4,430 research outputs found

    Generalized Effective Reducibility

    Full text link
    We introduce two notions of effective reducibility for set-theoretical statements, based on computability with Ordinal Turing Machines (OTMs), one of which resembles Turing reducibility while the other is modelled after Weihrauch reducibility. We give sample applications by showing that certain (algebraic) constructions are not effective in the OTM-sense and considerung the effective equivalence of various versions of the axiom of choice

    The gauge structure of generalised diffeomorphisms

    Full text link
    We investigate the generalised diffeomorphisms in M-theory, which are gauge transformations unifying diffeomorphisms and tensor gauge transformations. After giving an En(n)-covariant description of the gauge transformations and their commutators, we show that the gauge algebra is infinitely reducible, i.e., the tower of ghosts for ghosts is infinite. The Jacobiator of generalised diffeomorphisms gives such a reducibility transformation. We give a concrete description of the ghost structure, and demonstrate that the infinite sums give the correct (regularised) number of degrees of freedom. The ghost towers belong to the sequences of rep- resentations previously observed appearing in tensor hierarchies and Borcherds algebras. All calculations rely on the section condition, which we reformulate as a linear condition on the cotangent directions. The analysis holds for n < 8. At n = 8, where the dual gravity field becomes relevant, the natural guess for the gauge parameter and its reducibility still yields the correct counting of gauge parameters.Comment: 24 pp., plain tex, 1 figure. v2: minor changes, including a few added ref

    Quantization of Even-Dimensional Actions of Chern-Simons Form with Infinite Reducibility

    Get PDF
    We investigate the quantization of even-dimensional topological actions of Chern-Simons form which were proposed previously. We quantize the actions by Lagrangian and Hamiltonian formulations {\`a} la Batalin, Fradkin and Vilkovisky. The models turn out to be infinitely reducible and thus we need infinite number of ghosts and antighosts. The minimal actions of Lagrangian formulation which satisfy the master equation of Batalin and Vilkovisky have the same Chern-Simons form as the starting classical actions. In the Hamiltonian formulation we have used the formulation of cohomological perturbation and explicitly shown that the gauge-fixed actions of both formulations coincide even though the classical action breaks Dirac's regularity condition. We find an interesting relation that the BRST charge of Hamiltonian formulation is the odd-dimensional fermionic counterpart of the topological action of Chern-Simons form. Although the quantization of two dimensional models which include both bosonic and fermionic gauge fields are investigated in detail, it is straightforward to extend the quantization into arbitrary even dimensions. This completes the quantization of previously proposed topological gravities in two and four dimensions.Comment: 50 pages, latex, no figure

    Shapes From Pixels

    Get PDF
    Continuous-domain visual signals are usually captured as discrete (digital) images. This operation is not invertible in general, in the sense that the continuous-domain signal cannot be exactly reconstructed based on the discrete image, unless it satisfies certain constraints (\emph{e.g.}, bandlimitedness). In this paper, we study the problem of recovering shape images with smooth boundaries from a set of samples. Thus, the reconstructed image is constrained to regenerate the same samples (consistency), as well as forming a shape (bilevel) image. We initially formulate the reconstruction technique by minimizing the shape perimeter over the set of consistent binary shapes. Next, we relax the non-convex shape constraint to transform the problem into minimizing the total variation over consistent non-negative-valued images. We also introduce a requirement (called reducibility) that guarantees equivalence between the two problems. We illustrate that the reducibility property effectively sets a requirement on the minimum sampling density. One can draw analogy between the reducibility property and the so-called restricted isometry property (RIP) in compressed sensing which establishes the equivalence of the â„“0\ell_0 minimization with the relaxed â„“1\ell_1 minimization. We also evaluate the performance of the relaxed alternative in various numerical experiments.Comment: 13 pages, 14 figure

    Covariant theory of asymptotic symmetries, conservation laws and central charges

    Get PDF
    Under suitable assumptions on the boundary conditions, it is shown that there is a bijective correspondence between equivalence classes of asymptotic reducibility parameters and asymptotically conserved n-2 forms in the context of Lagrangian gauge theories. The asymptotic reducibility parameters can be interpreted as asymptotic Killing vector fields of the background, with asymptotic behaviour determined by a new dynamical condition. A universal formula for asymptotically conserved n-2 forms in terms of the reducibility parameters is derived. Sufficient conditions for finiteness of the charges built out of the asymptotically conserved n-2 forms and for the existence of a Lie algebra g among equivalence classes of asymptotic reducibility parameters are given. The representation of g in terms of the charges may be centrally extended. An explicit and covariant formula for the central charges is constructed. They are shown to be 2-cocycles on the Lie algebra g. The general considerations and formulas are applied to electrodynamics, Yang-Mills theory and Einstein gravity.Comment: 86 pages Latex file; minor correction

    Quasi-periodically driven quantum systems

    Get PDF
    Floquet theory provides rigorous foundations for the theory of periodically driven quantum systems. In the case of non-periodic driving, however, the situation is not so well understood. Here, we provide a critical review of the theoretical framework developed for quasi-periodically driven quantum systems. Although the theoretical footing is still under development, we argue that quasi-periodically driven quantum systems can be treated with generalizations of Floquet theory in suitable parameter regimes. Moreover, we provide a generalization of the Floquet-Magnus expansion and argue that quasi-periodic driving offers a promising route for quantum simulations
    • …
    corecore