43,698 research outputs found

    Two-Timescale Learning Using Idiotypic Behaviour Mediation For A Navigating Mobile Robot

    Get PDF
    A combined Short-Term Learning (STL) and Long-Term Learning (LTL) approach to solving mobile-robot navigation problems is presented and tested in both the real and virtual domains. The LTL phase consists of rapid simulations that use a Genetic Algorithm to derive diverse sets of behaviours, encoded as variable sets of attributes, and the STL phase is an idiotypic Artificial Immune System. Results from the LTL phase show that sets of behaviours develop very rapidly, and significantly greater diversity is obtained when multiple autonomous populations are used, rather than a single one. The architecture is assessed under various scenarios, including removal of the LTL phase and switching off the idiotypic mechanism in the STL phase. The comparisons provide substantial evidence that the best option is the inclusion of both the LTL phase and the idiotypic system. In addition, this paper shows that structurally different environments can be used for the two phases without compromising transferability.Comment: 40 pages, 12 tables, Journal of Applied Soft Computin

    VizRank: Data Visualization Guided by Machine Learning

    Get PDF
    Data visualization plays a crucial role in identifying interesting patterns in exploratory data analysis. Its use is, however, made difficult by the large number of possible data projections showing different attribute subsets that must be evaluated by the data analyst. In this paper, we introduce a method called VizRank, which is applied on classified data to automatically select the most useful data projections. VizRank can be used with any visualization method that maps attribute values to points in a two-dimensional visualization space. It assesses possible data projections and ranks them by their ability to visually discriminate between classes. The quality of class separation is estimated by computing the predictive accuracy of k-nearest neighbor classifier on the data set consisting of x and y positions of the projected data points and their class information. The paper introduces the method and presents experimental results which show that VizRank's ranking of projections highly agrees with subjective rankings by data analysts. The practical use of VizRank is also demonstrated by an application in the field of functional genomics

    Network Model Selection for Task-Focused Attributed Network Inference

    Full text link
    Networks are models representing relationships between entities. Often these relationships are explicitly given, or we must learn a representation which generalizes and predicts observed behavior in underlying individual data (e.g. attributes or labels). Whether given or inferred, choosing the best representation affects subsequent tasks and questions on the network. This work focuses on model selection to evaluate network representations from data, focusing on fundamental predictive tasks on networks. We present a modular methodology using general, interpretable network models, task neighborhood functions found across domains, and several criteria for robust model selection. We demonstrate our methodology on three online user activity datasets and show that network model selection for the appropriate network task vs. an alternate task increases performance by an order of magnitude in our experiments

    Feature selection methods for solving the reference class problem

    Get PDF
    Probabilistic inference from frequencies, such as "Most Quakers are pacifists; Nixon is a Quaker, so probably Nixon is a pacifist" suffer from the problem that an individual is typically a member of many "reference classes" (such as Quakers, Republicans, Californians, etc) in which the frequency of the target attribute varies. How to choose the best class or combine the information? The article argues that the problem can be solved by the feature selection methods used in contemporary Big Data science: the correct reference class is that determined by the features relevant to the target, and relevance is measured by correlation (that is, a feature is relevant if it makes a difference to the frequency of the target)

    An efficient randomised sphere cover classifier

    Get PDF
    This paper describes an efficient randomised sphere cover classifier(aRSC), that reduces the training data set size without loss of accuracy when compared to nearest neighbour classifiers. The motivation for developing this algorithm is the desire to have a non-deterministic, fast, instance-based classifier that performs well in isolation but is also ideal for use with ensembles. We use 24 benchmark datasets from UCI repository and six gene expression datasets for evaluation. The first set of experiments demonstrate the basic benefits of sphere covering. The second set of experiments demonstrate that when we set the a parameter through cross validation, the resulting aRSC algorithm outperforms several well known classifiers when compared using the Friedman rank sum test. Thirdly, we test the usefulness of aRSC when used with three feature filtering filters on six gene expression datasets. Finally, we highlight the benefits of pruning with a bias/variance decompositio
    • …
    corecore