1,386,870 research outputs found
Modeling dependent gene expression
In this paper we propose a Bayesian approach for inference about dependence
of high throughput gene expression. Our goals are to use prior knowledge about
pathways to anchor inference about dependence among genes; to account for this
dependence while making inferences about differences in mean expression across
phenotypes; and to explore differences in the dependence itself across
phenotypes. Useful features of the proposed approach are a model-based
parsimonious representation of expression as an ordinal outcome, a novel and
flexible representation of prior information on the nature of dependencies, and
the use of a coherent probability model over both the structure and strength of
the dependencies of interest. We evaluate our approach through simulations and
in the analysis of data on expression of genes in the Complement and
Coagulation Cascade pathway in ovarian cancer.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS525 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Engineering stochasticity in gene expression
Stochastic fluctuations (noise) in gene expression can cause members of otherwise genetically identical populations to display drastically different phenotypes. An understanding of the sources of noise and the strategies cells employ to function reliably despite noise is proving to be increasingly important in describing the behavior of natural organisms and will be essential for the engineering of synthetic biological systems. Here we describe the design of synthetic constructs, termed ribosome competing RNAs (rcRNAs), as a means to rationally perturb noise in cellular gene expression. We find that noise in gene expression increases in a manner proportional to the ability of an rcRNA to compete for the cellular ribosome pool. We then demonstrate that operons significantly buffer noise between coexpressed genes in a natural cellular background and can even reduce the level of rcRNA enhanced noise. These results demonstrate that synthetic genetic constructs can significantly affect the noise profile of a living cell and, importantly, that operons are a facile genetic strategy for buffering against noise
Modelling the burden caused by gene expression: an in silico investigation into the interactions between synthetic gene circuits and their chassis cell
In this paper we motivate and develop a model of gene expression for the
purpose of studying the interaction between synthetic gene circuits and the
chassis cell within which they are in- serted. This model focuses on the
translational aspect of gene expression as this is where the literature
suggests the crucial interaction between gene expression and shared resources
lies
Recommended from our members
A linear mixed model approach to gene expression-tumor aneuploidy association studies.
Aneuploidy, defined as abnormal chromosome number or somatic DNA copy number, is a characteristic of many aggressive tumors and is thought to drive tumorigenesis. Gene expression-aneuploidy association studies have previously been conducted to explore cellular mechanisms associated with aneuploidy. However, in an observational setting, gene expression is influenced by many factors that can act as confounders between gene expression and aneuploidy, leading to spurious correlations between the two variables. These factors include known confounders such as sample purity or batch effect, as well as gene co-regulation which induces correlations between the expression of causal genes and non-causal genes. We use a linear mixed-effects model (LMM) to account for confounding effects of tumor purity and gene co-regulation on gene expression-aneuploidy associations. When applied to patient tumor data across diverse tumor types, we observe that the LMM both accounts for the impact of purity on aneuploidy measurements and identifies a new association between histone gene expression and aneuploidy
Edge-weighting of gene expression graphs
In recent years, considerable research efforts have been directed to micro-array technologies and their role in providing simultaneous information on expression profiles for thousands of genes. These data, when subjected to clustering and classification procedures, can assist in identifying patterns and providing insight on biological processes. To understand the properties of complex gene expression datasets, graphical representations can be used. Intuitively, the data can be represented in terms of a bipartite graph, with weighted edges corresponding to gene-sample node couples in the dataset. Biologically meaningful subgraphs can be sought, but performance can be influenced both by the search algorithm, and, by the graph-weighting scheme and both merit rigorous investigation. In this paper, we focus on edge-weighting schemes for bipartite graphical representation of gene expression. Two novel methods are presented: the first is based on empirical evidence; the second on a geometric distribution. The schemes are compared for several real datasets, assessing efficiency of performance based on four essential properties: robustness to noise and missing values, discrimination, parameter influence on scheme efficiency and reusability. Recommendations and limitations are briefly discussed
- …
