40 research outputs found

    Implicit meshes:unifying implicit and explicit surface representations for 3D reconstruction and tracking

    Get PDF
    This thesis proposes novel ways both to represent the static surfaces, and to parameterize their deformations. This can be used both by automated algorithms for efficient 3–D shape reconstruction, and by graphics designers for editing and animation. Deformable 3–D models can be represented either as traditional explicit surfaces, such as triangulated meshes, or as implicit surfaces. Explicit surfaces are widely accepted because they are simple to deform and render, however fitting them involves minimizing a non-differentiable distance function. By contrast, implicit surfaces allow fitting by minimizing a differentiable algebraic distance, but they are harder to meaningfully deform and render. Here we propose a method that combines the strength of both representations to avoid their drawbacks, and in this way build robust surface representation, called implicit mesh, suitable for automated shape recovery from video sequences. This surface representation lets us automatically detect and exploit silhouette constraints in uncontrolled environments that may involve occlusions and changing or cluttered backgrounds, which limit the applicability of most silhouette based methods. We advocate the use of Dirichlet Free Form Deformation (DFFD) as generic surface deformation technique that can be used to parameterize objects of arbitrary geometry defined as explicit meshes. It is based on the small set of control points and the generalized interpolant. Control points become model parameters and their change causes model's shape modification. Using such parameterization the problem dimensionality can be dramatically reduced, which is desirable property for most optimization algorithms, thus makes DFFD good tool for automated fitting. Combining DFFD as a generic parameterization method for explicit surfaces and implicit meshes as a generic surface representation we obtained a powerfull tool for automated shape recovery from images. However, we also argue that any other avaliable surface parameterization can be used. We demonstrate the applicability of our technique to 3–D reconstruction of the human upper-body including – face, neck and shoulders, and the human ear, from noisy stereo and silhouette data. We also reconstruct the shape of a high resolution human faces parametrized in terms of a Principal Component Analysis model from interest points and automatically detected silhouettes. Tracking of deformable objects using implicit meshes from silhouettes and interest points in monocular sequences is shown in following two examples: Modeling the deformations of a piece of paper represented by an ordinary triangulated mesh; tracking a person's shoulders whose deformations are expressed in terms of Dirichlet Free Form Deformations

    Implicit surfaces for interactive animated characters

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1999.Includes bibliographical references (leaves 64-68).Implicit surface modeling in computer graphics is a powerful technique for representing smooth and organic shapes. Skeletal elements of an implicit surface blend to create a smooth, seamless skin which exhibits desired properties for animation such as squash and stretch. Because of their high computational cost to render, implicit surfaces have not been used extensively in the real-time graphics domain. This thesis discusses the problems and some solutions in the application of implicit surfaces to the domain of interactive character animation. A design process for an implicit surface-based character is proposed, from the modeling and texturing stages to animation and rendering.by Kenneth Bradley Russell.S.M

    3D modeling of the human upper limb including the biomechanics of joints, muscles and soft tissues

    Get PDF
    The challenge in virtual human modeling is to achieve the representation of the main human characteristics with as much realism as possible. Such achievements would allow the simulation and/or analysis of many virtual situations involving humans. Simulation is especially useful to derive information from the models so as to predict and/or reproduce the behaviors that would be observed in real situations. Computer methods in visualization and simulation have thus great potential for advances in medicine. The processes of strength generation and motion coordination are some of these phenomena for which there is still much remaining to be understood. The human shoulder is also probably the articulation of the human body which deserves more than any other to be named "terra incognita". Investigations towards the biomechanical modeling and simulation of the human upper limb are therefore presented in this study. It includes thorough investigation into the musculoskeletal anatomy and biomechanics of the human upper limb, into the biomechanical constitutive modeling of muscles and soft tissues, and into the nonlinear continuum mechanics and numerical methods, especially the incremental finite element methods, necessary for their simulation. On this basis, a 3-D biomechanical musculoskeletal human upper limb model has been designed using the Visible Human Data provided by the U.S. National Library of Medicine, and applied to the dynamic musculoskeletal simulation of the human upper limb. This research has been achieved in the context of the EU ESPRIT Project CHARM, whose objective has been to develop a comprehensive human animation resource database and a set of software tools allowing the modeling of the human complex musculoskeletal system and the simulation of its dynamics, including the finite element simulation of soft tissue deformation and muscular contraction. An investigation towards the application of this knowledge for the realistic modeling and animation of the upper limb in computer animation is then presented. The anatomical and biomechanical modeling of the scapulo-thoracic constraint and the shoulder joint sinus cones are proposed and applied to the realistic animation, using inverse kinematics, of a virtual skeleton and an anatomic musculoskeletal body model

    Virtual humans: thirty years of research, what next?

    Get PDF
    In this paper, we present research results and future challenges in creating realistic and believable Virtual Humans. To realize these modeling goals, real-time realistic representation is essential, but we also need interactive and perceptive Virtual Humans to populate the Virtual Worlds. Three levels of modeling should be considered to create these believable Virtual Humans: 1) realistic appearance modeling, 2) realistic, smooth and flexible motion modeling, and 3) realistic high-level behaviors modeling. At first, the issues of creating virtual humans with better skeleton and realistic deformable bodies are illustrated. To give a level of believable behavior, challenges are laid on generating on the fly flexible motion and complex behaviours of Virtual Humans inside their environments using a realistic perception of the environment. Interactivity and group behaviours are also important parameters to create believable Virtual Humans which have challenges in creating believable relationship between real and virtual humans based on emotion and personality, and simulating realistic and believable behaviors of groups and crowds. Finally, issues in generating realistic virtual clothed and haired people are presente

    Collision Detection and Merging of Deformable B-Spline Surfaces in Virtual Reality Environment

    Get PDF
    This thesis presents a computational framework for representing, manipulating and merging rigid and deformable freeform objects in virtual reality (VR) environment. The core algorithms for collision detection, merging, and physics-based modeling used within this framework assume that all 3D deformable objects are B-spline surfaces. The interactive design tool can be represented as a B-spline surface, an implicit surface or a point, to allow the user a variety of rigid or deformable tools. The collision detection system utilizes the fact that the blending matrices used to discretize the B-spline surface are independent of the position of the control points and, therefore, can be pre-calculated. Complex B-spline surfaces can be generated by merging various B-spline surface patches using the B-spline surface patches merging algorithm presented in this thesis. Finally, the physics-based modeling system uses the mass-spring representation to determine the deformation and the reaction force values provided to the user. This helps to simulate realistic material behaviour of the model and assist the user in validating the design before performing extensive product detailing or finite element analysis using commercially available CAD software. The novelty of the proposed method stems from the pre-calculated blending matrices used to generate the points for graphical rendering, collision detection, merging of B-spline patches, and nodes for the mass spring system. This approach reduces computational time by avoiding the need to solve complex equations for blending functions of B-splines and perform the inversion of large matrices. This alternative approach to the mechanical concept design will also help to do away with the need to build prototypes for conceptualization and preliminary validation of the idea thereby reducing the time and cost of concept design phase and the wastage of resources

    A biomechanics-based articulation model for medical applications

    Get PDF
    Computer Graphics came into the medical world especially after the arrival of 3D medical imaging. Computer Graphics techniques are already integrated in the diagnosis procedure by means of the visual tridimensional analysis of computer tomography, magnetic resonance and even ultrasound data. The representations they provide, nevertheless, are static pictures of the patients' body, lacking in functional information. We believe that the next step in computer assisted diagnosis and surgery planning depends on the development of functional 3D models of human body. It is in this context that we propose a model of articulations based on biomechanics. Such model is able to simulate the joint functionality in order to allow for a number of medical applications. It was developed focusing on the following requirements: it must be at the same time simple enough to be implemented on computer, and realistic enough to allow for medical applications; it must be visual in order for applications to be able to explore the joint in a 3D simulation environment. Then, we propose to combine kinematical motion for the parts that can be considered as rigid, such as bones, and physical simulation of the soft tissues. We also deal with the interaction between the different elements of the joint, and for that we propose a specific contact management model. Our kinematical skeleton is based on anatomy. Special considerations have been taken to include anatomical features like axis displacements, range of motion control, and joints coupling. Once a 3D model of the skeleton is built, it can be simulated by data coming from motion capture or can be specified by a specialist, a clinician for instance. Our deformation model is an extension of the classical mass-spring systems. A spherical volume is considered around mass points, and mechanical properties of real materials can be used to parameterize the model. Viscoelasticity, anisotropy and non-linearity of the tissues are simulated. We particularly proposed a method to configure the mass-spring matrix such that the objects behave according to a predefined Young's modulus. A contact management model is also proposed to deal with the geometric interactions between the elements inside the joint. After having tested several approaches, we proposed a new method for collision detection which measures in constant time the signed distance to the closest point for each point of two meshes subject to collide. We also proposed a method for collision response which acts directly on the surfaces geometry, in a way that the physical behavior relies on the propagation of reaction forces produced inside the tissue. Finally, we proposed a 3D model of a joint combining the three elements: anatomical skeleton motion, biomechanical soft tissues deformation, and contact management. On the top of that we built a virtual hip joint and implemented a set of medical applications prototypes. Such applications allow for assessment of stress distribution on the articular surfaces, range of motion estimation based on ligament constraint, ligament elasticity estimation from clinically measured range of motion, and pre- and post-operative evaluation of stress distribution. Although our model provides physicians with a number of useful variables for diagnosis and surgery planning, it should be improved for effective clinical use. Validation has been done partially. However, a global clinical validation is necessary. Patient specific data are still difficult to obtain, especially individualized mechanical properties of tissues. The characterization of material properties in our soft tissues model can also be improved by including control over the shear modulus

    Virtual reality for assembly methods prototyping: a review

    Get PDF
    Assembly planning and evaluation is an important component of the product design process in which details about how parts of a new product will be put together are formalized. A well designed assembly process should take into account various factors such as optimum assembly time and sequence, tooling and fixture requirements, ergonomics, operator safety, and accessibility, among others. Existing computer-based tools to support virtual assembly either concentrate solely on representation of the geometry of parts and fixtures and evaluation of clearances and tolerances or use simulated human mannequins to approximate human interaction in the assembly process. Virtual reality technology has the potential to support integration of natural human motions into the computer aided assembly planning environment (Ritchie et al. in Proc I MECH E Part B J Eng 213(5):461–474, 1999). This would allow evaluations of an assembler’s ability to manipulate and assemble parts and result in reduced time and cost for product design. This paper provides a review of the research in virtual assembly and categorizes the different approaches. Finally, critical requirements and directions for future research are presented
    corecore