
IMPS: Implicit Surfaces for Interactive
Animated Characters

by
Kenneth Bradley Russell

B.S., Computer Science and Electrical Engineering
Massachusetts Institute of Technology, Cambridge, MA

June 1997

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE IN MEDIA ARTS AND SCIENCES

at the
Massachusetts Institute of Technology

June 1999

@ Massachusetts Institute of Technology, 1999
All Rights Reserved

Signature of Author

Certified by

Asahi Broadcasting

Program in Media Arts

A C)
and Sciences
May 7, 1999

Bruce M. Blumberg
Corporation Assistant Professor of Media Arts and Sciences

MIT Media Laboratory
Thesis Supervisor

Accepted by V 0

Departmental Committee on Graduate Students, Program in

Stephen A. Benton
Chairperson

Media Arts and Sciences
MIT Media Laboratory

OF TECHNOLOGY

JUN 141999 ROTCH

LIBRARIES

IMPS: Implicit Surfaces for Interactive Animated
Characters

by
Kenneth Bradley Russell

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning

on May 7, 1999
in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

Abstract

Implicit surface modeling in computer graphics is a powerful technique for representing
smooth and organic shapes. Skeletal elements of an implicit surface blend to create a
smooth, seamless skin which exhibits desired properties for animation such as squash and
stretch. Because of their high computational cost to render, implicit surfaces have not been
used extensively in the real-time graphics domain. This thesis discusses the problems and
some solutions in the application of implicit surfaces to the domain of interactive character
animation. A design process for an implicit surface-based character is proposed, from the
modeling and texturing stages to animation and rendering.

Thesis Supervisor: Bruce M. Blumberg
Title: Asahi Broadcasting Corporation Assistant Professor of Media Arts and Sciences

IMPS: Implicit Surfaces for Interactive Animated
Characters

by
Kenneth Bradley Russell

The following people served as readers for this thesis:

Reader:
/ 0.1 Alex P. Pentland

Tos rofessor o edia Arts and Sciences
T Media Laboratory

Reader:
/ Luiz Velho

Associate Professor
lnsti e atematica Pura e Aplicada

Acknowledgments

I thank my parents for their constant love and support.

I give thanks to my advisor, Bruce Blumberg, for being a mentor, advisor, and friend for

the past several years; to my undergraduate work advisor, Sandy Pentland, for his support,

advice, and friendship during my undergraduate and graduate years; and to Luiz Velho, for

his many helpful suggestions and for being an excellent and objective reader.

Thanks to Hans Pedersen for many helpful discussions and suggestions; my lifting part-

ner, Tom Minka, for listening to all of the problems and offering helpful advice; Sumit Basu,

for several helpful discussions; and my officemate and groupmate, Mike Hlavac, for the fun

weekend projects like Melanie and Marco Pollo which kept both of us going.

Thanks to the rest of the Synthetic Characters, Vision and Modeling, and Software

Agents groups for an educational and fun few years.

Contents

1 Introduction, Definitions, and Motivation

1.1 Related Work

1.1.1 Field Functions and Blending Control

1.1.2 Sampling and Tesselation

1.1.3 Texture Mapping and Design

1.2 Implicit Surfaces for Interactive Animated Characters

1.2.1 Domain-Specific Challenges and Opportunities

1.2.2 Contributions of IMPS

1.3 Organization of the Thesis

2 System Design

2.1 Implementation Platform . . .

2.2 Field Function Conventions . .

2.3 Field Functions

2.3.1 Metaballs

2.3.2 Ellipsoids

2.3.3 Line Segments

3 Development of the Polygonization Algorithms

3.1 Introduction .

3.2 Sampling in Local Vs. World Coordinates

3.3 Marching Cubes

3.4 Witkin-Heckbert Particle Simulation

3.5

3.6

Experimental Polygonizer 1: Witkin-Heckbert with Springs

Experimental Polygonizer 2: Surface Walker with Springs

9

.11

.11

. 12

. 13

. 14

. 14

. 15

. 16

18

. 19

. 19

. 22

. 22

. 23

. 23

3.7 Experimental Polygonizer 3: Witkin-Heckbert with Approximate Triangulation 33

3.8 Parallelism . 38

3.9 Decoration: Color, Texture Mapping and 3D Painting 41

3.10 Comparison of IMPS' Texturing Algorithm to Existing Approaches 43

3.10.1 Zonenschein et al. 43

3.10.2 Pedersen . 45

4 Integration with SCOOT 46

4.1 Combining Geometrical and Implicit Objects 47

5 Character Design and Animation 49

5.1 Design of Beanito, the Mexican Jumping Bean 50

5.2 Well-Dressed Flubber . 52

5.3 Sim ple Biped . 54

6 Discussion and Future Work 58

6.1 D iscussion . 58

6.1.1 Problems and Lessons Learned Related to IMPS' Implementation . . 58

6.1.2 Problems with the Implicit Surface Representation 60

6.2 Future W ork . 60

6.3 Conclusion . 62

A Examples and Per-Class Documentation 69

A.1 Obtaining the Source Code . 69

A.2 Usage Notes and Examples . 69

A.2.1 Using glImplViewer and ivImplViewer 70

A .2.2 Exam ples . 70

A.3 Per-Class Documentation . 73

A.3.1 Nodes: Shapes, Blends and Tesselators 73

A.3.2 Auxiliary Classes . 75

B Information for the Developer 77

B.1 Notable missing functionality . 77

B.2 Implementation Details . 78

B.3 Developing New Node Types

B.3.1 The Header File

B.3.2 Method Definitions

B.3.3 Useful Methods

B.4 Actions

B.5 Building an Application

B.6 Known Problems and Porting Notes

. . 79

. . 79

. . 79

. . 80

. . 80

. . 81

81

List of Figures

1-1 Blending of two implicit spheres. 10

1-2 Creasing vs. Blending. 10

1-3 A simple texture-mapped character. 16

2-1 Schematic of a meta-line segment. 23

3-1 Blending rules IMPS imposes upon a hierarchy of Transforms and Shapes.

Points belonging to the dark gray Shape node add in contributions from the

light gray nodes, which correspond to its parents and children. 34

3-2 Illustration of "sliding" of points as surface translates to the right. 37

3-3 Using the differential transform formulation, the surface can tear if the com-

ponents separate at too high a velocity. 38

3-4 Two metaballs with very different textures illustrating texture seams and

exposure of new texture coordinates as they separate. 43

5-1 Beanito, the Mexican Jumping Bean. 51

5-2 Flubber dressed up. 52

5-3 The biped before and after IMPS' implicit function reformulation. The figure

on the left is rendered using IMPS' Marching Cubes implementation, while

the figure on the right is triangulated using Tesselator3MP. 54

5-4 Left to right, top to bottom: calibration pose; gymnastics, illustrating no

unwanted blending between hands, knees and hips; Saturday Night Fever;

relaxing after a hard day's work. 55

A-1 Example derived from tess3TransformedBlobs.wrl. 71

Chapter 1

Introduction, Definitions, and

Motivation

This thesis proposes a real-time, interactive system for modeling animated characters using

implicit surfaces.

Most current systems for creating 3D interactive animated characters [17, 18, 19, 20]

use the same polygonal representation for a character's geometry. A character is typically

organized into a skeleton of component pieces of static geometry, or limbs, and animation

is performed by modifying the transforms, or joints, connecting them.

The fundamental requirement for any modeling technique for an interactive animated

character is that the character be able to express its personality. This broad statement

implies many specific criteria. First, the system as a whole must be fast. A character must

not be limited to six frames per second if thirty are required to show its motion in adequate

detail. In addition, in order for the character to appear responsive to the user, its latency

must be low, which implies a high frame rate. Second, the technique must support the

desired visual appearance of the character. In our case we are not striving for a realistic

appearance, but a cartoon-like one. Third, and most important, the modeling technique

must give the artist who is designing the character enough control over its body to create

the compelling motion which will convey the character's personality. In particular, many

of the elements from classical animation such as squash, stretch and follow-through [15]

should be supported.

This thesis discusses the problems and some solutions in the application of implicit

Figure 1-1: Blending of two implicit spheres.

Figure 1-2: Creasing vs. Blending.

surfaces to the domain of interactive character animation. An implicit surface, in three di-

mensions, is a constant-value surface, or isosurface, of a function of three variables f(x, y, z).

For example, rendering the function x 2 + y2 + Z2 = r 2 for a particular value of r produces a

sphere. The surface is implicitly defined by the function f(x, y, z) and the constraint f = r2

rather than, for example, B-spline patches, which have an explicit parameterization of (u, v)

coordinates which range over ([0..1], [0..1]) to traverse the surface.

Implicit surfaces were introduced into the field of computer graphics by Blinn [1], who

proposed the idea of blending. In his formulation, an implicit sphere is represented as

a scaled three-dimensional Gaussian distribution, and the implicit function is the sum of

the component Gaussians. Two implicit spheres, or metaballs, which approach each other

appear to blend because of the overlap of the two distributions (Figure 1-1.) The function

representing the sum of the two spheres' contributions is called the potential function or

field function, because of its similarity to the potential field induced by the presence of two

charged particles such as electrons.

Implicit surfaces appear to provide many advantages over the standard polygonal rep-

resentation for animated characters. This thesis was originally inspired by the ease with

which implicit surfaces model smooth and organic shapes, which appear to be ideal for

modeling cartoon-like characters; in fact, many papers on implicit surfaces are motivated

by this property. Their underlying mathematical representation also provides benefits such

as squash and stretch as elements approach and separate. In addition, an implicit surface

can be tesselated into a single seamless mesh using a polygonization algorithm, whereas

standard polygonal objects exhibit creases where component parts overlap (for example, at

the elbows and knees of a character: see Figure 1-2.) Unfortunately, implicit surfaces are

much more computationally expensive to render than rigid polygonal objects, which has

prevented their widespread use in interactive systems.

This thesis is not the first work to study this application domain for implicit surfaces;

specifically, Opalach and Maddock [8] created a "Disney-style" animation system, which

simulated effects such as skin and hair using dozens of metaballs attached to the surface

of an underlying implicit surface using springs. This thesis differs from their work in two

fundamental ways. First, it does not attempt to model the physics of skin and hair with

metaballs, but instead emphasizes a low primitive count to achieve a "cartoony" look.

Second, it aims for real-time rendering and interactive character design.

1.1 Related Work

The field of implicit surfaces has evolved a great deal over the past decade, with much work

in many areas. To make organization of the background work easier the following sections

will be devoted, in turn, to techniques for blending, rendering, and texture mapping and

design. The contributions of IMPS will then be discussed.

1.1.1 Field Functions and Blending Control

Much research has been done to find blending functions which are inexpensive to compute

and create useful shapes; this section highlights only a few of these results. Blinn's original

paper [1] used a quadric in the exponent of the Gaussian distribution, and suggested the use

of higher-order exponents to create hyperellipsoidal shapes which are more square and less

blobby. Wyvill and Wyvill [21] illustrated the use of implicit hyperellipsoids and proposed

another family of functions with compact support to limit the effects of a particular skeletal

element. Sclaroff and Pentland [22] described a framework for adding modal deformations

and displacement maps to skeletal elements.

The problem of unwanted blending is as old as the field of implicit surfaces and can be

summed up by the desire to have an arm blend with the shoulder and the shoulder with

the torso, but not the arm with the torso. Most implicit surface systems contain a solution

to this problem; Guy and Wyvill [23], for example, used a graph to specify which skeletal

elements should blend and which should not, and described a blending function which takes

the graph into account during its computation.

Blanc and Schlick [24] derived a computationally efficient set of blending functions which

have finite support, unlike the exponential function. Their focus is on anisotropic distance

functions, which allow solids of revolution to be more easily specified using implicit surfaces.

1.1.2 Sampling and Tesselation

Wyvill and McPheeters [25] and Lorensen and Cline [26] independently developed an iso-

surface rendering technique commonly called Marching Cubes, which is still the standard

method for rendering polygonal approximations in most molecular visualization packages.

The Marching Cubes algorithm samples the potential function at the vertices of a regular 3D

grid and determines the intersection of each voxel with the desired isosurface, rendering each

intersecting voxel with some number of triangles. The primary advantage of this algorithm

is its simple implementation; Watt and Watt's [29] is especially elegant. The disadvantage

is that the algorithm is global rather than incremental, and therefore any change in the

surface requires the entire voxel grid to be recomputed and traversed. Opalach and Mad-

dock [34] attempted to localize the effects of surface motion to varying degrees of success.

Problems in the original MC algorithm were noted by Diiurst [27] and corrected by Nielson

and Hamann [28]. Variations on the algorithm include a physically-based polygonizer which

adapts the voxel shape to the surface being rendered, developed by de Figueiredo et. al

[30], and Bloomenthal's non-manifold polygonizer [32].

Most non-raytracing implicit surface rendering techniques were variants of the March-

ing Cubes algorithm until Witkin and Heckbert [31] devised a physically-based sampling

technique which simulates a set of particles drifting on an implicit surface. Two advantages

of their algorithm over previous particle systems are its ability to rapidly fill in poorly-

sampled regions of the surface via particle growth and fusion, and the regularity of the

resulting sampling. This paper sparked new work in many areas of implicit surface research

such as polygonization and texture mapping.

Rodrian and Moock [36] devised a variant of Witkin and Heckbert's sampling algorithm

which was designed to produce closed surfaces composed of triangles rather than discon-

nected samples. They simulate springs rather than particle repulsion, and add heuristics for

handling topology changes and "folding" of the mesh which can easily occur with spring-

based simulations. They also discuss modifications for curvature adaptivity and accelerated

convergence by applying the skeletal motion directly to the mesh vertices. This thesis will

present a much simpler algorithm for tesselation based on the Witkin-Heckbert algorithm

which preserves the attractive dynamics of their simulation and requires fewer iterations to

converge.

Stander and Hart [40] focused on guaranteeing the topology of an implicit surface poly-

gonization by tracking the critical points of the potential function. Their system reaches

real-time rates by combining the Witkin-Heckbert sampling technique with an incremental

update method for the polygonization, avoiding the need to triangulate the entire surface

each simulation step.

R6sch, Ruhl, and Saupe [37] applied Witkin-Heckbert sampling to non-manifold and

infinite-extent implicit surfaces by adjusting the particle radius according to estimates of

surface curvature and proximity to a critical point, as well as constraining the simulation

to a bounding volume.

Desbrun, Tsingos, and Gascuel [33] proposed a new sampling and tesselation technique

for implicit surfaces which samples each skeletal element by performing root-finding along

fixed rays in its local coordinate system. This algorithm has many advantages including

the avoidance of physical simulation and use of temporal information. However, it does not

produce as regular a sampling as Witkin and Heckbert's technique.

1.1.3 Texture Mapping and Design

Implicit surfaces, in general, model smooth shapes well but finely detailed ones poorly.

Adding textures increases visual fidelity and allows the placement of local details which do

not directly correspond to the locations of skeletal elements. Here we are concerned with

the placement of 2D textures on the implicit surface, rather than 3D, or solid, textures

[44] [45], which are better suited for representing shapes hewn out of wood or marble than

animated surfaces.

Pedersen's work on texturing both implicit surfaces [47] and general curved surfaces [48]

is arguably the optimal method for texturing such shapes. The user specifies a set of bicubic

patches which provide a parameterization of the surface with certain desirable properties at

boundary conditions between the patches. This underlying parameterization can then be

used transparently by the artist to interactively place texture patches, or patchinos, onto

the surface. It also allows, for example, flood fills to be performed within user-specified

curves on the surface.

Suggestions are made at the end of Pedersen [47] as to the applicability of his technique

to animated surfaces. In particular, "pinning" the corners of the bicubic patches to the

underlying implicit skeleton would allow the "skin" to "stretch" as the surface moved.

While this method would not allow topology changes, this is not a severe limitation in the

domain of character animation. Stretching is arguably the most intuitive response of the

surface to animation. Unfortunately, the distortion minimization process required to keep

the patches on the surface as it moves is not yet a real-time operation.

Zonenschein, Gomes, Velho and de Figueiredo [49] generated texture coordinates for an

implicit surface by surrounding it with a support surface with a well-defined parameteri-

zation (such as a cylinder) and following gradient lines from the support surface down to

the implicit surface. Their later work with Tigges and Wyvill [51] combines their technique

with the BlobTree [50] to provide a local support surface per implicit element. This reduces

the region over which a support surface has influence to make it easier to reason about

which portion of the texture will show up on which portion of the surface.

1.2 Implicit Surfaces for Interactive Animated Characters

1.2.1 Domain-Specific Challenges and Opportunities

The domain of interactive characters has a set of problems which overlap with much of the

current implicit surface research. One of the primary requirements is that the system run

in real time, typically 30 frames per second (FPS), and support multiple characters which

are always in motion. Another is the support of hierarchical structure. A skeletal implicit

surface bears many structural similarities to a standard hierarchical, polygonal object. The

latter has many component shapes related to each other by the use of transforms: for exam-

ple, one kinematic chain contains the torso, upper arm, lower arm, and hand, connected by

the shoulder, elbow, and wrist. Animations can be created by keyframing these transforms

in a modeling and animation package such as 3D Studio Max. The component shapes in

a polygonal object correspond to skeletal elements in a hierarchically structured implicit

surface.

A desirable property of an implicit surface rendering technique is that it support zeroth-

order control of joints. In a typical run-time character animation engine, when an animation

is being played, each joint's orientation is interpolated from the two nearest keyframes in

the output of the animation package. This new orientation is then set immediately in the

joint. First-order control, for example, would only allow the specification of angular and

translational velocity per joint, while second-order control would allow only specification

of torque and translational acceleration. Zeroth-order control allows standard commercial

modeling tools to be used for animating characters, and makes easier the incorporation of

run-time motion generation techniques such as inverse kinematics.

The structure of an animated character provides certain domain-specific opportunities

as well. At least part of a character is always in motion, so slight visual artifacts on the

surface may not be as noticeable as in a still frame. Topology changes are infrequent or

do not occur at all. Hierarchically structured characters have additional structure over an

unconnected collection of skeletal elements which can be used to infer blending properties,

improve rendering performance, and generate texture coordinates.

1.2.2 Contributions of IMPS

Many of the rendering algorithms described in Section 1.1.2 either run at interactive rates

or were designed with animation in mind. Witkin and Heckbert's sampling algorithm was

created for interactive control as well as rendering of implicit surfaces. Stander and Hart's

variant runs in real time for chains of interacting blobs. Desbrun and Gascuel's algorithm

handles fairly complex scenes at interactive rates. What contributions does IMPS make?

One of the goals of IMPS is to attain real-time, or 30 FPS, rendering rates for reasonably

complex characters. The library contains a new, parallelized, Witkin-Heckbert variant

which polygonizes simple scenes in real time and more complex ones in interactive time (10-

15 FPS.) Instead of using Delaunay triangulation [35] to obtain an optimal triangulation of

a set of points, a linear-time approximate triangulation is used; this is discussed further in

Section 3.7.

Figure 1-3: A simple texture-mapped character.

Witkin and Heckbert's sampling technique, as specified in their paper, only allows first-

order control of surfaces, though it is possible to perform zeroth-order control by trading off

the stability of the solution. Modifications to their algorithm which accelerate its conver-

gence for hierarchical implicit skeletons and which provide a new solution to the unwanted

blending problem are discussed in Section 3.7.

IMPS focuses not only on the real-time aspects of character animation, but on the

entire process of implicit surface-based character design. The system supports interactive

modeling and texturing of characters using a 3D painting approach [46]. It contains a

novel real-time texture coordinate generation technique for implicit surfaces. The system

currently supports static 2D texture maps which reside on animated surfaces, though the

generalization to animated texture maps should be straightforward.

In addition to these specific contributions, this thesis discusses lessons learned during the

implementation of these algorithms and others which did not work as well, and concludes

with an analysis of the suitability of implicit surfaces to the chosen domain.

1.3 Organization of the Thesis

Chapter 2 describes the high-level requirements for IMPS and the effects they had on

the system's design. Chapter 3 discusses the rendering algorithms IMPS implements, the

experience gained from several experimental implementations, and the extensions made

to existing algorithms. Chapter 4 describes how IMPS was integrated with SCOOT, the

Synthetic Characters' Object-Oriented Toolkit, allowing polygonal and implicit objects to

be combined and animated. Chapter 5 presents the character design and animation pipeline

IMPS prescribes and gives examples of characters created with the system. Chapter 6

discusses the applicability of implicit surfaces to the domain of character construction from

a design standpoint, and offers suggestions to future work. Appendix A describes how to

obtain source code for IMPS, contains documentation for glImp1Viewer and ivImplViewer,

shows some example VRML files, lists all of the classes defined by the IMPS library and

provides information on their use. Appendix B describes the programming conventions and

structures used to develop IMPS.

Chapter 2

System Design

This thesis was initially motivated by the desire to eliminate creases at the joints of charac-

ters composed of hierarchically organized polygonal objects, in which the overlaps, and re-

sultant creases, between adjacent objects suggest a continuous skin for the character. Early

on it became clear that implicit surfaces were better suited for modeling cartoon characters

than more photorealistic ones, since the resulting surfaces are qualitatively smooth and

blobby-looking; squash and stretch were therefore desirable properties that appeared to be

automatic in the implicit surface representation.

The approach replaces the standard geometric, polygonal primitives, like ellipsoids, with

implicit ones, like metaballs, meta-line segments and metaellipsoids, while retaining the

hierarchical structure of the character. Joints are animated exactly as with geometrical

models. The implicit representation provides automatic blending, or smoothing, at joints,

and squash and stretch where adjacent primitives move closer together or further apart.

IMPS was designed to plug into the Synthetic Characters' Object-Oriented Toolkit

(SCOOT). SCOOT uses VRML as its input file format for all geometric characters, so it

was desirable to maintain this for implicit surface-based characters. IMPS therefore is a

VRML-based implicit surface toolkit; a hierarchy of implicit primitives such as metaballs

and meta-lines is maintained via the use of VRML-like transforms. The library is built on

a framework for defining VRML node classes which was inspired by the design of Silicon

Graphics' Open Inventor [16]. Documentation for this VRML library is in Appendix B.

IMPS' geometric primitives include metaballs, meta-line segments with differing end-

point radii, and meta-ellipsoids. Each of these primitives is a node type in the library and

can be read from and written to VRML files. For example, the VRML specification of a

metaball looks like
DEF MY-SPHERE Metaball {

center 1.0 0.0 0.0

radius 2.0

}
The library includes multiple blending functions: Blinn's original exponential (imple-

mented using a fast approximation to the exponential function [12], Blanc and Schlick's

finite-support function, and an elliptical blend from Rockwood's paper [38], which is only

suitable for pairwise blends. The specification of these functions in a VRML file is similar

to the specification of primitives and is illustrated in the examples in Appendix A.

IMPS is integrated into the graphics system of the SCOOT system, which is a Java-based

framework for the development of interactive animated characters. Combining SCOOT

with IMPS allows implicit-surface based characters to be animated from a Java application.

Since both geometric and implicit surface-based characters are animated by specifying joint

angles over time, the Java-side interfaces look exactly the same for these two substantially

different geometrical representations. The Java framework also allows rigid and deformable

geometry to be combined; polygons can be used for regions of a character which require

higher detail, such as its face, while implicit surfaces can be used for its body. This will be

described further in Chapter 4.

2.1 Implementation Platform

IMPS was developed on a Silicon Graphics Onyx2 with 8 195 MHz R10000 processors, 1

GB of main memory, and infiniteReality graphics. A goal of this work was to make IMPS

graphics system-independent. The system has been ported to Windows NT and has been

run on a PC with two 400 MHz Pentium II processors and 256 MB of RAM. Most of the

classes comprising IMPS, as well as the underlying VRML library, are platform-independent;

specific exceptions are listed in Appendix B.

2.2 Field Function Conventions

In order to be able to specify implicit surfaces in an object-oriented manner, the forms of

the primitives' field and blending functions must follow some conventions. Specifically, the

desired isovalue of each primitive, as well as the domain and range of the blending functions

applied to the primitives' field functions, must be specified.

Relatively few of the referenced papers are very precise about the forms of the primitives'

field functions. Notable exceptions are Blinn's initial paper [1] and Blanc and Schlick's paper

on anisotropic field functions [24].

Witkin and Heckbert, for example, [31] suggest the use of the intuitive implicit definition

of a sphere centered about the origin:

f(zy,z)= x2 + y2 + z - r2

where the desired surface lies at f(x, y, z) = 0. Assume a scaled Gaussian distribution is

used as the blending function. Using vector notation, where x is the point at which the

function is being evaluated and c is the center of the metaball, the resulting field function

for the metaball is

||x - c1|2 _r2exp(f(x)) = exp (2 2 (2.1)

o is proportional to the standard deviation of a Gaussian.

The above formulation, characterized by subtraction of the radius parameter, visualiza-

tion at f(x) = 0, and a global specification of a, was originally used for IMPS' metaball

and meta-line segment implicit primitives. The resulting primitives blended well when their

radii were similar, but when a small metaball was brought close to a larger one, the larger

would quickly envelop the smaller, rather than allowing the smaller to add detail to the

larger surface.

Blinn's formulation [1] provides insight to this problem. Consider representing the field

function as a weighted sum of Gaussians with differing variances,

N
f(x) = b;- exp(-a;|x -ci1| 2)

N

= Zexp(-al|x - cT|| 2 + In bi)
i=1

As Blinn points out, it is advantageous to reparameterize this equation into roughly orthog-

onal radius and "blobbiness" parameters for each Gaussian. The ai coefficient can be solved

for in terms of bi by choosing an isovalue f(x) = T and plugging in the desired radius R of

an individual metaball:

T = bi -exp(-aiR?)

InT

Blinn now defines a "blobbiness" parameter Bi = ln(!), so b= The field function

now becomes

f(x) = T T, exp - - 2

1 exp(Bi) R;

S Ti - exp -c 2 - B (2.2)

with Ti, a redundant per-metaball threshold, chosen to be 1. The global isovalue for which

this function will be visualized has yet to be chosen, but is also typically chosen to be 1.

Note that Bi must be negative to cause the function to decay to zero as the distance from

the center point becomes large. Note also that a blobbiness closer to zero actually indicates

a more blobby metaball, since the blobbiness term indicates how quickly the exponential

falls off; blobbiness might be better termed "hardness", as Blanc and Schlick [24] call it.

Matching coefficients between Equations 2.1 and 2.2, it is clear that Blinn's formulation

is functionally equivalent to that originally derived for IMPS from Witkin and Heckbert's

suggestions, with the mapping

-1 Bi
02 - R

r2 =eB

or, rearrangmng,

Ri = v/-Bi a 2 - ,2 r = r (2.3)

As Blanc and Schlick [24] show, it is straightforward to separate the exponential blending

function from the distance function of the implicit primitive to allow the blend function to

be replaced. Blinn's definition of the field function implies a different metaball distance

function than that suggested by Witkin and Heckbert: he uses the function f(x, y, z) =
2 2 visualized for f = 1 rather than f(x, y, z) = x- r2 for f = 0. Note that

Witkin and Heckbert's formulation couples Blinn's "blobbiness" parameter and the radius

of the primitive. This coupling, combined with the lack of per-primitive a parameters

in IMPS' original exponential blend formulation, caused smaller primitives to more easily

blend with neighbors and therefore resulted in the undesirable behavior of smaller primitives

being rapidly enveloped by their larger neighbors, rather than maintaining their shape and

adding detail to the larger.

For this reason, IMPS' distance functions are formulated in terms of normalized radii,

as seen in the sections below. They are all expressed in terms of squared distance; this is an

invariant which must be maintained in any new subclasses in order for the blend functions

to operate properly.

2.3 Field Functions

2.3.1 Metaballs

IMPS' metaball distance function, as suggested above, is

f(x) = X C2

where x is the three-dimensional point at which the distance function is being evaluated, c

is the center point of the sphere, and r is the radius of the sphere.

Region 2

P2
d

Figure 2-1: Schematic of a meta-line segment.

2.3.2 Ellipsoids

IMPS' ellipsoid is parameterized in terms of the lengths of its three axes, a, b, and c. In

the ellipsoid's local coordinate system, the distance function is

f(x,y,z)= X +2 +

Since IMPS' primitives must be able to be expressed in world coordinates (see Sec-

tion 3.2), the actual implementation additionally contains the three normalized axes and

center point of the ellipsoid. The center point is subtracted from the incoming point and dot

products taken with the three axes to obtain the x, y, and z values in the above equation.

2.3.3 Line Segments

IMPS contains a meta-line segment primitive allowing specification of two endpoints and

radii at these endpoints. Figure 2-1 illustrates the geometry of the primitive. Points p1 and

P2, as well as radii r1 and r2, are given.

Clearly there are three regions of the line segment, corresponding to whether the sample

point is closest to endpoint 1 (region 1), the intervening line segment (region 2), or endpoint

2 (region 3). Note that the boundaries between these regions are not coincident with the

endpoints; this is important in order to avoid discontinuities in the gradient. In order

to determine the boundaries' locations it is necessary to solve for the unknown angle 0.

Region 1 Region 3

Comparing similar triangles,

dsinO = r2

(IIP2 -pill + d) sin 0 = r1

Subtracting and canceling,

- = sm
||P2 - P1||

It is now possible to compute the distance between pi and the boundary between regions

1 and 2, r1 sin 0, and the distance between P2 and the boundary between regions 2 and 3,

r 2 sin 0.

Using the identity sin 2 (+ cos 2 0 = 1, cos 0 can be found and used to compute the

radius of the line segment at the region 1/2 boundary, r1 cos 0, and the radius at the region

2/3 boundary, r 2 cos 0.

It is now possible to compute the distance function of the line segment for any sample

point. In similar fashion to the other primitives, the squared distance to the line segment

is divided by the squared radius at this point. For points in regions 1 and 3, the radius and

distance computations reduce to the metaball's case. For points in region 2, the orthogonal

distance is computed using the Pythagorean theorem, and the radii at the region boundaries

are linearly interpolated based on the sample point's relative position to those boundaries.

Chapter 3

Development of the

Polygonization Algorithms

3.1 Introduction

Once an implicit surface is specified by a hierarchical combination of implicit primitives, it

must be translated into some number of triangles, which are the basic geometric objects

renderable with today's graphics hardware. This translation process is known as polygo-

nization, and is performed each time the surface needs to be rendered. When the surface is

in motion, polygonization is necessary to render each frame of the animation.

During the development of IMPS, several polygonization algorithms were implemented

and tested, the goal being a robust algorithm capable of running in real time (that is, thirty

frames per second.) This chapter describes in chronological order the development and

implementation of the algorithms and the problems which were encountered and solved.

3.2 Sampling in Local Vs. World Coordinates

All polygonization algorithms for implicit surfaces are necessarily based on computing some

sampling of the surface. There is a fundamental difference in how implicit surfaces are

sampled compared to other, more widely used, curved surface representations such as B-

spline patches or NURBS. B-spline patches are organized into rows and columns of cubic

splines, and are controlled by a set of three-dimensional control points organized into a grid.

The patch has an explicit parameterization; it has two defining parameters u and v (each in

the range [0..1]) over which iteration can be performed to render the surface. The surface's

three-dimensional position can be computed for any (U, v) pair by evaluating the adjacent

B-splines and performing the appropriate cubic interpolation for the desired point. The fact

that the surface has an explicit (U, v) parameterization makes polygonization simple; the

surface needs only to be sampled on a regular (u, v) grid and the resulting samples organized

into pairs of triangles. Texture mapping such surfaces is relatively straightforward because

the (u, v) coordinates can be re-used as texture coordinates.

Implicit surfaces have no explicit parameterization. They are defined by an implicit

equation in x, y, and z, and a constraint thereon. The field function is defined everywhere

in 3-space, but the constraint is only satisfied for points on the surface. It is not possible

to directly sample the surface of an implicit surface; it is only possible to sample the

three-dimensional potential field defined by its primitives. For this reason, implicit surface

sampling is based on evaluating the field function and its gradient at a three-dimensional

point p.

The field function is defined by the sum of the field functions of its primitives (ignoring

the "unwanted blending" problem for the moment), and there are therefore two fundamental

methods for evaluating the function at a point p. One method is to iterate through the

primitives, transforming the world-coordinate point p into the local coordinate system of

each primitive, evaluating the function of the primitive in local coordinates, and summing

the result with that from other primitives. The second method maintains the primitives in

world coordinates, so that evaluating the field function per primitive at p is done merely by

passing p into the primitive's evaluate method.

Any polygonization algorithm for implicit surfaces will necessarily evaluate the field func-

tion many times per frame. It is therefore obvious that if the primitives can be maintained

in world coordinates, many world-to-local matrix transformations can be saved during poly-

gonization. Since IMPS was intended to be a real-time implicit surface animation system,

an early design decision was to allow primitives to be flattened into world coordinates for

more efficient sampling. The disadvantage to this approach is added complexity per primi-

tive; each must be able to transform itself into world coordinates. In the case of a metaball

(sphere), for example, it is not sufficient merely to specify the radius; both its radius and

center point must be specifiable to allow the value of the current transform to be flattened

into the primitive.

The above formulation for a metaball does not support non-uniform scales; in order to

do so it would need to have many more parameters, including the principal and scale axes,

to handle the VRML Transform node's "scale" and "scaleOrientation" fields [7]. IMPS'

ellipsoid class comes closer to handling non-uniform scales properly, but is more compu-

tationally expensive to evaluate. Since most animation of standard, polygonal characters

is constrained to modification of joint angles, IMPS defines its own "rigid transformation"

class, allowing rotation and translation, but not scale, to be modified. Making the simpli-

fying assumption that per-primitive scales are uniform and not time-varying simplifies the

implementation of primitives when they are to be sampled in world coordinates, but has

the disadvantage of not being able to model per-primitive deformations like squashing. The

ramifications of this design decision are discussed further in Chapter 6.

3.3 Marching Cubes

One of the earliest methods for rendering isosurfaces, Marching Cubes is still the standard

technique for rendering polygonal approximations in most molecular visualization packages.

During the initial development of IMPS, Marching Cubes was implemented as a baseline

rendering algorithm. The implementation from Watt and Watt [29] was used as a start-

ing point. There was still a fair amount of work to make this implementation complete;

specifically, the data tables for vertex and edge information were left to the reader, so a

program was written to enumerate the inside/outside possibilities for each vertex in the

cube as well as the orientations of the cube. The result of this program was a set of data

tables compatible with Watt and Watt's Marching Cubes implementation, which is one of

the most elegant and concise versions available.

The advantage of Marching Cubes is its robustness, which is why it is the standard

isosurface visualization algorithm. Its primary disadvantage is the fact that the entire

polygonization solution must be recomputed from scratch each frame; the solution is not

incremental. This is most easily recognized by the fact that the voxels associated with the

solution are aligned with world-coordinate axes. If a character waves its arm, it should be

possible to identify that the limbs have not deformed much, and merely transform the "skin"

vertices into their new positions, saving many evaluations of the field function. The fact

that the mesh generated by Marching Cubes is aligned to world-coordinate axes rather than

the local coordinate systems of the primitives is a good indication that such incremental

solutions are not efficiently applicable; in this example, the body's mesh would be aligned

with the world-coordinate axes while the arm's would be aligned with the shoulder's local

coordinate system, and some sort of resampling and stitching would be necessary near the

shoulder. Opalach and Maddock [34] attempted to speed up the MC algorithm by keeping

track of which voxels were "dirty" and resampling only at those voxels' corners each frame.

Unfortunately their data sets did not have any hierarchical structure, but were merely a

random set of metaballs. It is unlikely that such methods would provide any performance

increase in the case of hierarchically structured implicit surfaces.

Initial tests with the MC algorithm indicated that with a moderately complex animated

three-link arm, a parallel MC implementation (providing a seven-times speedup on the

available hardware in the ideal case) would still not attain a real-time frame rate, so the

Marching Cubes algorithm was abandoned for further development.

3.4 Witkin-Heckbert Particle Simulation

Witkin and Heckbert [31] developed a physically-based particle simulation on implicit sur-

faces. In their formulation, particles repel each other, grow when they are in unpopulated

regions, and stochastically fission and collapse when they grow too large or too small. The

dynamics of their simulation were designed to stabilize around a hexagonal packing of par-

ticles, and in fact diagrams in [31] show that this is indeed the preferred configuration. As

it is obvious how a hexagonal packing should be triangulated, this algorithm was chosen as

the basis for further polygonization work in IMPS.

The algorithm described in [31] was implemented. The first problem encountered was

a sign error in the equation for the desired velocity; the version of the paper available

from http: //www. cs. cmu. edu/~ph contains this fix. The next problem encountered was

that particles appeared to be splitting incorrectly; when sampling a sphere, for example,

the first particle would fission, but the second would travel to the other side of the sphere

before fissioning, and the resulting particles failed to spread to evenly cover the surface

of the sphere. The problem was eventually traced down to the fact that particles' radii

were shrinking to zero (and in fact becoming negative), but it was unclear which portion

of the dynamical simulation was causing this condition to occur. A web search turned up

a publically available Witkin-Heckbert simulator written by Hans Pedersen, available from

http://implicit.eecs.wsu.edu/course14/code/imp.tar. This implementation used a

simplification of the radius update equation, later confirmed by Pedersen to be a fix for

precisely this problem.

Witkin and Heckbert derive the update to each particle's radius as follows; see [31] for

the full details and information on the notation. Each particle's energy is defined to have

two components; that which it induces on its neighbors, and that which its neighbors induce

on it. The latter component is related to this particle's radius, and is defined as

n

Di= Z E
j=1

The hexagonal packing constraint implies a global desired energy level E. To keep D' near

this value linear feedback is used:

DZ = -p(Dz - E)

p is the feedback constant. Using the chain rule, the rate of change of the particle's radius

which will cause this amount of feedback is

.. Dz
04 =

#+ ND2

where # is a constant to avoid dividing by zero when a particle has no neighbors, r' is the

vector from particle i to j, and where the partial derivative of the induced energy on the

particle with respect to its radius is

n .2
D= r'1 EtI

Experimentally, this radius update rule caused particles' radii to become very small and oc-

casionally even negative. The update rule in Pedersen's implementation, which was adopted

for use in IMPS, is equivalent to replacing D'i with D', removing the scaling by the square

of the distance between the particles:

-. Dt
- =

1 Di

Implementing this modification to the particle radius update equation generated the ex-

pected results, similar to the behavior described in [31].

Tests with the particle simulator were encouraging. It attained a significantly higher

frame rate than the Marching Cubes algorithm. It appeared to be quite robust, successfully

sampling several collections of primitives, although surface motion caused particles to drift

and occasionally fly off the surface at high velocities; this problem is discussed further in

Section 3.7. Because the algorithm is incremental (using the previous frame's solution as

a basis for the next frame's) it appeared that it could be modified to take advantage of

knowledge of the hierarchical structure of a character's geometry. Modifications made are

discussed in Section 3.7.

3.5 Experimental Polygonizer 1: Witkin-Heckbert with Springs

The first experimental polygonization algorithm implemented for IMPS (ImTesselator)

was a modification of the Witkin-Heckbert simulation designed to add triangle generation

by maintaining a set of springs and dampers between vertices; these springs defined the

edges of triangles. Vertex fissioning added springs between the new vertex and neighbors of

the parent. The springs' rest length was determined by the desired inter-particle distance

from the Witkin-Heckbert simulation. A map of the vertices on the edge of the -currently

polygonized patch, the edge map, was maintained and used to determine whether a vertex

was in the interior of the patch, the goal being to avoid creating overlapping triangles when

determining a new vertex's neighbors. The combination of the Witkin-Heckbert simulation

with springs is similar to that described by Rodrian [36].

There were several problems with this polygonizer. Geometrical arguments used to

determine neighbors for a new vertex during fission assumed relatively flat local surface

patches, a condition which did not hold for more complex and high-curvature shapes; this

caused incorrect polygonization of certain shapes. Although the edge map of the currently

polygonized surface patch was maintained, there was still no notion of when that patch be-

came self-intersecting or when triangles folded back over themselves, and in real-world tests

this happened more often than not. Finally, the dynamics of the Witkin-Heckbert simula-

tion were designed to be self-contained; adding spring dynamics to the equations caused the

overall performance of the system (ignoring the previous two problems) to decrease signifi-

cantly compared to the unmodified particle simulation. More discussion of these problems

and others is at the end of the next section.

3.6 Experimental Polygonizer 2: Surface Walker with Springs

The second experimental polygonization algorithm implemented for IMPS

(ImTesselator2) was designed to lay triangular tiles on the surface in an expanding patch.

One point was used to initialize the system; when it reached the surface (determined by

the magnitude of the gradient falling beneath a threshold) its state was marked as inactive

and its position in space fixed. A second point was then created, attached to the first by a

rigid link of user-defined length, and allowed to drift to the surface. A third point was then

attached rigidly to the other two and allowed to drift toward the surface; when it reached

the surface, the first triangle was created. Successive triangles were added to the system by

choosing an edge on the edge map which had two inactive (i.e., immobile) vertices, attaching

a new vertex to these two by rigid links, and allowing the resulting triangle to drift outwards

towards the surface. Geometrical arguments were used to determine when a portion of the

edge map was significantly concave, in which case a triangle would be created between three

vertices on the edge map rather than through "fissioning" of an existing edge. Fissioning of

an edge was prohibited when the edge was too close to another; this was intended to allow

the algorithm to halt. The intended result of the expansion of the polygonized patch was

a single triangulated patch with a thin gap which could be "zippered" to close the surface.

Once the surface was closed, per-vertex gradient following and spring and damper dynamics

between adjacent vertices were used to track surface motion. A similar surface marching

method was developed independently by Hartmann [42].

As with the first experimental algorithm, several problems were encountered. This al-

gorithm was primarily intended to counter poor performance of the first one during the

expansion of the mesh, such as the surface folding in on itself; for this reason vertices'

positions in space were fixed once they reached the surface, and new vertices added only

between edges whose endpoints had been fixed. The first modification necessary was the

concavity test to connect vertices on the edge map that were suitably close to one another;

the result of this modification was large regions of poorly shaped (long and thin) trian-

gles. Further, since the algorithm was deterministic once the initial point had been placed,

such large regions were pervasive and inevitable. Witkin and Heckbert's simulation used

stochastic fissioning and merging of particles to obtain a visually more even sampling.

Despite careful bookkeeping of vertices on the edge map and tests to ensure that trian-

gles were not created which would cross the edge map (thereby creating a self-overlapping

surface), in some cases the algorithm managed to wrap a surface twice. In other cases

the algorithm failed because the randomly positioned initial point had drifted to a poorly-

conditioned portion of the surface.

Once the surface's triangulation had been closed and the dynamics simulation had be-

gun, it became obvious that spring dynamics were not sufficient to track surface motion. A

long period of time was required for local changes in one portion of the mesh to propagate

outward and stabilize. In contrast, the dynamics of the Witkin-Heckbert simulation manage

to rapidly track surface motion and deal well with topology changes of the implicit surface,

which spring-based simulations [36] can not handle without special cases.

The overall lessons from these experiments were twofold. First, geometrical arguments

are not sufficient during the development of an implicit surface polygonization algorithm. If

the algorithm requires rules as to when to connect adjacent vertices on the edge of a surface

patch, for example, then if these rules are derived with an assumed local surface geometry

(i.e., flat) then they will surely fail in the case of more complex and high-curvature surfaces.

Second, spring dynamics are unattractive for the purpose of maintaining an implicit surface

polygonization. High damping constants are required to prevent oscillations in the surface,

which lead to instability and the necessity of complex integration algorithms. In addition,

local effects require a great deal of time to propagate throughout a spring-simulated mesh.

Some of these problems could be solved using a better integration technique like implicit

integration; see, for example, Desbrun, Schr6der, and Barr [6]. Overall, combining springs

with Witkin-Heckbert dynamics was found to be a poor match; these results and those

in the next section can be compared to those described in [36], which describes a similar

combination.

3.7 Experimental Polygonizer 3: Witkin-Heckbert with Ap-

proximate Triangulation

The third polygonizer implemented for IMPS (ImTesselator3) again used the Witkin-

Heckbert particle system as its basis. A spatial partitioning scheme described by Heckbert

[39] was incorporated to decrease the complexity of the algorithm from O(N 2) to approach

O(N). The observation made by Heckbert is that most of the time in the algorithm is

consumed by the per-particle energy computation, which requires contributions from each

particle's nearest neighbors to be summed. His spatial partitioning scheme hashes three-

dimensional space into a set of buckets; many volumes in space map to the same bucket, so

it is advantageous to tune the size and number of the buckets to surround the model to be

visualized as closely as possible.

Once this spatial partitioning scheme was in place, each particle contained a list of its

nearest neighbors. It was therefore feasible to implement the intuitive algorithm mentioned

in Section 3.4 of connecting local hexagonal patches into sets of triangles. The specific

algorithm is as follows:

1. Define n as the number of nearest neighbors within a user-defined radius of the current

particle. This is efficiently computable since the result of the spatial subdivision

query is a list of some number of the particle's nearest neighbors sorted by increasing

distance.

2. Generate an arbitrary set of two unit vectors perpendicular to the gradient of the field

function at the current particle's position and to each other. These form a temporary

two-dimensional basis; call these vectors be and b1. These are ordered so the cross

product of be and b1 is the normal to the surface at the particle's position.

3. For the first n nearest neighbors, find the vector from the current particle to the

neighbor, project it onto bo and b1 (call these dot products x and y), and compute the

arctangent of y/x (that is, atan2(y, x).) Call the resulting angle 0. Sort the first n

nearest neighbors by increasing 9. This computes a counterclockwise ordering of the

nearest n neighbors to the current particle.

4. Iterate through the n sorted neighbors, attempting to add triangles between the cur-

rent particle, the ith neighbor, and the (i + 1)%nth neighbor. Each particle keeps

Figure 3-1: Blending rules IMPS imposes upon a hierarchy of Transforms and Shapes.
Points belonging to the dark gray Shape node add in contributions from the light gray
nodes, which correspond to its parents and children.

track of which triangles it is a member, so duplicate triangles are avoided.

The standard triangulation technique for unorganized point sets, Delaunay triangula-

tion, is optimal according to some set of criteria. Su and Drysdale [35] compare several

algorithms for computing the Delaunay triangulation of a 2D point set. The algorithm

described here is approximate; it does not guarantee that no poorly formed triangles will

be added to the triangulation, nor does it guarantee that no overlapping triangles will be

created nor that no holes will appear in the triangulation. The advantage of this algorithm

is its speed. When combined with the Witkin-Heckbert sampling method (with which it was

designed to work), this algorithm requires only three to four milliseconds of work for a mesh

of a few hundred triangles. The bottleneck in the overall algorithm is still the evaluation of

the particles' energies; see Table 3.1, below.

This triangulation algorithm is similar to that described by Crossno and Angel [41],

although IMPS' makes no attempts to control the aspect ratio of its generated triangles nor

the appearance of overlapping triangles in the interest of speed.

With a Witkin-Heckbert based polygonization algorithm in place, modifications were

I

made to take advantage of the hierarchical structure of animated characters. First and

most necessary was a solution to the unwanted blending problem. The rule chosen for

IMPS was that a particular implicit primitive would blend with its siblings, parents and

children in the hierarchy. Grandparents would not, however, blend with grandchildren.

Figure 3-1 illustrates these rules. Each particle keeps track of the primitive which currently

owns it, defined as the primitive whose field function contribution is closest to the value

1.0. From frame to frame, particle ownerships can only be transferred to blend neighbors;

therefore a particle may move from one primitive to its sibling or parent, but not to its

grandparent. Frame-to-frame coherence of the surface prevents unwanted blending. How-

ever, when particle ownership changes, the patch of which it is a member changes, and

since it was previously constrained to the surface of the old patch but not the new, it can

be far enough away from the surface that it "blasts off", an instability apparently inherent

in the Witkin-Heckbert simulation. A significant problem in the construction of bipedal

structures with IMPS was "fighting" over particle ownership at non-blending regions (for

example, between a torso and an upper arm in the region of the shoulder), a consequence

of repeated particle blast-offs, deaths, and fissions. These stability issues are discussed in

Chapter 6.

Another significant modification to the algorithm was made to take advantage of kine-

matic motion of characters. For example, if a character bends its arm at the elbow, particles

sampling the surface farther down the arm, for example at the hand, should be automati-

cally transformed according to the elbow's rotation to keep up with the surface motion.

To implement this functionality two elements are necessary: first, the differential trans-

formation from frame to frame must be computed for each joint and applied to all points

belonging to primitives below this joint in the hierarchy. Second, the implicit primitives

below this joint must be transformed to their correct positions for the current frame.

A typical run-time animation system contains information about how to set all of the

character's joints at each frame to produce a desired motion. That is, the joint angles

are specified absolutely each frame, not in terms of a differential from the previous frame.

Requiring differentials or joint angle velocities to be specified by the animation system

causes many problems including the potential for roundoff error and more difficult control.

For this reason IMPS was designed to allow joints' orientations to be specified completely

each frame; this is a zeroth-order control mechanism. All of the differential information

required for incremental polygonization is computed internally by the renderer.

The fundamental data structure in IMPS which assists in the computation of differential

transforms is the skeleton cache. As its name implies, it represents a cache of the current

pose of the character's geometry, or skeleton. The skeleton cache is initialized from the

VRML file specifying the character's geometry when it is first loaded. At this time copies

of the character's implicit primitives are made and stored internally to the skeleton cache.

At run time, the application specifies the transforms as desired; the skeleton cache then

traverses the scene graph, applies these transforms to the internal copies of the primitives,

thereby transforming them into world coordinates, and computes the differential transform

to be applied for the current frame to particles owned by a particular implicit primitive. The

skeleton cache also assists in the computation of the blending function by sorting primitives

into groups with which they blend, but this is conceptually less important than its other

functionality.

The skeleton cache allows the previous frame's polygonization to be used as a better

starting point to the current frame's by taking account, in an approximate fashion, of the

rigid motion of the character. Witkin and Heckbert's original paper attempts to solve this

problem in a different manner; they allow only specification of velocities of the component

primitives in a compound shape, which is a first-order control mechanism. An additional

term, shown in Equation 3.1, is added to each particle's velocity update equation, which

contains the partial derivative of the particle's position with respect to the surface parame-

ters. It seems the surface motion is therefore taken into account when the particle's position

is updated each frame; in addition to the repulsion forces and surface gradient which affect

the particle's position, changes to the surface itself cause the particle to move.

Fq. 4 i 31
=F + (3.1)

Unfortunately this formulation is not quite correct. First, it does not allow the speci-

fication of rotations which affect the implicit primitives. Second, even in the case of pure

translation there is an error. Consider a sphere sampled by particles which translates to the

right, as in Figure 3-2. The partial derivative of the field function with respect to the surface

parameters (Fq) points in the rightward direction, as expected. However, from examination

of the particle's velocity computation (Equation 3.1), the contribution from this term is only

Figure 3-2: Illustration of "sliding" of points as surface translates to the right.

in the direction of the gradient of the field function at the particle's position (Fk); since

the gradient points outward from the center of the sphere, this will cause particles to drift

towards the back of the sphere even if Witkin and Heckbert's surface motion compensation

term is added to the solution. For these reasons this term was not implemented in IMPS'

version of their particle system.

The differential transform modification to the Witkin-Heckbert particle system was in-

dependently discovered by Rodrian [36] and is also discussed in the context of texturing

implicit surfaces by Zonenschein et al. [51]. However, rather than computing hard "owner-

ship" of a particle by an implicit primitive, both papers discuss taking a weighted average

of the differential transforms of surrounding primitives, weighted by the field function (ap-

proximately a Euclidean distance metric.) It is difficult to see precisely what this weighted

average does to the transform. For inspiration we can look to Shoemake's paper on polar

decomposition of transforms [13]. This paper shows the skew that occurs when linear inter-

polation is performed between two transform matrices; the intuitively proper interpolation

between these matrices reqires a factorization of the matrix and spherical linear interpola-

tion of the rotation component. For more than two transform matrices the interpolation or

weighted average problem is even more difficult. It is clear, however, that a simple weighted

average of transformation matrices is unlikely to produce an intuitively recognizable or

formally analyzable result.

IMPS' differential transform modification, on the other hand, essentially computes a

Voronoi diagram of the implicit surface, dividing it into multiple implicit patches. Parti-

cles are assigned to patches via the ownership mechanism and kinematic motion is applied

Figure 3-3: Using the differential transform formulation, the surface can tear if the compo-
nents separate at too high a velocity.

independently to each implicit patch before running the particle simulation. Intuitively

it seems that at patch boundaries, for example at the joints of a character, gaps will be

most prominent after the differential transforms are applied. If the angular or translational

velocity is too great at the joint, gaps can appear if the particle system is unable to suffi-

ciently resample the area, as shown in Figure 3-3. These gaps are a consequence of IMPS'

triangulation algorithm being both localized and approximate; it leaves holes in the surface

when particles do not sufficiently sample it. On the other hand, the differential transform

modification is in most cases a good approximation to the surface motion and greatly ac-

celerates the convergence of the Witkin-Heckbert simulation when the surface is in motion,

especially when rotational motion is applied to the root of a chain of implicit primitives, as

is shown in Section 5.3.

3.8 Parallelism

As the initial target platform for IMPS was a multiprocessor Silicon Graphics Onyx2, paral-

lelizing the polygonization algorithm was a high priority. As soon as ImTesselator3 proved

to be reasonably robust, a multiprocessor version was written (ImTesselator3MP) and used

as the basis for further development.

The polygonization algorithm can be broken down into a series of steps, many of which

Particle Sim 8.86 5.17 45.32 50.64
Add/Del 2.8 1.36 11.78 14.41

Mesh Update 3.0 2.65 25.46 17.29
Total Update 15.63 9.71 86.27 88.06

Graphics Render 17.96 7.21 14.0 12.19
Total Time 33.61 16.93 100.27 100.26

Frame Rate (Hz) 29.75 59.03 9.97 9.97
Num Particles 184 98 820 907

Num Tris 390 200 1931 2357

13 metaballs
22 metaballs

31 metaball, 5 line segments
'18 line segments

Table 3.1: Timing results for Tesselator3MP. Particle simulation is parallelized (7 CPUs)
repulsion force computation; add/del is sequential addition and deletion of particles from
simulation; mesh update is sequential regeneration of triangle mesh. All times are in mil-
liseconds per frame.

Mesh Update 88.96 22.65 500.48 2642.91
Graphics Render 27.01 23.55 33.76 25.03

Total Time 115.97 46.2 534.24 2667.95
Frame Rate (Hz) 8.62 21.65 1.87 0.37

Num Vertices 412 214 974 870
Num Triangles 820 408 1942 1740

X Resolution 12 10 20 20
Y Resolution 12 10 20 40
Z Resolution 12 10 20 20

Table 3.2: Timing results for IMPS' non-parallelized MarchingCubes implementation. Res-

olutions were chosen to match the visual fidelity of Tesselator3MP as closely as possible.

Note that the marching cubes renderer does not render textures. All times are in millisec-

onds per frame.

TransformedBlobs' TexturedBlobs' Flubber8' SimpleBip014

TransformedBlobs TexturedBlobs Flubber8 SimpleBip01

are made explicit in Witkin and Heckbert's original paper [31]. First, each particle's cache

of its nearest neighbors is updated and used for further calculations. Second, the particles'

velocities are computed; these are used later in the integration step when the positions

are updated. Third, the rate of change of the particles' radii are updated. Fourth, the

particles' positions and radii are updated by adding on their respective velocities times the

time step. Fifth, particles undergo the fission/fusion process described in [31] to split too-

large particles and remove too-small ones. Finally, the triangle mesh is updated; per-vertex

colors and texture coordinates (see Section 3.9) are computed, and the triangle list for the

current frame is recomputed from scratch. Note that since each particle already knows its

nearest neighbors, this is a linear-time operation and is not the bottleneck in the algorithm;

this has been verified experimentally (Table 3.1.)

The algorithm as expressed can clearly be broken down into two phases; the compute

phase, during which particles' velocities and radius derivatives are computed, and the update

phase, during which these deltas are added on to the current particle position and radius.

The update phase is necessarily a sequential operation since the spatial subdivision data

structure is not thread-safe when moving particles from one bin to another. However, the

compute phase, including the update of the particles' nearest neighbor caches (which is a

query operation on the spatial subdivision), can be parallelized.

At the beginning of time the ImTesselator3MP renderer starts up a user-specified num-

ber of threads (defaulting to a single thread) and, on Irix, attempts to exclusively schedule

one thread per CPU using Irix-specific system calls. A work queue consisting of an array of

particles is allocated for each thread. At run time, the "master" thread distributes particles

to threads' work queues during the sequential or "synchronous" phase by adding each newly

fissioned particle to the thread with the least number of particles; this maintains an even

distribution of work.

The system starts in the sequential phase. The master thread tells all worker threads to

run. In parallel, these threads query the spatial subdivision, update their particles' nearest

neighbor caches, and compute velocities, normals, and radius deltas. Note that the com-

putation of all of these quantities is independent for each particle, since each relies only

on others' positions and radii, which are only changed during the sequential phase. Pre-

liminary information for the generation of the triangle mesh is also computed in parallel.

Specifically, each particle's nearest neighbors are sorted in counterclockwise order according

to an arbitrary set of basis vectors as discussed in Section 3.7. Once the worker threads

have finished, the master thread enters the sequential phase. Particle additions and dele-

tions required by worker threads are performed; it is important for the correctness of the

algorithm that these be deferred until the sequential phase. Particles' positions, along with

the spatial subdivision data structure, are updated. Particle radii, per-vertex colors, and

texture coordinates are updated; the latter two should be parallelized but currently are not.

Finally, the triangle list for the current frame is generated, and the polygonizer's update

routine returns to the caller in preparation for the rendering of the triangles, which is a

graphics-library specific operation.

An optimization mostly orthogonal to the issues described above was to allow multiple

updates in between actual renders of the mesh, noting that rendering the mesh may take

many milliseconds while the particle simulation may be substantially faster, especially for

small numbers of particles. The system runs the parallel update phase, and the portion of

the sequential phase which updates the particles' positions and radii, several times. Only

on the last iteration is the triangle mesh generated and rendered. For simple scenes, three

updates per render increases the performance of the polygonizer to real-time rates. For

more complex scenes, the polygonizer is compute-bound by the parallel update phase, but

performing multiple updates per render increases the perceived responsiveness of the system.

Tables 3.1 and 3.2 compare the Tesselator3MP algorithm to the standard Marching

Cubes algorithm. For complex models such as Flubber and the biped the algorithm is

significantly faster than Marching Cubes; the differences go beyond the factor of seven

afforded by parallelism in the optimal case.

3.9 Decoration: Color, Texture Mapping and 3D Painting

A color may be specified for each implicit primitive in a compound surface in IMPS. Since

each primitive has an list of blend neighbors inferred from the shape's hierarchical structure,

its color may be blended with its blend neighbors' if desired. IMPS' current experimental

renderer allows the width of the color blend regions to be specified, but only on a global

basis.

IMPS supports per-primitive texture mapping via projective texturing. Each implicit

primitive may be conceptually surrounded by a texture coordinate generator which has a

certain well-defined geometrical shape (currently spheres and planes are supported) and

associated texture coordinate mapping. Typically the center of the generator's coordinate

system is aligned with the center of the primitive. Points owned by this primitive are

assigned the texture coordinates of the closest point on the generator. As the primitive is

animated by the transforms above it in the hierarchy, the generator follows by applying the

same transform from the skeleton cache. The intended effect was to make textures follow

the primitives to which they were assigned.

Texture coordinate generation is only one portion of the problem of texturing an implicit

surface. Painting a 2D texture in a program like Photoshop and then hoping to apply it

to a shape requires skill at best and luck at worst; it is unlikely the generated texture

coordinates will match the contours of the shape to the appropriate regions of the texture.

For this reason a 3D painting subsystem was added to IMPS. Once the surface has a

complete texture coordinate parameterization, it is a relatively simple operation to cast a

ray from the eye point into the model under the mouse pointer, determine the intersected

triangle, associated implicit primitive and texture, look up the appropriate texel or set of

texels in the texture, and modify or modulate them by an antialiased brush.

IMPS' 3D painting system allows textures to be drawn directly on the surface. This

simplifies the construction of a set of texture maps because the underlying texture coordinate

parameterization is not as visible to the artist. Rather than attempting to align a set of pre-

drawn texture maps by modifying the local transforms of the texture coordinate generators,

these texture maps are created interactively. The set of textures generated for a particular

character with IMPS' 3D painting system can be loaded into Photoshop for retouching with

more powerful painting tools; therefore the 3D paint system can be used either to draw the

characters' textures in their entirety or to sketch a rough draft, using a commercial painting

program to finish the job.

There are two significant problems with IMPS' approach. First, new texture coordinates

are exposed at blend regions when the surface is in motion. An example is shown in Figure 3-

4. The problem occurs because the support surface follows the primitive, but more of the

surface is visible when the primitives separate, increasing the total amount of surface area

each texture covers. The recommended solution is to design the texture so such borders are

painted with solid colors, so that stretching of the surface does not show up as new areas

of pattern appearing along seams. A part of IMPS' prescribed design process for creating

Figure 3-4: Two metaballs with very different textures illustrating texture seams and ex-
posure of new texture coordinates as they separate.

characters is to paint the initial texture, animate the character, and watch for previously

unseen portions of the surface appearing as untextured regions, cleaning up such regions in

the interactive modeler. This process is discussed further in Chapter 5.

The second problem is that in concave regions of the surface, which typically occur in

blend regions, it is possible that the straight-line projection used from the texture coordinate

generator to the implicit primitive will actually intersect the surface twice. This problem

exhibits itself as two regions of the surface sharing the same texture coordinates. When the

surface is interactively painted, the brush strokes may occasionally intersect such a problem

region, causing the color to be applied to an entirely different region of the surface than

what was intended. This makes interactive design of textures harder. Such problem regions

typically correspond to only a small portion of the surface area or do not show up at all, but

in a commercial product such unintuitive response, however rare, would not be acceptable.

3.10 Comparison of IMPS' Texturing Algorithm to Exist-

ing Approaches

IMPS' approach to texture mapping implicit surfaces appears to be new, but bears many

similarities to existing approaches. Discussion of the method's effectiveness and more de-

tailed comparison to others is important to understand the context in which it comes about,

as well as the contributions it makes.

3.10.1 Zonenschein et al.

Zonenschein et al.'s approach [51] is most similar to IMPS'. They surround each implicit

primitive or group of primitives with a support surface, a concept analogous to IMPS'

texture coordinate generator; both the primitive and the support surface are affected by the

same transform. The implicit surface is polygonized into a set of triangles. At each vertex,

the gradient of the implicit function is followed until the support surface is intersected;

this intersection point determines the texture coordinates for the vertex from the support

surface's well-known mapping.

Areas where differently textured implicit primitives blend together are handled differ-

ently by the two algorithms. IMPS assigns hard ownership of regions of the surface to

individual primitives and consequently to their texture coordinate generators. At regions

where two or more primitives' influences overlap, the surface is essentially cut into Voronoi

cells. There are hard boundaries ("seams") between adjacent texture coordinate domains.

This would be much more of a limitation without the presence of the 3D painting system,

which allows the implicit surface to be thought of, in a rough sense, as a surface which can

be spraypainted without regard to the underlying texture coordinate parameterization.

The approach recommended by Zonenschein et al. is to blend the transforms positioning

the implicit primitives to position a single support surface in the blend region. This is done

by computing the contribution which each primitive makes to the overall surface at a given

point on the implicit surface and normalizing these contributions to compute an alpha value

per surface. A weighted average of the per-primitive transforms is computed. The support

surface is transformed by this average and the gradient followed from the implicit surface to

the transformed support surface to compute texture coordinates for the point. The intended

effect is to slide the support surface across blend regions to achieve texture consistency over

the entire implicit surface.

This approach shares many of the same problems that IMPS' faces. Creation of new

texture coordinates at blending boundaries and duplication of texture coordinates are com-

mon to the two approaches; Figure 11 in [51] illustrates the problem, as the logo splits into

two rather than stretching, even though the surface is continuous. The interpolation of

arbitrary transform matrices is not guaranteed to keep the implicit surface surrounded by

the support surface. Finally, it is not clear how well this approach will handle bifurcations

of the surface.

3.10.2 Pedersen

As mentioned in Section 1.1.3, Pedersen's approach to texturing implicit and general curved

surfaces [47, 48] is arguably the most intuitive of the available algorithms. The artist first di-

vides the surface into bicubic spline patches which gives the surface a consistent underlying

texture coordinate mapping with well-aligned boundaries between patches. This parame-

terization is then used to place patches of texture ("patchinos") directly on the surface.

Higher-level algorithms like flood filling surface regions are also implementable using this

framework. The method described in Section 1.1.3 for applying Pedersen's algorithm to

moving surfaces would likely provide the most intuitive response of the surface to motion,

since the spline patches would stretch in response to motion of the pinned corners, making

the object appear as though it had a coherent skin surrounding it.

IMPS' approach is similar to Pedersen's in that it divides the surface into several dis-

parate texture coordinate regions merely to achieve a complete parameterization for the

surface, and relies on higher-level algorithms, like 3D painting, for actually decorating it.

Compared to Pedersen's approach, however, IMPS' has two primary deficiencies: boundaries

between texture coordinate regions are not well-aligned, and motion of the surface causes

new texture coordinates to be exposed rather than existing coordinates to be stretched to

fit the new surface. In practice, the former limitation does not cause significant visual arti-

facts; the latter is a fundamental limitation of the implicit surface representation and the fact

that there is no inherent parameterization of the surface. Pedersen's approach shows that

combining representations like spline patches and implicit surfaces can overcome problems

inherent in the implicit surface representation. Unfortunately this particular combination

is not currently implementable in real time.

Chapter 4

Integration with SCOOT

An early design goal for IMPS was to achieve integration with SCOOT, the Synthetic

Characters' Object-Oriented Toolkit, a Java-based software library enabling the creation of

interactive animated characters.

SCOOT, compared to earlier implementations of character toolkits [17], was designed to

more easily allow animations created by artists to be loaded into the system, in contrast to

requiring all animations to be specified procedurally. Early in the development of SCOOT a

design process for characters' geometry was formalized; characters were to be modeled and

animated in 3D Studio Max. The character's geometry was exported as a single VRML

file, called the base geometry. Each animation was exported as a separate VRML file

containing, for example, orientation and position interpolators for each joint of the model.

These animations became the motor skills of the character, the atomic actions which the

character knew how to perform, and merely modified the base geometry loaded into the

system earlier.

The most fundamental piece of functionality required to implement the above animation

system is the ability to modify a transform's (joint's) parameters, such as orientation and

translation, at run time. Here we describe how SCOOT's graphics system was developed

from a high level to support this functionality and how early design decisions made IMPS'

integration much simpler.

A requirement of the SCOOT system was that it support cross-platform development.

Specifically, the underlying graphics system needed to run on both Windows NT and Sil-

icon Graphics machines, the former for debugging, and the latter for speed. This sug-

gested the use of the Abstract Factory design pattern [2]. A set of Java-side, graphics

system-independent interfaces was created, such as a Transform, containing methods like

setOrientat ion and setTranslation. In addition, a factory class, the GraphicsInterf ace,

was defined, containing methods like loadFile (load the base geometry VRML file for a

character and return handles to the transforms) and loadMotorFile (load a VRML file

specifying animation for a particular base geometry file and return the animation data.)

The factory is the sole means by which clients may instantiate geometry. For this reason

it is possible to swap graphics systems by instantiating a different implementation of the

factory at the beginning of the program; this is a one-line change. The currently supported

implementations are CsGraphicsInterf ace (Cosmo3D implementation, supported on both

NT and SGI's Irix) and PfGraphicsInterf ace (Performer implementation, supported only

on SGI hardware.) Each of these implementations contains a set of implementing classes

for the graphics system interfaces, which contain native code which calls the underlying

C++ graphics library when calls like setOrientation are made on a Java-side Transform

object; see [11] for more details.

Since the Transf orm abstraction was already in place and being used properly by clients,

integrating IMPS was made much simpler. The Performer implementation of the graphics

system was modified to support loading of implicit surfaces as base geometry files (a change

at the C++ level), as well as IMPS' specialized transform class (requiring both C++ and

Java-side modifications), which supports the same interface as other transforms.

Implicit surface-based characters, therefore, are loaded in exactly the same fashion as

geometrical ones. Loading the base geometry file returns a set of transforms, which happen

to be specialized to the implicit surface library, but appear to clients to be the same as those

returned from a standard geometry file. Animations can be loaded for the implicit surface

using the same code as for geometrical characters. These animations are applied using the

same code in the run time animation engine, which ultimately makes setOrientation and

setTranslation calls on Transform objects.

4.1 Combining Geometrical and Implicit Objects

SCOOT transparently combines characters comprised of geometrical and implicit primitives

in the same scene. However, they can not be mixed in the same VRML file; a character's

base geometry file may contain either polygons or implicit primitives, but not both. SCOOT

provides primitives to make composition of these separate objects easier.

The World object, in which all of the characters exist, supports a constraint mechanism

allowing one creature to grab another [11]; the grabbed creature is attached to the grabber's

end effector, with an optional offset rotation and translation. There are at least two ways

to implement this functionality. The first is to reparent the grabbed creature under the

grabber's end effector in the underlying scene graph; in this way the underlying graphics

library causes the appropriate motion of the grabbee, and no further computation is required

by the application. The second is to compute the world-to-local transform for the end

effector at the application level and orient the grabbed creature appropriately, without

reparenting its geometry in the underlying scene graph. The latter approach, which is used

by SCOOT, requires the end effector's world-to-local transform to be recomputed each

frame, but has the advantage that it does not rely on the underlying scene graph structure.

Implicit surfaces in IMPS have hierarchical structure, but the generated geometry does

not map to a scene graph in the underlying graphics library, since only one "skin" is created

for multiple, hierarchically organized, implicit primitives. Because SCOOT implements

grabbing at the application rather than the scene graph level, it is possible to attach implicit

objects to polygonal ones. For example, polygons may be used to model a character's head

and neck while implicit surfaces model its body. This is a powerful addition to the system

because implicit surfaces are, generally speaking, better for modeling smooth objects but

not finely detailed ones such as a face. IMPS' integration with SCOOT allows polygons to

be used for fine detail in the regions of the character where they are more appropriate. An

example of this is discussed in Section 5.1.

Chapter 5

Character Design and Animation

IMPS supports interactive character design most directly through its combined viewer,

modeler, and 3D paint system. Running the OpenGL-based viewer, glImplViewer, or the

Open Inventor-based version, ivImpiViewer, on a VRML file containing implicit primitives

brings up a window with the scene rendered using the appropriate polygonizer (also specified

in the VRML file.) By default all implicit primitives are surrounded by 3D manipulators

which can be translated, rotated, and scaled using the mouse, allowing interactive modeling

of implicit surfaces in 3D. Pressing the "t" key toggles the 3D paint system; when it is active,

all manipulators disappear and visible surfaces which have textures assigned to them in the

VRML file can be interactively edited.

IMPS was designed as a research testbed for designing implicit surface-based characters

suitable for real time, and therefore does not implement many features of more general

commercial modeling packages. Specifically, editing of the hierarchy at run time is not

supported; the VRML file must be edited to add all of the desired implicit primitives.

The manipulator editors do not always expose all of the parameters of the underlying

implicit primitives for interactive editing, so additional hand editing of the VRML file is

necessary when, for example, changing the length (rather than the orientation) of a limb

(line segment.)

Most importantly, there are no facilities for animation scripting built into IMPS. De-

signing a character animation package is a great deal of work, and an early design decision

was to leverage existing commercial packages, like 3D Studio Max, for this purpose.

Building a character with IMPS begins with the modeling of the character's geometry.

A text editor is used to design the hierarchy of the character and thereby the animation

knobs, or joints, to be animated later. The interactive viewer is used to place the implicit

primitives relative to each other. Once the geometry is in place, the character's textures

can be painted, again using the interactive viewer.

After the static model of the character's implicit surface-based geometry is created, 3D

Studio Max is used to create animations for the character. This is begun by creating a

hierarchy in 3DS of the same structure as the implicit surface-based character, and giving

the transforms in 3DS the same names as the joints in the implicit surface VRML file.

The character's geometry in 3DS is designed to match the implicit primitives as closely as

possible; for example, a metaball would be replaced by a sphere, and a meta-line segment

would be replaced with a cylinder. This geometry is only used as a placeholder, to give the

artist visual feedback of the character's motion. Note that construction of the character's

"mirror" in 3DS is currently an operation done by hand; this will be discussed further in

Chapter 6.

Once the 3DS-based version of the character is in place, animations are designed using

3DS's built-in animation editor. A full description of the design principles of animation

libraries for interactive characters is beyond the scope of this thesis, but the high-level goal is

to create short animation "snippets", like a single step of a walk cycle, which can be attached

together at run time to generate the character's motion. These animations are exported

as VRML files read into SCOOT, the Synthetic Characters' Object-Oriented Toolkit, and

entered as motor skills into the character's motor system. The implicit primitives in the

VRML file designed with IMPS are animated by the keyframed transforms from 3D Studio

Max, causing the implicit surface-based character to move.

5.1 Design of Beanito, the Mexican Jumping Bean

It is hard to imagine a more simple character than one made of two metaballs; this was the

first full test of the character design process using IMPS. Beanito is a Mexican Jumping

Bean whose sole animation is a jump cycle; he squashes in anticipation, stretches as he

launches himself, glides through the air, and bounces upon landing.

What little modeling was necessary for Beanito's body was done with IMPS' interactive

viewer. Two spheres were modeled in 3D Studio Max and their hierarchy set up to match

Figure 5-1: Beanito, the Mexican Jumping Bean.

the implicit surface VRML file. They were animated to generate the squash and stretch

that would be present in the final implicit surface; bringing the spheres closer together in

3D Studio caused the implicit surface to squash, while separating them caused it to stretch.

The view in 3D Studio did not exhibit these properties, however; it was necessary to export

and play the animation in SCOOT to see the final result.

Beanito wears a hat on his head. The hat is a polygonal object modeled with 3D Studio

and saved as a separate geometry file from the body of the character. At run time the hat

is grabbed by the head's transform using the process described in Section 4.1, causing the

hat to be moved and oriented each frame to lie at a fixed offset from the origin in the local

coordinate system of the character's head. The fact that such grabbing of one character by

another (in this case, the hat by the head) is implemented at the application level rather

than down in the scene graph library (for example, by reparenting the hat under the head's

Figure 5-2: Flubber dressed up.

transform) allows implicit surface-based objects to be easily combined with non-deformable

geometry, since implicit surfaces do not actually have a set of associated transforms in the

underlying scene graph, although they can be controlled as if they did.

There were two primary problems discovered during the implementation of Beanito.

First, squash and stretch were very difficult to gauge during animation in 3D Studio. The

first few animations of the bean's jump cycle actually tore the two metaballs apart during the

launch; several iterations were necessary to achieve the desired animation of the implicit

surface. This could be improved by integrating IMPS more tightly with 3D Studio, for

example as a plug-in. Second, and more significantly, the original animation was far too

fast. IMPS' run time system requires that surfaces not move too quickly, because the

application of differential transforms which causes holes at joints requires several iterations

of the particle simulation to patch such holes, as shown in Figure 3-3. The original animation

tore the surface apart at its center during the launch; it needed to be slowed down by a

factor of four to solve this problem. More general solutions to this problem will be discussed

in Chapter 6.

5.2 Well-Dressed Flubber

I

For the October 1998 sponsor meeting at the Media Lab, a character inspired by Disney's

Flubber was created. The geometry is relatively simple: one metaball at the center sur-

rounded by five meta-line segments. Untextured, the static geometry looks very similar

to the characters in Disney's movie. IMPS' 3D painting functionality was used to paint a

suit and tie onto the character's body, along with a very rudimentary face. The goal was a

cartoon-like character with a high degree of dynamism, for example squash and stretch.

Despite the simplicity of the geometry, several problems were encountered during the

construction of this character. Foremost among these was the lack of robustness of IMPS'

renderer. The character requires several hundred triangles to provide a reasonable approx-

imation to its geometry; despite the presence of the spatial subdivision mechanism, the

particle simulation does not maintain a high enough frame rate (only about ten frames

per second) for this number of particles to allow reasonable animation of this character.

When the frame rate of the renderer drops off, numerical instability of the Witkin-Heckbert

particle system becomes much more apparent. Particles not already close to the implicit

surface tend to fly off at extremely high velocities. It was necessary to insert code to test

for this condition and remove such particles from the simulation and the mesh.

Although the frame rate was low for this geometry, conclusions can be drawn from its

construction and experiments with the interactive viewer. First, the squash and stretch

expected to be afforded by the implicit surface representation were not apparent. This was

an unexpected result given Beanito's successful use of these effects. The reason is that

squashing and stretching occur only in blending regions of implicit surfaces, and the bulk

of Beanito's body is this region. The blending region can be enlarged by increasing the

blobbiness parameter of the implicit primitives; however, as discussed in Section 2.2, this

decreases local control of the surface. In the case of this character, moving the arms closer to

the body, rather than making the body bulge larger in that region, causes them to disappear

into the stomach. Second, the visual appearance of the character creates the expectation

that the character would exhibit a very "bouncy" animation look: for example, that the

stomach would jiggle during a walk cycle. Unfortunately, and very significantly, IMPS does

not provide the set of control knobs necessary to generate such motion. IMPS was designed

to mirror the animation controls used for polygonal characters, which are typically only

rotations and occasionally translations of joints. In the absence of squashing and stretching

expected to be afforded by radial translations of the limbs, the character appears very static

Figure 5-3: The biped before and after IMPS' implicit function reformulation. The figure
on the left is rendered using IMPS' Marching Cubes implementation, while the figure on
the right is triangulated using Tesselator3MP.

and rigid, since it does not deform significantly as the arms are moved. While it would be

possible to make the stomach translate up and down during a walk cycle, it is not possible

to make it, for example, sag around the hips. Third, IMPS' texturing approach causes a

texture seam to occur across the bow tie of the character, which essentially means the head

can not be animated relative to the body. These problems and potential solutions will be

discussed further in Chapter 6.

5.3 Simple Biped

To illustrate IMPS' use of the hierarchical structure of characters, a simple biped was built

(tess3SimpleBip0l.wrl). The biped is composed of eighteen line segments arranged into

a hierarchy using transforms.

Early versions of this biped did not work well; the joints ballooned out and the middle

regions of the limbs vanished. Reducing the radii of the line segments only exacerbated

the problem, as illustrated in Figure 5-3. The problem was eventually discovered to be

the coupling of the implicit primitives' radii with their blending parameters, as discussed

Figure 5-4: Left to right, top to bottom: calibration pose; gymnastics, illustrating no
unwanted blending between hands, knees and hips; Saturday Night Fever; relaxing after a
hard day's work.

in Section 2.2. Reformulating the primitives' field functions allowed much finer control of

the biped's shape. In addition, the singularities in the middle of the figure's limbs which

had been present vanished; this allowed IMPS' parallelized gradient-based polygonizer,

Tesselator3MP, to be used to render the figure instead of the Marching Cubes algorithm,

yielding a speedup of roughly a factor of 25 (Tables 3.1 and 3.2), and allowing the skeleton

cache to assist in the figure's animation (Section 3.7).

To demonstrate the figure's interactivity, a small stand-alone program was written to ani-

mate the biped from data acquired using Digital Image Design's Monkey 2

(http: //www. didi. com/). The Monkey provides absolute orientation information for each

joint when it is queried. Since IMPS was designed to handle zeroth-order control of joints, it

was straightforward to fill the biped's transforms with the Monkey's data. The Monkey can

be used to pose the character interactively, as illustrated in Figure 5-4. The Monkey's data

acquisition call, which is made every frame, takes roughly forty milliseconds and reduces the

frame rate from ten frames per second to seven. This call could be made asynchronously

to the rest of the application to achieve the higher frame rate.

This character illustrates the benefits of IMPS' differential transform modification to

Witkin and Heckbert's algorithm (Section 3.7). When differential transforms are disabled,

reverting the particle simulation to Witkin and Heckbert's original algorithm modulo their

surface motion parameters, the figure breaks apart with the slightest rotation about its

joints, as particles further down the hierarchy suddenly find themselves stranded because of

the large motion of the underlying surface due to the figure's long limbs. This demonstrates

the necessity of keeping track of the hierarchical structure of the implicit surface. This

particular character does not exhibit the tearing illustrated in Figure 3-3 because the joints

comprise a relatively small portion of the surface area and because the physical device

imposes a constraint on how quickly the joints can move.

Of the three examples shown here, the biped best illustrates the types of characters

IMPS was originally designed to build: long-limbed, skeletal creatures. Compared to the

Flubber character, the biped is more easily animatable because it does not rely as heavily

on the blending properties of its implicit primitives to achieve its shape, and because it is

more highly articulated via the use of transforms.

As with the other two characters, construction of the biped made clear a set of prob-

lems. First, texturing the character would be very difficult, because while the geometry

appears to be smooth, the texture coordinate parameterization which IMPS provides has

discontinuities at each joint, which would create visible seams as the character animates.

Because of the number of animated joints, it is doubtful that effective textures which hide

these seams could be created. Second, the blend graph inferred from the hierarchy does

not work properly in the neck region. When the neck is articulated, it is prevented from

blending with the characters' shoulders; however, this causes the shoulders and neck to

"fight" for ownership of the particles, leading to bubbling of the surface. Both a mechanism

for specifying the blend graph independently of the hierarchy and a better solution to the

unwanted blending problem which does not cause instabilities in the particle system are

needed. Third, the frame rate is still too low for interactive character animation. The Mon-

key hides this problem to some degree because the physical device enforces some constraints

on how quickly joints can rotate; however, experience has shown that ten frames per second

peak performance is not sufficient to depict a fast-moving or highly animated character.

These issues are discussed further in the next chapter.

Chapter 6

Discussion and Future Work

6.1 Discussion

IMPS was originally inspired by the desire to eliminate visible seams in the characters

designed by our group. It appeared that using an implicit representation would provide

a simple solution; replacing limbs constructed from rigid, non-deformable geometry with

lines of charge and rendering the resulting potential field would instantly provide a seamless

mesh while still maintaining the joint-level control with which our animators were familiar.

The biped in the previous chapter illustrates this goal.

Many papers in the field of implicit surfaces have as their sole motivation the fact

that implicit surfaces are good for modeling smooth, organic shapes. This thesis is no

exception and this was, as discussed, the original reason for researching the applicability of

implicit surfaces to interactive animated characters. Experience with implicit surfaces has

indicated that more motivation than this is needed, as well as more critical discussion of

the advantages and disadvantages of the representation.

6.1.1 Problems and Lessons Learned Related to IMPS' Implementation

IMPS' renderer is not fast enough to animate interactive characters. This problem might

be soluble using a different polygonization algorithm. Instability of the Witkin-Heckbert

algorithm makes working with the particle system difficult; particles far from the surface

"blast off" at high velocities, making implementation of an unwanted blending solution

difficult (Section 3.7). An even more significant problem is the fact that the simulation

does not converge; all of the particles are being simulated all of the time, even if the

surface is not changing in a certain region. IMPS' differential transform modification would

theoretically allow many of the particles to be removed from the simulation and animated

solely by rigid-body motion once the surface has been polygonized. However, identifying

regions of the surface not modeled well by this approximation would likely be difficult, as

the implicit function needs to be evaluated in order to do so, and as has been discussed,

this is currently the bottleneck in the algorithm. Section 6.2 offers suggestions on directions

which could be taken to address this problem.

IMPS does not provide suitable animation controls for animating implicit surface-based

characters. The initial assumption was made that the animation controls for polygonal

characters, primarily rotations and occasionally translations, would transfer well to hi-

erarchically structured, implicit surface-based characters. This assumption was incorrect

because implicit surfaces look blobby and therefore need to be able to act blobby. Non-

uniform scales are much more important than with polygonal characters, and effects such

as bending are desirable, as was seen in the construction of the Flubber character. The

design decision to sample primitives in the world coordinate system (Section 3.2) precluded

the use of non-uniform scales in IMPS, which is a serious limitation. Transforming sample

points into primitives' local coordinate systems requires increased computation time, but

is necessary to be able to animate such deformations. Pentland and Williams' application

of modal deformations to non-blending implicit surfaces [9] illustrates how higher-order de-

formations such as bending could be applied on a per-primitive basis. Section 6.2 discusses

this issue further.

Squash and stretch is not free. The canonical first test of implicit surfaces, animation

of two metaballs, gives the misleading impression that implicit surfaces are "soft" objects.

In fact, soft effects like squash and stretch occur only in the filleting, or blending, regions

of implicit surfaces. If the blobbiness of the surface is increased to cause these effects to

dominate, local control of the shape of the surface is lost. As discussed above, if blobby

effects of the surface are desired, it is necessary to model the deformations of the primitives.

The cartoon-like appearance of implicit surfaces belies the fact that they do not inherently

provide animation controls for such soft effects. This is a conclusion reached through the

experience of having attempted to model characters taking advantage of the representation.

6.1.2 Problems with the Implicit Surface Representation

The lack of a well-behaved parameterization for implicit surfaces is fundamental and pre-

cludes many additions which would make the representation more useful. Texturing implicit

surfaces is a problem for which there is not yet a good real-time solution. The expected

behavior of the surface is for the texture to stretch, rather than break, as the surface de-

forms. The real-time or interactive-time algorithms currently proposed do not provide this

behavior. Pedersen's solution, which could, achieves a well-behaved parameterization by

replacing the implicit surface with a set of bicubic patches which are constrained to lie on

it. Unfortunately, as mentioned earlier, this solution does not yet approach real time and

has not yet been applied to animated surfaces.

Implicit surfaces do not provide good control over the shape of the surface. Especially

in an interactive or real-time system, the choice of primitives is limited to those whose field

functions can be evaluated quickly, precluding the use of general polyhedra as primitives.

Bulging at overlapping regions makes it difficult to obtain fine modeling control. Solutions

to this problem such as convolution surfaces (see, for example, Bloomenthal's article in [38])

do not appear to be close to real time. Sclaroff and Pentland [22] propose the use of dis-

placement maps for independent (non-blending) implicit surfaces to increase the modeling

power of each primitive. However, for blended implicit surfaces, it is not possible to use dis-

placement maps to model local detail, because evaluation of the displacement map assumes

a well-behaved parameterization of the underlying surface, which, as has been discussed, is

not present for blended surfaces.

6.2 Future Work

There are several extensions which could be made to IMPS which would improve its use-

fulness in the application of implicit surfaces to hierarchical animated characters.

The extension which would arguably provide the most benefit would be to incorporate

per-primitive deformations to allow more complex animation control. Modal deformations,

as described by Pentland, Williams and Sclaroff [9, 22] would provide the best starting

point. Their implicit surface work focused on the use of independent (i.e., non-blending)

superquadrics with modal deformation matrices to achieve physical simulation and more

precise modeling. Incorporating such a system into IMPS would likely be straightforward;

each primitive would need to store a set of modal deformation parameters. As the modal

deformations must be computed in the object's local coordinate system, IMPS' primitives

would need to be modified to allow sampling in local, rather than world, coordinates (Sec-

tion 3.2). This modification would have the added benefits of vastly simplifying the rep-

resentations of the implicit primitives and allowing primitives to be animated using non-

uniform scales, though the question remains whether the increased computation time will

significantly reduce performance.

The biggest challenge in this particular extension is implementing a system for control-

ling such deformations. IMPS leveraged an existing commercial package, 3D Studio Max,

to some degree of success because 3D Studio already supported the animation paradigm

upon which IMPS was based, namely time-varying joint angles. Unfortunately, modal de-

formations are not supported by any major modeling and animation package, increasing

the amount of implementation required for this extension. One solution is to implement an

animation editor for IMPS which would support both kinematic and per-primitive modal

deformation animation. Another is to incorporate IMPS as a plugin to a package such as 3D

Studio and leverage its kinematic animation tools. Either of these solutions would also solve

the significant problems associated with creating a 3D Studio "shadow" of the character's

implicit geometry, including duplication of work, failure to fit the geometry properly, and

lack of immediate feedback during the animation process.

A more stable polygonization algorithm for implicit surfaces than IMPS' current particle

system-based renderer is needed. As has been discussed, particles far from the surface tend

to "blast off" at high velocities in Witkin and Heckbert's formulation. This is a problem

not only for surface motion in general (hence their addition of the surface parameter term

discussed in Section 3.7) but also for the chosen solution to the unwanted blending prob-

lem (implicit patches, discussed in the same section.) In addition, because of its particular

solution to the unwanted blending problem, which is tied to the dynamics of the particle

simulation, IMPS' renderer fails to completely polygonize surfaces where an implicit primi-

tive in the middle of the hierarchy (i.e., the sole link between a parent and child, such as the

elbow between the upper and lower arm) is small enough that it is completely enveloped by

an adjacent primitive. Finally, a solution is needed for the tearing that occurs at a charac-

ter's joints, caused both by the application of differential transforms and by the absence of

hole-patching logic in the triangulation algorithm.

Two recent papers on implicit surface polygonization would provide good starting points

for new renderers for IMPS. Desbrun, Tsingos, and Gascuel's algorithm for the interactive

polygonization of implicit surfaces [33] is structured around the notion of implicit primitives

and therefore might be most compatible with IMPS' data structures. It should be possible

to generate an "approximate triangulation" to skin the overall surface rather than per

primitive as they do in their paper. Velho, de Figueiredo, and Gomes's multiresolution

implicit surface polygonizer [43] would provide the additional significant benefit of automatic

view-based simplification for the generated mesh. It is possible that Desbrun et al.'s method

of sampling the surface (using rays attached to the local coordinate systems of primitives)

could be used to generate the base mesh for Velho et al.'s algorithm to easily support

hierarchical implicit surfaces, and that differential transforms could be used to make the

multiresolution algorithm more incremental.

6.3 Conclusion

IMPS represents a step towards the application of implicit surfaces to the domain of inter-

active animated characters. It takes advantage of the hierarchical structure of characters'

geometry to accelerate existing algorithms for sampling implicit surfaces and provide solu-

tions to common problems like unwanted blending.

More work is needed to address limitations in the system's design such as the lack of

non-uniform scales. Extensions to the system such as per-primitive modal deformations

could provide the necessary animation controls required to make its characters act blobby

as well as look blobby.

Unfortunately, the lack of parameterization of implicit surfaces makes texturing oper-

ations at interactive rates difficult, if not impossible, to achieve in a principled manner.

More research is needed to determine whether there is a good solution to this problem.

In the domain of interactive animated characters, where texturing is strongly desired to

add color and detail, this is an especially serious problem, and suggests that alternative

representations for deformable geometry may be more applicable.

Generalized cylinders (see, for example, Bloomenthal [3]) are a well-studied technique

which have reasonable control mechanisms and a well-defined texture coordinate param-

eterization. Protozoa (http: //www. protozoa. com/), for example, has used generalized

cylinders extensively in the construction of interactive-rate characters driven by motion

capture data. Subdivision surfaces (see, for example, Catmull and Clark [4]) are another

technique which has recently received renewed attention after Pixar's use of the technique

in modeling the character Geri in the animated short Geri's Game (DeRose et al. [5].)

A recent paper by Stam [14] shows that it is possible to directly evaluate the subdivision

surface for any point on the control mesh, giving the subdivision surface a well-behaved

parameterization essential for texturing operations. Applying subdivision surfaces to the

interactive character domain, and addressing problems such as how to control the control

mesh and reach real-time rates [10], would be an interesting area for future research.

Bibliography

[1] Blinn, James F. "A Generalization of Algebraic Surface Drawing," ACM Transactions

On Graphics, Vol. 1, No. 3, July 1982, pp. 235-256.

[2] Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-

terns: Elements of Reusable Object-Oriented Software. Addison-Wesley: Reading, Mas-

sachusetts, 1995.

[3] Bloomenthal, Jules. "Calculation of Reference Frames Along a Space Curve," in Glass-

ner, Andrew S., ed. Graphics Gems. Academic Press: San Diego, 1990, 1998.

[4] Catmull, E. and Clark, J. "Recursively Generated B-Spline Surfaces on Arbitrary Topo-

logical Meshes," Computer Aided Design, vol. 10, no. 6, pp. 350-355, 1978.

[5] DeRose, Tony, Michael Kass, and Tien Truong. "Subdivision Surfaces in Character

Animation," Computer Graphics, Proceedings of SIGGRAPH 98, July 19-24, 1998,

pp. 85-94.

[6] Desbrun, Mathieu, Peter Schr6der, and Alan Barr. "Interactive animation of structured

deformable objects," In Graphics Interface '99 (June 99, Kingston, Canada).

[7] Hartman, Jed and Josie Wernecke. The VRML 2.0 Handbook. Addison-Wesley: Read-

ing, Massachusetts, 1996.

[8] Opalach, Agata and Steve Maddock. "High Level Control of Implicit Surfaces for Char-

acter Animation," Implicit Surfaces '95, Proceedings of the Eurographics Workshop on

Implicit Surfaces, April 18-19, 1995.

[9] Pentland, Alex and John Williams. "Good Vibrations: Modal Dynamics for Graphics

and Animation," Computer Graphics, Proceedings of SIGGRAPH 89, pp. 215-222.

[10] Pulli, Kari and Mark Segal. "Fast Rendering of Subdivision Surfaces," Visual Proceed-

ings, SIGGRAPH 96 Technical Sketches, 1996, p. 144.

[11] Russell, Kenneth B. and Bruce M. Blumberg. "Behavior friendly graphics," CGI 99,

Proceedings of Computer Graphics International 99, Alberta, Canada, June 7-11, 1999.

To appear.

[12] Schraudolph, Nicol N. "A Fast, Compact Approximation of the Exponen-

tial Function," Neural Computation, Volume 11, Number 4. To appear.

ftp://ftp.idsia.ch/pub/nic/exp.ps.gz

[13] Shoemake, Ken and Tom Duff. "Matrix animation and polar decomposition," Graphics

Interface '92, pp. 258-64.

[14] Stam, Jos. "Exact Evaluation of Catmull-Clark Subdivision Surfaces at Arbitrary Pa-

rameter Values," Computer Graphics, Proceedings of SIGGRAPH 98, July 19-24, 1998,

pp. 395-404.

[15] Thomas, Frank and Ollie Johnson. The Illusion of Life: Disney Animation. Hyperion:

New York, 1981.

[16] Wernecke, Josie. The Inventor Mentor: Programming Object-Oriented 3D Graphics

with Open Inventor, Release 2. Addison-Wesley: Reading, Massachusetts, 1994.

Interactive Animated Character Systems

[17] Blumberg, Bruce. "Old Tricks, New Dogs: Ethology and Interactive Creatures," Ph.D

Thesis, Massachusetts Institute of Technology, 1996.

[18] Perlin, Ken and Athomas Goldberg. "Improv: A System for Scripting Interactive Ac-

tors in Virtual Worlds," Computer Graphics, Proceedings of SIGGRAPH 96, August

4-9, 1996, pp. 205-216.

[19] Blumberg, Bruce et al. "Swamped!: Using Plush Toys to Direct Autonomous Ani-

mated Characters," SIGGRAPH 98 Conference Abstracts and Applications, p. 109.

http://characters.www.media.mit.edu/groups/characters/swamped/

[20] Galeyan, Tinsley et al. "The Virtual FishTank," SIGGRAPH 98 Conference Abstracts

and Applications, p. 116.

Field Functions and Blending Control

[21] Wyvill, Brian and Geoff Wyvill. "Field functions for implicit surfaces," The Visual

Computer, Vol. 5 (1989), pp. 75-82.

[22] Sclaroff, Stan and Alex Pentland. "Generalized Implicit Functions For Computer

Graphics," Computer Graphics, Proceedings of SIGGRAPH 91, Volume 25, Number

4, July 1991, pp. 247-250.

[23] Guy, Andrew and Brian Wyvill. "Controlled Blending for Implicit Surfaces using a

Graph," Implicit Surfaces '95, Proceedings of the Eurographics Workshop on Implicit

Surfaces, April 18-19, 1995.

[24] Blanc, Carole and Christophe Schlick. "Extended Field Functions for Soft Objects,"

Implicit Surfaces '95, Proceedings of the Eurographics Workshop on Implicit Surfaces,

April 18-19, 1995.

Polygonization

[25] Wyvill, B., McPheeters, C., and Wyvill, G.. "Data Structures for Soft Objects," The

Visual Computer, Vol. 2, Number 4, pp. 227-34.

[26] Lorensen, William E. and Harvey E. Cline. "Marching Cubes: A High Resolution 3D

Surface Construction Algorithm," Computer Graphics, Proceedings of SIGGRAPH 87,

Volume 21, Number 4, July 1987, pp. 163-169.

[27] Diiurst, Martin J. "Letters: Additional Reference to Marching Cubes," Computer

Graphics, Volume 22, Number 2, April 1988.

[28] Nielson, Gregory M. and Bernd Hamann. "The Asymptotic Decider: Resolving the

Ambiguity in Marching Cubes," Proceedings of Visualization 91, 1991, pp. 83-91.

[29] Watt, Alan and Mark Watt. Advanced Animation and Rendering Techniques. New

York, NY: ACM Press, 1992.

[30] de Figueiredo, Luiz Henrique, Jonas de Miranda Gomes, Demetri Terzopoulos, and Luiz

Velho. "Physically-Based Methods for Polygonization of Implicit Surfaces," Graphics

Interface '92, pp. 250-257.

[31] Witkin, Andrew P, and Paul S. Heckbert. "Using Particles to Sample and Control

Implicit Surfaces,", Computer Graphics, Proceedings of SIGGRAPH 94, July 24-29,

1994.

[32] Bloomenthal, Jules and Keith Ferguson, "Polygonization of Non-Manifold Implicit

Surfaces," Computer Graphics, Proceedings of SIGGRAPH 95, August 6-11, 1995,

pp. 309-316.

[33] Desbrun, Mathieu, Nicolas Tsingos, and Marie-Paule Gascuel. "Adaptive Sampling

of Implicit Surfaces for Interactive Modeling and Animation," Implicit Surfaces '95,

Proceedings of the Eurographics Workshop on Implicit Surfaces, April 18-19, 1995.

[34] Opalach, Agata and Steve Maddock. "Speeding Up Grid-Data Generation for Polygo-

nisation of Implicit Surfaces," Eurographics 95, Proc. 13th Eurographics UK Chapter

Annual Conference, pp. 153-160.

[35] Su, Peter and Robert L. Scot Drysdale. "A Comparison of Sequential Delaunay Trian-

gulation Algorithms," Proceedings of the 11th Annual Symposium on Computational

Geometry, Vancouver, British Columbia, Canada, June 5-7, 1995.

[36] Rodrian, Hans-Christian and Hardy Moock. "Dynamic Triangulation of Animated

Skeleton-Based Implicit Surfaces," Implicit Surfaces '96, Proceedings of the Eurograph-

ics/SIGGRAPH Workshop on Implicit Surfaces, October 7-8, 1996.

[37] R6sch, Angela, Matthias Ruhl, and Dietmar Saupe. "Interactive Visualization of Im-

plicit Surfaces with Singularities," Implicit Surfaces '96, Proceedings of the Eurograph-

ics/SIGGRAPH Workshop on Implicit Surfaces, October 7-8, 1996.

[38] Bloomenthal, Jules, Chandrajit Bajaj, Jim Blinn, Marie-Paule Cani-Gascuel, Alyn

Rockwood, Brian Wyvill, and Geoff Wyvill. Introduction to Implicit Surfaces. San

Francisco, CA: Morgan Kaufmann Publishers, Inc., 1997.

[39] Heckbert, Paul, "Fast Surface Particle Repulsion", New Frontiers in Modeling and

Texturing, SIGGRAPH 97 Course Notes, August 3-8, 1997, pp. 95-114.

[40] Stander, Barton T. and John C. Hart, "Guaranteeing the Topology of an Implicit

Surface Polygonization for Interactive Modeling," Computer Graphics, Proceedings of

SIGGRAPH 97, August 3-8, 1997, pp. 279-286.

[41] Crossno, Patricia and Edward Angel, "Isosurface Extraction Using Particle Systems,"

Proceedings of Visualization '97, IEEE Computer Society Press, pp. 495-498.

[42] Hartmann, Erich. "A marching method for the triangulation of surfaces," The Visual

Computer, Vol. 14 (1998), pp. 95-108.

[43] Velho, Luiz, Luiz Henrique de Figueiredo, and Jonas Gomes. "A Unified Approach for

Hierarchical Adaptive Tesselation," Preprint, Instituto de Matematica Pura e Aplicada,

Rio de Janeiro, Brazil. http://www.visgraf .impa.br/People/lvelho/

Texturing

[44] Peachey, Darwyn R. "Solid Texturing of Complex Surfaces," Computer Graphics, Pro-

ceedings of SIGGRAPH 85, Volume 19, Number 3, July 1985, pp. 279-286.

[45] Perlin, Ken. "An Image Synthesizer," Computer Graphics, Proceedings of SIGGRAPH

85, Volume 19, Number 3, July 1985, pp. 287-296.

[46] Hanrahan, Pat and Paul Haeberli. "Direct WYSIWYG Painting and Texturing on

3D Shapes," Computer Graphics, Proceedings of SIGGRAPH 90, August 1990, pp.

215-223.

[47] Pedersen, Hans Kohling, "Decorating Implicit Surfaces," Computer Graphics, Proceed-

ings of SIGGRAPH 95, August 6-11, 1995, pp. 291-300.

[48] Pedersen, Hans Kohling, "A Framework for Interactive Texturing on Curved Surfaces,"

Computer Graphics, Proceedings of SIGGRAPH 96, August 4-9, 1996, pp. 295-302.

[49] Zonenschein, Ruben, Jonas Gomes, Luiz Velho, and Luiz Henrique de Figueiredo,

"Texturing Implicit Surfaces with Particle Systems," Visual Proceedings, SIGGRAPH

97 Technical Sketches, 1997, p. 172.

[50] Tigges, Mark, and Brian Wyvill, "Texture Mapping the BlobTree," Implicit Surfaces

'98, Proceedings of the Eurographics/SIGGRAPH Workshop on Implicit Surfaces, June

15-16, 1998.

[51] Zonenschein, Ruben, Jonas Gomes, Luiz Velho, Luiz Henrique de Figueiredo, Mark

Tigges, and Brian Wyvill, "Texturing Composite Deformable Implicit Objects," Pro-

ceedings of SIBGRAPI 98, Sociedade Brasileira de Computacao, IEEE Press, 1998.

Appendix A

Examples and Per-Class

Documentation

A.1 Obtaining the Source Code

IMPS' source code is available from http://www.media.mit. edu/~kbrussel/imps/. It is

released under the MIT Media Lab's academic license, which allows free use for educational

and personal purposes.

A.2 Usage Notes and Examples

The recommended polygonizer to use is Tesselator3MP, the parallelized version of the

renderer described in Section 3.7. Many of the improvements made to the polygonization

algorithm, including texture mapping, have not been ported back to the single-threaded

version, Tesselator3. In addition, Tesselator3MP running in single-threaded mode is

more efficient than Tesselator3.

glImplViewer is IMPS' OpenGL-based interactive viewer, modeler and painting sys-

tem. ivImplViewer is an earlier implementation based on Silicon Graphics' Open Inventor.

glImplViewer is currently the most portable, and recommended, version.

Occasionally the viewer window and manipulators may appear but the surface may not;

if this situation occurs, reset the renderer by pressing the "r" key (see below).

A.2.1 Using glImpiViewer and ivImplViewer

Each of the viewers takes the name of a VRML file containing IMPS' nodes as its argument.

Each also takes three command line options:

-n turns off manipulators, preventing interactive modification of the surface.

-p shows the vertices of the triangles as well as the shaded triangles themselves, and is a

useful tool for debugging.

-s size sets the point size of displayed vertices to size.

The viewers currently have only a minimal 2D user interface built with FLTK

(http://f ltk. easysw. com/). A reset button can be made visible by setting the renderer's

showResetButton field to TRUE. glImplViewer also uses FLTK's color chooser widget for

its 3D painting system. This version of the interactive viewer has a popup menu available

by clicking the right mouse button in the viewer's window which allows interactive modifi-

cation of some of the viewer's parameters. The analagous functionality in ivImpiViewer is

provided automatically by Open Inventor.

Keyboard commands supported by the renderers:

Key Description

r Reset the polygonizer

t Toggle 3D painting mode on/off

s Save the scene currently in the viewer to a new file name

[0-9] Change painter's brush size (1 = smallest (default), 0 = largest)

A.2.2 Examples

Colored Metaballs

Figure A-1 contains the text from tess3TransformedBlobs .wrl, containing two differently-

colored metaballs. The scene graph is hierarchically structured, so that one metaball is the

child of the other; this is indicated by the fact that a RigidTransf orm parents the hierarchy.

When the scene is displayed, two manipulators appear, one surrounding each metaball; these

correspond to the transforms containing the primitives, not the primitives' center points

themselves; see Section A.2.2.

#VRML V2.0 utf8

Tesselator3MP {
deltaT 0.045

desiredRadius 0.3

queryRadius 0.8

energyCoeff 10

surfaceCoeff 30

fissioningFrac 0.5

isoValue 1.0

useSimpleRadii TRUE

numThreads 3

updatesPerRender 3

colorWidth 3.0

doDifferentialTransforms TRUE

blendingFunction ExponentialBlend {
variance 2.0

}
spatialSubdivision UniformHash {
cubeSize 0.6

bitsPerDim 3

}
sceneGraph RigidTransform {
children [
Metaball {
material Material {
diffuseColor 0.29 0.41 0.44

}
}
RigidTransform {
translation 2.0 2.0 0.0

children [
Metaball {
material Material {
diffuseColor 0.8 0.2 0.2

}
}

]
}

]
}

Figure A-i: Example derived from tess3TransformedBlobs .wrl.

This example illustrates the use of the top-level blending function (blendingFunction

Exponent ialBlend) instead of one embedded in the scene graph as in the case of flat scene

graphs (see tess3GaussBlob.wrl for an example.) This is necessary for hierarchical scene

graphs because the skeleton cache implements IMPS' solution to the unwanted blending

problem as multiple independent groups of shapes, each with their own blending function,

which is copied down into the skeleton cache from that specified in the polygonizer.

Flubber

The sequence of files f lubber. wrl through flubber8. wrl show the assembly and painting

of the well-dressed flubber character described in Section 5.2.

Flubber was created by specifying the metaball and five line segments in the VRML

file and using the interactive editor to position them appropriately. Empty (pure white)

textures were used as the starting point, and the 3D painting system was used to paint

detail onto the character. The save function was used frequently to checkpoint the model

in case the polygonizer crashed. Note that the save routines rename and save new copies of

all of the textures in the model for convenience.

Simple Biped

The file tess3SimpleBip01.wrl contains the geometry for the biped character described in

Section 5.3. It is a hierarchical scene graph (see below) rooted at the pelvis and branching

to give the implicit surface the structure necessary for animation.

The biped was created by drawing line segments on graph paper and converting these

into a scene graph of metalines by hand using a text editor. As the geometry was designed

to follow a regular structure, no modifications in the interactive modeler were required.

Distinction Between Hierarchical and Flat Scene Graphs

IMPS supports both hierarchically organized and flat scene graph structures for implicit

primitives. Hierarchical scene graphs are defined as those which have a RigidTransform as

their root. Flat scene graphs have a blend function like ExponentialBlend or

EllipticalBlend as their root, with potentially many implicit primitives as children of

the blend. A RigidTransform may, however, be contained as a child in a flat scene graph,

since it inherits from ImShape.

From the user's standpoint, the fundamental difference between hierarchical and flat

scene graphs is the meaning of the 3D manipulators in the scene. For a hierarchical scene

graph, one manipulator is created for each RigidTransf orm node and placed at its origin.

For a flat scene graph, however, manipulators are created for each primitive, and some

primitives, like LineSegs, may have more than one manipulator (in this case, one for each

endpoint).

From an implementor's standpoint, Tesselator3MP creates a skeleton cache only for

hierarchical scene graphs. This means that IMPS' unwanted blending rule (Section 3.7)

will only apply to this type of graph. The flag enabling differential transforms only makes

sense if the scene graph is hierarchical. Per-vertex colors and texture coordinates also work

only for hierarchical scene graphs. As mentioned above, the skeleton cache inherits its

blending function from that specified in the blendingFunction field of Tesselator3MP.

Polygonizers such as MarchingCubes which do not understand hierarchical scene graphs

can still render such scenes with two limitations. First, unwanted blending will appear

since the skeleton cache and its associated blend graph is not created. Second, it is more

difficult to construct the scene graph because in order to apply the blend function at the

correct time and precisely once per primitive, it is necessary to surround each shape with

the appropriate blending node, as in mcSimpleBip0l.wrl.

A.3 Per-Class Documentation

A.3.1 Nodes: Shapes, Blends and Tesselators

* ImBlancSchlickBlend Blanc and Schlick's [24] blending function. Interprets ImShape's

blendParam field as "hardness".

* ImBlend Base class for all blending functions supporting multiple children. Interface

was extended from original to support skeleton cache; see ImBlend.h.

* ImEllipsoid Meta-ellipsoid shape.

* ImEllipticalBlend Pairwise elliptical blend from Alyn Rockwood's paper in [38].

* ImExponentialBlend Exponential ("Gaussian") blend function similar to that pro-

posed by Blinn.

" ImLineSeg Meta-line segment supporting differing endpoint radii.

" ImMarchingCubes Marching Cubes polygonizer based on Watt and Watt's imple-

mentation.

" ImMetaball Metaball shape.

" ImNode Base class for all of IMPS' node types.

" ImParticleSim Witkin-Heckbert particle simulator.

" ImRenderer Base class for all polygonizers: the marching cubes, particle simulator,

and all tesselators are derived from this.

" ImRigidTransform Transform supporting only rotation and translation. This is the

only type of transform node supported by IMPS.

" ImShape Base class for all implicit shapes.

" ImTesselator First experimental polygonizer: Witkin-Heckbert plus springs.

* ImTesselator2 Second experimental polygonizer: Surface walking plus springs.

" ImTesselator3 Third experimental polygonizer: Witkin-Heckbert plus approximate

triangulation.

" ImTesselator3MP Multi-processor and most recent version of above polygonizer.

Supports skeleton caches, differential transforms, texture mapping, and 3D painting.

" ImTexGen Base class for all per-primitive texture coordinate generators.

" ImTexGenPlane Projects a planar texture along a ray; similar to a slide projector.

" ImTexGenSphere Wraps a texture around a sphere, mapping (u, v) to (theta, phi)

in spherical coordinates.

* ImUniformHash Paul Heckbert's spatial subdivision data structure [39] which hashes

3D space into buckets.

A.3.2 Auxiliary Classes

* Im2DArray Dynamically allocated 2D array class used in marching cubes renderer.

o Im3DPaint 3D painter class which attaches to a renderer, obtains textures, and

receives mouse events, causing modifications to the textures.

o ImBrush Brush class used by the 3D painter.

o ImEdgeMap Used to keep track of which vertices are on the edge of the currently

polygonized patch in ImTesselator2.

o ImEdgeMap2 Enhanced version of original edge map allowing parts of the loop of

vertices on the edge to be connected, creating sub-loops.

o ImFastTimer Wrapper for individual platforms' highest-resolution hardware timers.

Currently ported to Irix and NT.

o ImRayCast Ray-triangle intersection routines.

o ImSkeletonCache Supports animation of hierarchically organized implicit surface

scene graphs, as well as functionality like unwanted blending computations, color

blending, and texture mapping.

o ImSys Initialization routine for IMPS; ImSys: :init must be called before doing any

work with the library.

o ImTexture Minimal wrapper for dealing with reading and writing of textures. Tex-

tures are resources which are reference counted and should only be referenced using

texture references.

o ImTextureRef Reference to a texture; this is the public interface for dealing with

textures.

o ImTriangle Notion of a triangle; used in Tesselator3 and Tesselator3MP. Primarily

used to determine whether a given triangle is already in the mesh.

o ImWHParticle Data structure wrapping all state for the Witkin-Heckbert particle

simulator. Prior to Tesselator3, this data structure was broken out into its compo-

nents and individual vectors of, for example, position and velocity information were

stored independently. This was unmaintainable for development purposes, but in the

multiprocessor version it is likely that breaking the data structure back out will cause

fewer cache line invalidations during the update cycle.

Appendix B

Information for the Developer

IMPS is based on a C++ library supplying an API for a subset of VRML 2, libvrmlapi.

libvrmlapi's design and implementation were inspired by that of Open Inventor [16],

though no headers were copied during the construction of the library; it was reimplemented

based on several years' development experience with Open Inventor. Inventor's naming

conventions for common methods (i.e., getValue, setValue, isOf Type) have been followed

wherever possible. In the following discussion, a node is an object which can be contained

in the scene graph; nodes contain fields, which are distinct from C++ fields in that they are

objects as well, allowing, for example, field-to-field connections within the scene graph. See

[16] for a more detailed discussion of Open Inventor's programming paradigms.

B.1 Notable missing functionality

It is important to recognize that libvrmlapi only implements an API for reading, writing,

and modifying a subset of VRML 2; it does not implement, most importantly, rendering.

In order to render standard VRML 2 files using libvrmlapi it is necessary to either im-

plement a render action using, for example, OpenGL, or write a conversion action which

traverses libvrmlapi's scene graph and creates a corresponding one for an existing render-

ing library like Cosmo3D or Fahrenheit. libvrmlapi itself is self-contained and graphics

system-independent, which is one reason why it was relatively easy to port IMPS from an

Inventor-based renderer to one which is OpenGL-based.

Notable unimplemented features in libvrmlapi are field-to-field connections, paths,

VRML 2's distinction between eventIns, eventOuts, and exposedFields, the event mecha-

nism, notification, and most of the node types, including TimerSensors. VRML 2 nodes

which are implemented contain no logic, merely storage for data to be read in from the

file. Actions are very incomplete and do not implement Inventor's ref/unref semantics upon

visiting a node. However, the functionality which is implemented is sufficient to read in

files from 3D Studio Max's VRML 2 exporter.

B.2 Implementation Details

There are three primary pieces of functionality required when writing a library for reading

and writing VRML-style files. The first is a run-time type system to allow, for example,

instantiation of a class by class name; this is used when a node's type is read from the file as

a string (i.e., IndexedFaceSet) and an object of the appropriate type must be constructed.

The second is a mechanism for obtaining a pointer to a field of a node by specifying the

field's name (getFieldByName). The third is a reference counting mechanism to allow

proper deallocation of nodes which have multiple parents pointing to them.

C++ implements "run time type information" (RTTI) via, for example, the typeid

operator. However, it is not possible to implement the required "instantiate by class name"

functionality using C++'s RTTI. At minimum a hash table is needed which maps strings to

function pointers returning a new object of the appropriate type. libvrmlapi's VrmlType

class implements this as well as the tree data structures needed to model a class hierarchy.

The run time type system VrmlType implements is similar to RTTI but does not support

multiple inheritance for reasons discussed in VrmlType.h. This implies that the entire

libvrmlapi library, as well as all subclasses, may only use single inheritance.

libvrmlapi implements getFieldByName functionality by registering each field of a

given class at run time in a hash table mapping strings to offsets which are added to the

base object's address to obtain pointers to member data. To avoid unnecessary duplication

of this string-to-offset hash table (VrmlFieldData) in each node, it is made static in each

node's class and filled in the first time the class is instantiated.

The VrmlNode base class implements Inventor-style ref, unref, and unrefNoDelete

methods, and makes the destructors for nodes protected, so they can not be called directly

by the user. As in Inventor, nodes are deleted when their reference counts are decremented

to zero. Nodes have a zero reference count when they are created; a node's reference count

is incremented when it is added to a VrmlSFNode or VrmlMFNode field, and decremented

when it is removed from the field. As discussed in Section B.1, Inventor-style ref/unref

semantics are not implemented for VrmlActions.

B.3 Developing New Node Types

When using libvrmlapi to develop new node types, the above information is not, strictly

speaking, necessary. All of the library's run time functionality is incorporated into new

node classes via the use of macros.

B.3.1 The Header File

The first step when creating a new node type is deciding from which parent class to in-

herit. IMPS derives its own base class, ImNode, from libvrmlapi's, VrmlNode, but strictly

speaking this was not necessary (the "dirty flags" implemented by ImNode were not used in

IMPS.)

The first item in the new class's definition should be the VRML_.NODEHEADER or

VRMLNODEABSTRACTHEADER macro. Each of these takes the class name as its argument.

The "abstract" version indicates that this type may not be instantiated from a VRML

file, and should be used for any "abstract base classes", whether they have pure virtual

functions (ImShape) or not (ImNode). Regardless of whether the class is abstract, it must

declare exactly one constructor, taking no arguments.

The fields of the class which may be read from and written to a VRML file are sim-

ply data members which are subclasses of VrmlField; see VrmlIndexedFaceSet .h for an

example.

B.3.2 Method Definitions

In the new class's .cpp file, outside of any method's scope, the VRMLNODESOURCE or

VRMLNODE.ABSTRACT-SOURCE macro must be added, which inserts the definitions of imple-

mentation-level methods declared by the VRMLNODEHEADER macro. The non-abstract ver-

sion of this macro takes three arguments: the name of the class, the string by which it will

be called in the VRML file, and the name of its parent class. The abstract version takes

only two arguments, the name of this class and the name of its parent.

The VRMLNODECONSTRUCTOR macro must be the first line of the class's constructor.

After this macro, all of the VRML fields from the class's definition must be listed using either

the VRML_-NODE-ADD _SFIELD or VRML_-NODEADD IFIELD macro. These give the fields default

values (multiple-valued fields default to being empty) and add them to the VrmlFieldData

structure so they can be found by the getFieldByName method when a VRML file is loaded.

See VrmlIndexedFaceSet for an example of adding many different types of fields to a node.

B.3.3 Useful Methods

libvrmlapi declares two virtual functions in the VrmlNode base class which may be overrid-

den by subclasses. The first, notifyFieldChanged, is called whenever setValue is called on

a field contained within this node; the argument is the pointer to the field which changed. It

is crucial that the overriding method call the parent's version after it has done its subclass-

specific tasks (as discussed in VrmlNode.h). This form of "notification" propagates up to

the root of the scene graph, and currently can not be disabled. It also does not support

loops in the scene graph structure.

The second virtual function, not if yReadIn, is useful for determining when this node and

all of its children have just been loaded from a VRML file. For example, ImTesselator3MP

overrides this to build necessary caches and to initialize worker threads. Strictly speaking,

the overriding method should call the parent's version, but VrmlNode's implementation does

nothing, so it is (currently) safe to skip this step.

A new class may also specify a destructor, which will become virtual because of VrmlNode's

declaration of its destructor as virtual. When the node's reference count is decremented

to zero then it will be deleted and the destructor will be called. To avoid accidental by-

passing of the reference counting mechanism, it is strongly recommended that all subclass's

destructors be made protected.

B.4 Actions

libvrmlapi implements a rudimentary VrmlAction class which is sufficient to obtain a

callback for nodes of a specific type. However, it does not automatically descend into nodes

as an Inventor-style action would, because in VRML 2, children nodes are contained in fields

as opposed to being children of parent nodes. This is a discrepancy which should probably

be fixed, or at least the option given to descend into nodes by default.

VrmlEchoAction provides a simple example which prints all top-level nodes (i.e., Groups

and Shapes) in a given VRML file. As mentioned above, it does not descend into more

specialized node types' fields like the material node of an Appearance node.

B.5 Building an Application

In similar fashion to Open Inventor, libvrmlapi is initialized by a call to VrmlDB: :init

at the beginning of the program. IMPS is initialized after this by a call to ImSys: :init.

VRML files are loaded by calling VrmlDB: :readAll. The second argument, returned to

the caller, is a list of the routes found within the file, and may not be NULL. This interim

solution is in place primarily because field-to-field connections are not implemented, but

also because SCOOT's animation system requires the list of routes to process animation

files properly.

Since libvrmlapi supplies only reading and writing functionality, it does not require

control of the application's main loop.

GLImplViewer.cpp and IvImplViewer.cpp contain the main loops for IMPS' OpenGL

and Open Inventor-based viewers and interactive editors, respectively. Auxiliary files assist

in constructing manipulators for implicit primitives and implementing 3D painting func-

tionality.

B.6 Known Problems and Porting Notes

The structure of the file format and implementation of the texture mapping algorithms

led to the consequence that the system functions best when there is one implicit primitive

per RigidTransform. Siblings under a transform blend, but can not be articulated by

the transform. In addition, it would be advantageous to be able to specify one texture

coordinate generator and associated texture map for multiple implicit primitives, to allow

more freedom in the kinds of shapes which can be textured.

Neither of the viewers has an integrated user interface. FLTK was integrated relatively

late in the development process, but can be used for user interface development while

maintaining cross-platform compatibility between Unix and NT.

ImTexture. cpp references Silicon Graphics' Image Format Library (IFL). With SGI's re-

cent port of IFL to Windows (http: //www.sgi.com/Technology/ImageVision/windows.html),

this code is now portable between Irix and NT but not to other platforms, as IFL's source

code is not available.

ImTesselator3MP .cpp uses Irix's atomic test then-add to implement its own semaphores;

these are not portable across platforms. This class also uses Irix's system calls to attempt

to lock down worker threads to CPUs; these are also non-portable.

The modalities of interaction (that is, one manipulator per transform in a hierarchical

scene graph, but two manipulators per line segment in a flat scene graph, as discussed in

Section A.2.2) are confusing and should be rethought or extended and control options given

in a user interface.

