J. Zhang, Z. Xu, and X.Wu. Unified approach to split absorbing boundary conditions
for nonlinear Schrödinger equations. Phys. Rev. E, 78:026709, 2008.

[30] J. Zhang, Z. Xu, and X.Wu. Unified approach to split absorbing boundary conditions
for nonlinear Schrödinger equations: Two­dimensional case. Phys. Rev. E, 79:
046711, 2009.

[31] X. Antoine, C. Besse, and V. Mouysset. Artificial boundary conditions for one­
dimensional cubic nonlinear Schrödinger equations. Math. of Comput., 73:1779–
1799, 2004.

[32] B. Engquist and A. Majda. Absorbing boundary conditions for the numerical
evaluation of waves. Math. Comp., 31:629–651, 1977.

[33] G. Mur. Absorbing boundary conditions for the finite­difference approximation
of the time­domain electromagnetic­field equations. IEEE Trans. Electromagn.
Compat., 23:377–382, 1981.

[34] L. Trefethen and L. Halpern. Well­posedness of one­way wave equations and
absorbing boundary conditions. Math. of Comput., 47:421–435, 1986.

[35] X. Antoine and C. Besse. Unconditionally stable discretization schemes of non­
reflecting boundary conditions for the one­dimensional Schrödinger equation. J.
Comput. Phys., 188:157–175, 2003.

[36] X. Antoine, A. Arnold, C. Besse, M. Ehrhardt, and A. Schädle. A review of
transparent and artificial boundary conditions techniques for linear and nonlinear
Schrödinger equations. Commun. Comput. Phys., 4:729–796, 2008.

[37] Z. Chen, J. Zhang, and Z. Yu. A perfectly matched layer approach to the nonlinear
Schrödinger wave equations. J. Comput. Phys., 227:537–556, 2007.

[38] Z. Xu, H. Han, and X.Wu. Adaptive absorbing boundary conditions for Schrödinger­
type equations: application to nonlinear and multi­dimensional problems. J. Comput.
Phys., 225:1577–1589, 2007.



114

[39] J. Cole and D. Zhu. Improved version of the second­order Mur absorbing boundary
condition based on a nonstandard finite difference model. ACES J., 24:375–381,
2009.

[40] S. Zhou and X. Cheng. Numerical solution to coupled nonlinear Schrödinger
equations on unbounded domains. Math. Comp. Simulat., 80:2362–2373, 2010.

[41] T. P. Stefanski, N. Chavannes, and N. Kuster. Multi­GPU accelerated finite­
difference time­domain solver in open computing language. PIERS, 7:71–74, 2011.

[42] X. Antoine, E. Lorin, and Q. Tang. A friendly review of absorbing boundary
conditions and perfectly matched layers for classical and relativistic quantum waves
equations. Mol. Phys., 115:1861–1879, 2017.

[43] S. Ji, Y. Yang, G. Pang, and X. Antoine. Accurate artificial boundary conditions for
the semi­discretized linear Schrödinger and heat equations on rectangular domains.
Comput. Phys. Commun., 222:84–93, 2018.

[44] J. P. Wilson. Generalized finite­difference time­domain method with absorbing
boundary conditions for solving the nonlinear Schrödinger equation on a GPU.
Comput. Phys. Commun., 235:279–292, 2018.

[45] V. Vaibhava. On the nonreflecting boundary operators for the general two dimen­
sional Schrödinger equation. J. Math. Phys., 60:011509, 2019.

[46] J. J. Sakurai and J. Napolitano. Modern Quantum Mechanics. Pearson, Boston, 2nd
edition, 2011.

[47] P. G. Kevrekidis and D. J. Frantzeskakis. Solitons in coupled nonlinear Schrödinger
models: A survey of recent developments. Rev. in Phys., 1:140–153, 2016.

[48] W. Bao, Q. Tang, and Z. Xu. Numerical methods and comparison for computing
dark and bright solitons in the nonlinear Schrödinger equation. J. Comput. Phys.,
235:423–445, 2013.

[49] N. H. Sweilam, S. M. Al­Mekhlafi, and A. O. Albalawi. A novel variable­order
fractional nonlinear Klein­Gordon model: A numerical approach. Numer. Meth. for
Partial Differential Equations, 35:1617–1629, 2019.

[50] M. S. Ali, M. Shamsi, H. Khosravian­Arab, D. F. M. Torres, and F. Bozorgnia.
A space–time pseudospectral discretization method for solving diffusion optimal
control problems with two­sided fractional derivatives. Journal of Vibration and
Control, 25:1080–1095, 2018.

[51] N. H. Sweilam, T. A. Assiri, and M. M. Abou Hassan. Numerical solutions of
nonlinear fractional Schrödinger equations using nonstandard discretizations. Numer.
Meth. for Partial Differential Equations, 33:1399–1419, 2017.



115

[52] N. Liu andW. Jiang. A numerical method for solving the time fractional Schrödinger
equation. Adv. Comput. Math., 44:1235–1248, 2018.

[53] X. Antoine, Q. Tang, and J. Zhang. On the numerical solution and dynamical laws of
nonlinear fractional Schrödinger/Gross­Pitaevskii equations. Int. J. Comput. Math.,
95:1423–1443, 2018.

[54] M. Al­Raeei and M. S. El­Daher. A numerical method for fractional Schrödinger
equation of Lennard­Jones potential. Phys. Lett. A, 383:125831, 2019.

[55] J. Fleck, Jr., J. Morris, andM. Feit. Time­dependent propagation of high energy laser
beams through the atmosphere. Appl. Phys., 10:129–160, 1976.

[56] B. Fornberg. A Practical Guide to Pseudospectral Methods. Cambridge University
Press, Cambridge, 1998.

[57] J. A. C. Weideman and B. M. Herbst. Split­step methods for the solution of the
nonlinear Schrödinger equation. SIAM J. Numer. Anal., 23:485–507, 1986.

[58] M. Delfour, M. Fortin, and G. Payr. Finite­difference solutions of a non­linear
Schrödinger equation. J. Comput. Phys., 44:277–288, 1981.

[59] A. G. Bratsos. A linearized finite­difference scheme for the numerical solution of the
nonlinear cubic Schrödinger equation. Korean J. Comput. Appl. Math., 8:459–467,
2001.

[60] P. J. Bryant. Nonlinear wave groups in deep water. Stud. Appl. Math., 61:1–30, 1979.

[61] Q.­S. Chang and L.­B. Xu. A numerical method for a system of generalized nonlinear
Schrödinger equations. J. Comput. Math., 4:191–199, 1986.

[62] W. Dai and R. Nassar. A finite difference scheme for the generalized nonlinear
Schrödinger equation with variable coefficients. J. Comput. Math., 18:123–132,
2000.

[63] L. M. Degtyarev and V. Krylov. A method for the numerical solution of problems of
the dynamics of wave fields with singularities. USSR Comp. Math. Math. Phys., 17:
172–179, 1977.

[64] D. F. Griffiths, A. R. Mitchell, and J. L. Morris. A numerical study of the nonlinear
Schrödinger. equation. Comput. Methods. Appl. Mech. and Engr., 45:177–215, 1984.

[65] F. Ivanauskas and M. Radziunas. On convergence and stability of the explicit
difference method for solution of nonlinear Schrödinger equations. SIAM J. Numer.
Anal., 36:1466–1481, 1999.



116

[66] P. L. Nash and L. Chen. Efficient finite difference solutions to the time­dependent
Schrödinger equation. J. Comput. Phys., 139:266–268, 1997.

[67] T. R. Taha and M. J. Ablowitz. Analytical and numerical aspects of certain nonlinear
evolution equations: numerical Korteweg­de Vries equation. J. Comput. Phys., 55:
231–253, 1984.

[68] E. Twizell, A. Bratsos, and J. Newby. A finite­difference method for solving the
cubic Schrödinger equation. Math. Comp. Simulat., 43:67–75, 1997.

[69] T. Utsumi, T. Aoki, J. Koga, and M. Yamagiwa. Solutions of the 1D coupled
nonlinear Schrödinger equations by the CIP­BS method. Commun. Comput. Phys.,
1:261–275, 2006.

[70] W. Bao and D. Jaksch. An explicit unconditionally stable numerical method for
solving damped nonlinear Schrödinger equations with a focusing nonlinearity. SIAM
J. Numer. Anal., 41:1406–1426, 2003.

[71] O. Karakashian and C. Makridakis. A space­time finite element method for the
nonlinear Schrödinger equation: the continuous Galerkin method. SIAM J. Numer.
Anal., 36:1779–1807., 1999.

[72] B. D. Shizgal and H. Chen. The quadrature discretization method (QDM) in the
solution of the Schrödinger equation with nonclassical basis functions. J. Chem.
Phys., 104:4137–4150, 1996.

[73] K. Leung, B. D. Shizgal, and H. Chen. The quadrature discretization method
(QDM) in comparison with other numerical methods of solution of the Fokker–
Planck equation for electron thermalization. J. Math. Chem., 24:291–319, 1998.

[74] H. Chen and B. D. Shizgal. The quadrature discretization method (QDM) in the
solution of the Schrödinger equation. J. Math. Chem., 24:321–343, 1998.

[75] J. Lo andB. D. Shizgal. Spectral convergence of the quadrature discretizationmethod
in the solution of the Schrödinger and Fokker­Planck equations: comparison with
Sinc methods. J. Chem. Phys., 125:194108, 2006.

[76] A. Taflove and S. C. Hagness. Computational Electrodynamics: The Finite­
Difference Time­Domain Method. Springer Series in Computational Physics. Artech
House, Boston, 3rd edition, 2005.

[77] F. I. Moxley, III, T. Byrnes, F. Fujiwara, and W. Dai. Generalized finite­difference
time­domain quantum method for the N ­body interacting Hamiltonian. Comput.
Phys. Commun., 183:2434–2440, 2012.

[78] F. I. Moxley, III, D. T. Chuss, and W. Dai. A generalized finite­difference time­
domain quantum method for the N ­body interacting Hamiltonian. In A. B. Gumel,



117

editor, Mathematics of Continuous and Discrete Dynamical Systems, volume 618
of Contemporary Mathematics, chapter 9, pages 181–194. American Mathematical
Society, Providence, Rhode Island, 2014.

[79] F. I. Moxley, III, T. Byrnes, B. Ma, Y. Yan, and W. Dai. A G­FDTD scheme for
solving multi­dimensional open dissipative Gross–Pitaevskii equations. J. Comput.
Phys., 282:303–316, 2015.

[80] F. I. Moxley, III, J. P. Dowling, W. Dai, and T. Byrnes. Sagnac interferometer with
coherent vortex superposition states in exciton­polariton condensates. Phys. Rev. A,
93:053603, 2016.

[81] J. Shen, W. E. I. Sha, Z. Huang, M. Chen, and X. Wu. High­order symplectic fdtd
scheme for solving a time­dependent Schrödinger equation. SIAM J. Numer. Anal.,
41:1406–1426, 2003.

[82] K. W. Morton and D. Mayers. Numerical Solution of Partial Differential Equations:
An Introduction. Cambridge University Press, Cambridge, 2nd edition, 2005.

[83] S. Willard. General Topology. Addison­Wesley Publishing Co., Danvers, MA, 1st
edition, 1970.

[84] C. Kittel. Introduction to Solid State Physics. John Wiley and Sons, Inc., Danvers,
MA, 8th edition, 2005.

[85] Z. Z. Sun and G. H. Gao. The Finite Difference Method for Fractional Order
Differential Equations. Science Press, Beijing, 1st edition, 2015. (Chinese).

[86] Z. Z. Sun andW. Dai. A new accurate numerical method for solving heat conduction
in a double­layered film with the Neumann boundary condition. Numer. Meth. for
Partial Differential Equations, 30:1291–1314, 2014.

[87] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim, et al. Debunking the 100x
GPU vs. GPUmyth: an evaluation of throughput computing on CPU and GPU. ACM
SIGARCH Computer Architecture News, 38:451–460, 2010.

[88] E. Buber and B. Diri. Performance analysis and CPU vs GPU comparison for
deep learning. In 2018 6th International Conference on Control Engineering and
Information Technology, pages 1–6. IEEE, 2018.

[89] B. I. Schneider. The impact of heterogeneous computer architectures on computa­
tional physics. Computing in Science Engineering, 17:9–13, 2015.

[90] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural ordinary
differential equations. In 2018 32nd Conference on Neural Information Processing
Systems, pages 1–13. IEEE, 2018.



118

[91] T. P. Stefanski, S. Benkler, N. Chavannes, and N. Kuster. Parallel implementation
of the finite­difference time­domain method in open computing language. In 2010
International Conference on Electromagnetics in Advanced Applications, pages 1–4.
IEEE, 2010.

[92] J. Tompson and K. Schlachter. An Introduction to the OpenCL Programming Model.
Technical report, NYU: Media Research Lab, New York, New York, 2012.

[93] J.­H. Huang. Accelerated computing: The path forward. SC15 Conference Slides,
2015.

[94] A. Klöckner. OpenCL: The open standard for parallel programming of heterogeneous
systems, 2009. URL https://documen.tician.de/pyopencl.

[95] A. Klöckner. Welcome to PyOpenCL’s Documentation!, 2009. URL
https://documen.tician.de/pyopencl.

[96] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih. PyCUDA and
PyOpenCL: A scripting­based approach to GPU run­time code generation. Parallel
Comput., 38:157–174, 2012.

[97] T. P. Stefanski, N. Chavannes, and N. Kuster. Multi­GPU Accelerated Finite­
difference Time­domain Solver in Open Computing Language. PIERS Online, 7:
71–74, 2010.

[98] M. M. Meerschaert and C. Tadjeran. Finite difference approximations for two­sided
space­fractional partial differential equations. Appl. Numer. Math., 56:80–90, 2005.

[99] R. Almeida, D. Tavares, and F. M. Torres. The Variable­Order Fractional Calculus
of Variations. Springer, Gewerbestrasse, Switzerland, 2019.

[100] R. Herrmann. Fractional Calculus: An Introduction for Physicists. World Scientific,
GigaHedron, Germany, 2nd edition, 2014.

[101] R. Hilfer. Applications of Fractional Calculus in Physics. World Scientific, Hoboken,
NJ, 2000.

[102] N. Laskin. Fractional quantum mechanics and lévy path integrals. Phys. Lett. A, 268:
298–305, 2000.

[103] N. Laskin. Fractional Schrödinger equation. Phys. Rev. E, 66:056108, 2002.

[104] N. Laskin. Fractional QuantumMechanics. World Scientific, Singapore, 1st edition,
2018.



119

[105] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, et al. Tensor­
Flow: Large­scale machine learning on heterogeneous systems, 2015. URL
https://www.tensorflow.org/. Software available from tensorflow.org.

[106] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, et al. PyCUDA and
PyOpenCL: A Scripting­Based Approach to GPU Run­Time Code Generation.
Parallel Comput., 38:157–174, 2012. ISSN 0167­8191.


	ABC Method and Fractional Momentum Layer for the FDTD Method to Solve the Schrödinger Equation on Unbounded Domains
	tmp.1599687329.pdf.xZzWb

