3,186 research outputs found

    Shingle 2.0: generalising self-consistent and automated domain discretisation for multi-scale geophysical models

    Full text link
    The approaches taken to describe and develop spatial discretisations of the domains required for geophysical simulation models are commonly ad hoc, model or application specific and under-documented. This is particularly acute for simulation models that are flexible in their use of multi-scale, anisotropic, fully unstructured meshes where a relatively large number of heterogeneous parameters are required to constrain their full description. As a consequence, it can be difficult to reproduce simulations, ensure a provenance in model data handling and initialisation, and a challenge to conduct model intercomparisons rigorously. This paper takes a novel approach to spatial discretisation, considering it much like a numerical simulation model problem of its own. It introduces a generalised, extensible, self-documenting approach to carefully describe, and necessarily fully, the constraints over the heterogeneous parameter space that determine how a domain is spatially discretised. This additionally provides a method to accurately record these constraints, using high-level natural language based abstractions, that enables full accounts of provenance, sharing and distribution. Together with this description, a generalised consistent approach to unstructured mesh generation for geophysical models is developed, that is automated, robust and repeatable, quick-to-draft, rigorously verified and consistent to the source data throughout. This interprets the description above to execute a self-consistent spatial discretisation process, which is automatically validated to expected discrete characteristics and metrics.Comment: 18 pages, 10 figures, 1 table. Submitted for publication and under revie

    The complexity of conservative finite-valued CSPs

    Full text link
    We study the complexity of valued constraint satisfaction problems (VCSP). A problem from VCSP is characterised by a \emph{constraint language}, a fixed set of cost functions over a finite domain. An instance of the problem is specified by a sum of cost functions from the language and the goal is to minimise the sum. We consider the case of so-called \emph{conservative} languages; that is, languages containing all unary cost functions, thus allowing arbitrary restrictions on the domains of the variables. This problem has been studied by Bulatov [LICS'03] for {0,∞}\{0,\infty\}-valued languages (i.e. CSP), by Cohen~\etal\ (AIJ'06) for Boolean domains, by Deineko et al. (JACM'08) for {0,1}\{0,1\}-valued cost functions (i.e. Max-CSP), and by Takhanov (STACS'10) for {0,∞}\{0,\infty\}-valued languages containing all finite-valued unary cost functions (i.e. Min-Cost-Hom). We give an elementary proof of a complete complexity classification of conservative finite-valued languages: we show that every conservative finite-valued language is either tractable or NP-hard. This is the \emph{first} dichotomy result for finite-valued VCSPs over non-Boolean domains.Comment: 15 page

    The complexity of approximating conservative counting CSPs

    Get PDF
    We study the complexity of approximately solving the weighted counting constraint satisfaction problem #CSP(F). In the conservative case, where F contains all unary functions, there is a classification known for the case in which the domain of functions in F is Boolean. In this paper, we give a classification for the more general problem where functions in F have an arbitrary finite domain. We define the notions of weak log-modularity and weak log-supermodularity. We show that if F is weakly log-modular, then #CSP(F)is in FP. Otherwise, it is at least as difficult to approximate as #BIS, the problem of counting independent sets in bipartite graphs. #BIS is complete with respect to approximation-preserving reductions for a logically-defined complexity class #RHPi1, and is believed to be intractable. We further sub-divide the #BIS-hard case. If F is weakly log-supermodular, then we show that #CSP(F) is as easy as a (Boolean) log-supermodular weighted #CSP. Otherwise, we show that it is NP-hard to approximate. Finally, we give a full trichotomy for the arity-2 case, where #CSP(F) is in FP, or is #BIS-equivalent, or is equivalent in difficulty to #SAT, the problem of approximately counting the satisfying assignments of a Boolean formula in conjunctive normal form. We also discuss the algorithmic aspects of our classification.Comment: Minor revisio

    Hybrid tractability of soft constraint problems

    Get PDF
    The constraint satisfaction problem (CSP) is a central generic problem in computer science and artificial intelligence: it provides a common framework for many theoretical problems as well as for many real-life applications. Soft constraint problems are a generalisation of the CSP which allow the user to model optimisation problems. Considerable effort has been made in identifying properties which ensure tractability in such problems. In this work, we initiate the study of hybrid tractability of soft constraint problems; that is, properties which guarantee tractability of the given soft constraint problem, but which do not depend only on the underlying structure of the instance (such as being tree-structured) or only on the types of soft constraints in the instance (such as submodularity). We present several novel hybrid classes of soft constraint problems, which include a machine scheduling problem, constraint problems of arbitrary arities with no overlapping nogoods, and the SoftAllDiff constraint with arbitrary unary soft constraints. An important tool in our investigation will be the notion of forbidden substructures.Comment: A full version of a CP'10 paper, 26 page

    Transfer Function Synthesis without Quantifier Elimination

    Get PDF
    Traditionally, transfer functions have been designed manually for each operation in a program, instruction by instruction. In such a setting, a transfer function describes the semantics of a single instruction, detailing how a given abstract input state is mapped to an abstract output state. The net effect of a sequence of instructions, a basic block, can then be calculated by composing the transfer functions of the constituent instructions. However, precision can be improved by applying a single transfer function that captures the semantics of the block as a whole. Since blocks are program-dependent, this approach necessitates automation. There has thus been growing interest in computing transfer functions automatically, most notably using techniques based on quantifier elimination. Although conceptually elegant, quantifier elimination inevitably induces a computational bottleneck, which limits the applicability of these methods to small blocks. This paper contributes a method for calculating transfer functions that finesses quantifier elimination altogether, and can thus be seen as a response to this problem. The practicality of the method is demonstrated by generating transfer functions for input and output states that are described by linear template constraints, which include intervals and octagons.Comment: 37 pages, extended version of ESOP 2011 pape

    The power of Sherali-Adams relaxations for general-valued CSPs

    Full text link
    We give a precise algebraic characterisation of the power of Sherali-Adams relaxations for solvability of valued constraint satisfaction problems to optimality. The condition is that of bounded width which has already been shown to capture the power of local consistency methods for decision CSPs and the power of semidefinite programming for robust approximation of CSPs. Our characterisation has several algorithmic and complexity consequences. On the algorithmic side, we show that several novel and many known valued constraint languages are tractable via the third level of the Sherali-Adams relaxation. For the known languages, this is a significantly simpler algorithm than the previously obtained ones. On the complexity side, we obtain a dichotomy theorem for valued constraint languages that can express an injective unary function. This implies a simple proof of the dichotomy theorem for conservative valued constraint languages established by Kolmogorov and Zivny [JACM'13], and also a dichotomy theorem for the exact solvability of Minimum-Solution problems. These are generalisations of Minimum-Ones problems to arbitrary finite domains. Our result improves on several previous classifications by Khanna et al. [SICOMP'00], Jonsson et al. [SICOMP'08], and Uppman [ICALP'13].Comment: Full version of an ICALP'15 paper (arXiv:1502.05301

    The Power of Linear Programming for Valued CSPs

    Full text link
    A class of valued constraint satisfaction problems (VCSPs) is characterised by a valued constraint language, a fixed set of cost functions on a finite domain. An instance of the problem is specified by a sum of cost functions from the language with the goal to minimise the sum. This framework includes and generalises well-studied constraint satisfaction problems (CSPs) and maximum constraint satisfaction problems (Max-CSPs). Our main result is a precise algebraic characterisation of valued constraint languages whose instances can be solved exactly by the basic linear programming relaxation. Using this result, we obtain tractability of several novel and previously widely-open classes of VCSPs, including problems over valued constraint languages that are: (1) submodular on arbitrary lattices; (2) bisubmodular (also known as k-submodular) on arbitrary finite domains; (3) weakly (and hence strongly) tree-submodular on arbitrary trees.Comment: Corrected a few typo

    Using Program Synthesis for Program Analysis

    Get PDF
    In this paper, we identify a fragment of second-order logic with restricted quantification that is expressive enough to capture numerous static analysis problems (e.g. safety proving, bug finding, termination and non-termination proving, superoptimisation). We call this fragment the {\it synthesis fragment}. Satisfiability of a formula in the synthesis fragment is decidable over finite domains; specifically the decision problem is NEXPTIME-complete. If a formula in this fragment is satisfiable, a solution consists of a satisfying assignment from the second order variables to \emph{functions over finite domains}. To concretely find these solutions, we synthesise \emph{programs} that compute the functions. Our program synthesis algorithm is complete for finite state programs, i.e. every \emph{function} over finite domains is computed by some \emph{program} that we can synthesise. We can therefore use our synthesiser as a decision procedure for the synthesis fragment of second-order logic, which in turn allows us to use it as a powerful backend for many program analysis tasks. To show the tractability of our approach, we evaluate the program synthesiser on several static analysis problems.Comment: 19 pages, to appear in LPAR 2015. arXiv admin note: text overlap with arXiv:1409.492
    • …
    corecore