70,042 research outputs found

    Edge and Line Feature Extraction Based on Covariance Models

    Get PDF
    age segmentation based on contour extraction usually involves three stages of image operations: feature extraction, edge detection and edge linking. This paper is devoted to the first stage: a method to design feature extractors used to detect edges from noisy and/or blurred images. The method relies on a model that describes the existence of image discontinuities (e.g. edges) in terms of covariance functions. The feature extractor transforms the input image into a “log-likelihood ratio” image. Such an image is a good starting point of the edge detection stage since it represents a balanced trade-off between signal-to-noise ratio and the ability to resolve detailed structures. For 1-D signals, the performance of the edge detector based on this feature extractor is quantitatively assessed by the so called “average risk measure”. The results are compared with the performances of 1-D edge detectors known from literature. Generalizations to 2-D operators are given. Applications on real world images are presented showing the capability of the covariance model to build edge and line feature extractors. Finally it is shown that the covariance model can be coupled to a MRF-model of edge configurations so as to arrive at a maximum a posteriori estimate of the edges or lines in the image

    Semantically Guided Depth Upsampling

    Full text link
    We present a novel method for accurate and efficient up- sampling of sparse depth data, guided by high-resolution imagery. Our approach goes beyond the use of intensity cues only and additionally exploits object boundary cues through structured edge detection and semantic scene labeling for guidance. Both cues are combined within a geodesic distance measure that allows for boundary-preserving depth in- terpolation while utilizing local context. We model the observed scene structure by locally planar elements and formulate the upsampling task as a global energy minimization problem. Our method determines glob- ally consistent solutions and preserves fine details and sharp depth bound- aries. In our experiments on several public datasets at different levels of application, we demonstrate superior performance of our approach over the state-of-the-art, even for very sparse measurements.Comment: German Conference on Pattern Recognition 2016 (Oral

    Seismic Fault Preserving Diffusion

    Full text link
    This paper focuses on the denoising and enhancing of 3-D reflection seismic data. We propose a pre-processing step based on a non linear diffusion filtering leading to a better detection of seismic faults. The non linear diffusion approaches are based on the definition of a partial differential equation that allows us to simplify the images without blurring relevant details or discontinuities. Computing the structure tensor which provides information on the local orientation of the geological layers, we propose to drive the diffusion along these layers using a new approach called SFPD (Seismic Fault Preserving Diffusion). In SFPD, the eigenvalues of the tensor are fixed according to a confidence measure that takes into account the regularity of the local seismic structure. Results on both synthesized and real 3-D blocks show the efficiency of the proposed approach.Comment: 10 page

    From Relational Data to Graphs: Inferring Significant Links using Generalized Hypergeometric Ensembles

    Full text link
    The inference of network topologies from relational data is an important problem in data analysis. Exemplary applications include the reconstruction of social ties from data on human interactions, the inference of gene co-expression networks from DNA microarray data, or the learning of semantic relationships based on co-occurrences of words in documents. Solving these problems requires techniques to infer significant links in noisy relational data. In this short paper, we propose a new statistical modeling framework to address this challenge. It builds on generalized hypergeometric ensembles, a class of generative stochastic models that give rise to analytically tractable probability spaces of directed, multi-edge graphs. We show how this framework can be used to assess the significance of links in noisy relational data. We illustrate our method in two data sets capturing spatio-temporal proximity relations between actors in a social system. The results show that our analytical framework provides a new approach to infer significant links from relational data, with interesting perspectives for the mining of data on social systems.Comment: 10 pages, 8 figures, accepted at SocInfo201

    On Multifractal Structure in Non-Representational Art

    Get PDF
    Multifractal analysis techniques are applied to patterns in several abstract expressionist artworks, paintined by various artists. The analysis is carried out on two distinct types of structures: the physical patterns formed by a specific color (``blobs''), as well as patterns formed by the luminance gradient between adjacent colors (``edges''). It is found that the analysis method applied to ``blobs'' cannot distinguish between artists of the same movement, yielding a multifractal spectrum of dimensions between about 1.5-1.8. The method can distinguish between different types of images, however, as demonstrated by studying a radically different type of art. The data suggests that the ``edge'' method can distinguish between artists in the same movement, and is proposed to represent a toy model of visual discrimination. A ``fractal reconstruction'' analysis technique is also applied to the images, in order to determine whether or not a specific signature can be extracted which might serve as a type of fingerprint for the movement. However, these results are vague and no direct conclusions may be drawn.Comment: 53 pp LaTeX, 10 figures (ps/eps

    On the merits of the Gaussian Mixture as a model for oriented edgel distributions

    Get PDF
    The aim of this report is to establish the credibility of the Gaussian Mixture Model (GMM) as a model for the distributions of oriented edgels of rigid and biological objects in noisy images. This is tackled in two stages: first, the response of the Soble filter to noisy pixels is analysed to show that the result holds for smooth ridid objects. Second, arguments are presented to support the proposition that the model can also effectively capture the added uncertainty introduced by natural shape variation, as found in images of biological objects. The result has particular application in the extension of the Generalized Hough Transform (GHT) to deformable shapes; in particular if offers a tailored and manipulable alternative to the non-parametric kernel density estimate used by Ecabert and Thiran

    Single-trial multiwavelet coherence in application to neurophysiological time series

    Get PDF
    A method of single-trial coherence analysis is presented, through the application of continuous muldwavelets. Multiwavelets allow the construction of spectra and bivariate statistics such as coherence within single trials. Spectral estimates are made consistent through optimal time-frequency localization and smoothing. The use of multiwavelets is considered along with an alternative single-trial method prevalent in the literature, with the focus being on statistical, interpretive and computational aspects. The multiwavelet approach is shown to possess many desirable properties, including optimal conditioning, statistical descriptions and computational efficiency. The methods. are then applied to bivariate surrogate and neurophysiological data for calibration and comparative study. Neurophysiological data were recorded intracellularly from two spinal motoneurones innervating the posterior,biceps muscle during fictive locomotion in the decerebrated cat
    corecore