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Abstract: Nowadays, mortality rates in intensive care units are the highest of all hospital units.
However, there is not a reliable prognostic system to predict the likelihood of death in patients
with postsurgical shock. Thus, the aim of the present work is to obtain a gene expression signature
to distinguish the low and high risk of death in postsurgical shock patients. In this sense, mRNA
levels were evaluated by microarray on a discovery cohort to select the most differentially expressed
genes between surviving and non-surviving groups 30 days after the operation. Selected genes
were evaluated by quantitative real-time polymerase chain reaction (qPCR) in a validation cohort
to validate the reliability of data. A receiver-operating characteristic analysis with the area under
the curve was performed to quantify the sensitivity and specificity for gene expression levels, which
were compared with predictions by established risk scales, such as acute physiology and chronic
health evaluation (APACHE) and sequential organ failure assessment (SOFA). IL1R2, CD177, RETN,
and OLFM4 genes were upregulated in the non-surviving group of the discovery cohort, and their
predictive power was confirmed in the validation cohort. This work offers new biomarkers based on
transcriptional patterns to classify the postsurgical shock patients according to low and high risk of
death. The results present more accuracy than other mortality risk scores.
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1. Introduction

Shock is defined as acute circulatory failure with inadequate or inappropriate tissue perfusion,
resulting in generalized cellular hypoxia [1]. This condition is a common complication of critical illness
in patients in intensive care units (ICUs), who are undergoing major surgery. The rate of postsurgical
ICU admissions has increased each year, with a proportional increase in the severity of co-existing
disease, ICU-specific interventions, and the number of ICU beds [2–4]. Despite a decrease in the
mortality rate in ICUs in recent years, its rate is still the highest of all the hospital units [5,6]. In the
postsurgical ICU, the most common cause of death is shock, including septic shock and hypovolemic
shock, with multiple organ failure [7], reaching 30–50% of mortality in severe sepsis and 50–60% in
septic shock [8,9]. Compounding this situation, the average daily cost of an ICU bed is threefold higher
than one on a general ward [10].

There are different ICU scoring systems for predicting the likelihood of mortality, such as the
acute physiology and chronic health evaluation (APACHE), sequential organ failure assessment
(SOFA), and simplified acute physiology score (SAPS). Nevertheless, despite the demonstration of
good discrimination by these score systems, they are used in only 10–15% of US ICUs because they
also depend on the reliability and predictions of physicians [11]. These risk scores are based on the
use of physiological and other clinical data at the organ level, and yet, they do not take into account
molecular changes that may occur at the cellular level. In this sense, the application of gene expression
profiles to evaluate patient survival has been developed, mainly for cancer patients [12], with the
following criteria for gene selection: association with outcomes, accuracy, and reproducibility in
an independent cohort and the independency of its prognostic value from other standard factors
in multivariate analysis [13]. However, less is known about the analysis of transcript patterns as
a complement to clinical management in ICU patients. In the last years, some studies involving
septic patients correlated gene expression signatures to organ failure and mortality [14–17], but any
previous work has analyzed the mortality likelihood only in postsurgical shock patients. Therefore,
the development of a molecular test based on gene expression patterns, following the aforementioned
criteria, could provide a prognostic tool that improves risk stratification and mortality prediction in
patients with postsurgical shock. Based on these considerations, this study determined whether gene
expression signatures could predict mortality in patients with postsurgical shock and whether reliable
biomarkers could be identified.

2. Experimental Section

2.1. Patient Selection and Clinical Data

The current study was performed in the postsurgical ICU of Hospital Clínico Universitario de
Valladolid, Spain. It involved two cohorts of adult patients after major surgery between January
2014 and December 2018. Gene expression profiles by microarray analysis were obtained in one
of the cohorts, the discovery cohort. The other cohort, the validation cohort, was used to validate
the results obtained from the discovery cohort by quantitative real-time polymerase chain reaction
(qPCR). For both cohorts, all patients had a lactate value >2 mM with persisting hypotension requiring
vasopressors to maintain MAP ≥65 mmHg anytime in the first 24 postoperative hours, and the main
outcome was measured as survival or non-survival 30 days after the operation. On the other hand,
non-Caucasians, pregnant women, patients in agonizing state, and those in a state of limitation of
the therapeutic efforts were excluded from the final analysis. This study followed the code of ethics
of the World Medical Association (Declaration of Helsinki). It was also approved by the Scientific
Committee for Clinical Research of Hospital Clínico Universitario de Valladolid, and patients or
legal representatives provided informed written consent before recruitment. A survey was used to
collect clinical data, including medical history; physical examinations; and hematological, biochemical,
radiological, and microbiological investigations.
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2.2. Sample Collection and RNA Extraction

Whole blood samples were collected from patients using PAXgene venous blood vacuum collection
tubes (Becton Dickinson, Franklin Lakes, NJ, USA) within 24 h of ICU admission. Total RNA was
extracted and purified from blood samples using the PAXgene Blood RNA System (PreAnalytix,
Hombrechtikon, Switzerland) and a RNeasy Mini Kit (Qiagen, Hilden, Germany), following the
manufacturers’ protocols. The quality of the total RNA was assessed with an RNA Experion Bioanalyser
(Bio-Rad, Hercules, CA, USA), and the quantity was evaluated by absorbance on a NanoDrop 1000
Spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). Up to 1.75 µg of each RNA
sample was concentrated with an RNeasy MinElute Cleanup Kit (Qiagen, Hilden, Germany) and
eluted in a final volume of 10 µL, according to the manufacturer’s instructions. Purified RNAs were
stored at −80 ◦C.

2.3. Microarray Processing and Data Analysis

Cyanine 3-CTP-labelled cRNA was generated from 100 ng total RNA using a Quick Amp
Labelling Kit (Agilent, Palo Alto, CA, USA), according to the manufacturer’s instructions. Following
the One-Color Microarray-Based Gene Expression Analysis Protocol version 5.7 (Agilent, Santa Clara,
CA, USA), 3µg labelled cRNA was hybridized to a Whole Human Genome Oligo Microarray (GPL10487;
Agilent, Palo Alto, CA, USA), which contained 41,000 unique human genes and transcripts. Arrays were
scanned in an Agilent G2565BA Microarray Scanner System (Agilent, Wilmington, DE, USA), according
to the manufacturer’s protocol, and data were extracted with Agilent Feature Extraction Software
version 9.5.3, using Agilent protocol GE1-v5_95_Feb07 and the QC Metric Set GE1_QCMT_Jan08. Raw
data files were imported into an R-Bioconductor programming environment using the read.maimages
function from the limma package. For repeat probes, median values were used. Preprocessing involved
background correction using the normexp (‘saddle’) method, with an offset value of 50. Normalization
between the arrays was performed by the quantile method. The expression matrix was summarized for
further analysis by the selection of the top decile of probes in terms of variance. A clustering procedure
was performed on the expression matrix to define relevant patient clusters (column-wise clustering)
and gene clusters (row-wise clustering). The clustering function was hclust from the R stats package,
using Euclidean distance and the Ward.D2 aggregation method. Patient clusters were compared in
terms of survival analysis. We assessed differential expression on the expression matrix analysis using
the lmFit function from the limma package in order to obtain log-fold changes of the genes that could
best distinguish between clusters of patients, assuming that the clustering performed according to the
class discovery method. The most significant gene clusters were functionally validated by input into
the Search Tool for the Retrieval of Interacting Genes website version 11 (STRING; Swiss Institute of
Bioinformatics) to test for significant protein–protein interactions (PPIs) and for enrichment of gene
ontology (GO) tags. For STRING analysis, the high interaction confidence score of 0.7 was set as a
threshold value.

Most differentially expressed genes (DEGs) between low- and high-risk patients were tested for
their ability to predict mortality in the validation cohort, as described below. The microarray dataset
was deposited in the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus
(GEO), accessible through GEO Series accession number GSE132897.

2.4. Quantitative Real-Time Polymerase Chain Reaction (qPCR)

To assess the reliability of data obtained from the microarray analysis, genes OLFM4, CD177,
RETN, and IL1R2 were selected based on their fold changes in expression and p-values. The expression
levels for these genes were evaluated by qPCR in the validation cohort. cDNA was obtained by
reverse transcription using an iScript Advanced cDNA Synthesis Kit (Bio-Rad, Hercules, CA, USA)
and RNA isolated from the patients. The cDNA was used as a template for qPCR to evaluate the
mRNA expression profiles of the aforementioned genes in patients of the survival group and those
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who died within 30 days of their operation. qPCR was performed in a CFX96 thermocycler (Bio-Rad,
Hercules, CA, USA) using PrimeTime Gene Expression Master Mix and cycling conditions of an initial
denaturation at 95 ◦C for 3 min, 45 cycles of denaturation at 95 ◦C for 15 s, and annealing and elongation
at 62 ◦C for 15 s. In each case, the gene expression patterns of surviving patients were compared
with those observed in patients who died within 30 days of their operation, after normalization with
the actin gene, which was employed as a constitutively expressed reference gene. The sequences of
primers for the selected genes are listed in Table 1.

Table 1. Primers used for qPCR of genes from human.

Gene Forward (5′-3′) Reverse (5′-3′) Efficiency

Actin CCTTGCACATGCCGGAG ACAGAGCCTCGCCTTTG 87.2%
IL1R2 GCATCTGTATTCTCAAAAACTCTGA GGTGCTCTGTGGCTTCTG 96.9%
CD177 AAGAGATTACCAGCCACAGAC GCTGAACTGTCCCAAACTG 90.0%
RETN GCCGGATTTGGTTAGCTGA CATGGAGCACAGGGTCTTG 99.7%

OLFM4 TGCTGATGTTCACCACACC CTGAAGACCAAGCTGAAAGAGT 92.2%

qPCR: quantitative real-time polymerase chain reaction.

The PCR amplification efficiency was established using calibration curves. For each gene,
a standard curve based on five dilutions from an equimolar mix of cDNA samples was produced in
triplicate. Each sample was run in triplicate wells. The cycle threshold (Ct) values were obtained
with Bio-Rad CFX Maestro software (Bio-Rad, Hercules, CA, USA) and converted to relative gene
expression levels using the 2−∆∆Ct method.

2.5. Statistical Analysis

All the statistical analyses were performed using SPSS Statistics for Windows version 24.0 (IBM,
Armonk, NY, USA) and R statistical package version 3.6.0 (The R Foundation, Vienna, Austria).
Categorical variables were evaluated using Pearson’s χ2 test, and continuous variables were analyzed
by Student’s t-test to find qualitative statistical significance. Normal distribution and variance
homogeneity of data were assessed using the Kolmogorov–Smirnov and Levene’s tests, respectively.
The Kaplan–Meier method with the log-rank test was used for survival analyses. Receiver operating
characteristic (ROC) analysis with area under the curve (AUC) was calculated to quantify the sensitivity
and specificity of gene expression levels. A forward multivariate logistic process was used to add the
best-performing clinical parameters to our model. The optimal cut-off value with higher mortality
was obtained using classification and regression tree (CART) Analysis, which is ideally suited to
the generation of clinical decision making [18]. The ability of this cut-off value to predict 30-day
mortality was further evaluated by using multivariate logistic regression analysis. Model calibration
was assessed using the Hosmer–Lemeshow test. In all cases, a p-value ≤ 0.05 was considered to indicate
statistical significance.

3. Results

3.1. Patient Characteristics

The clinical characteristics of postsurgical patients enrolled in this study are described in Table 2.
Surviving patients and non-surviving patients 30 days after surgery in the discovery and validation
cohorts were not significantly different for most variables; however, they were significantly different in
terms of the length of hospital stay and lactate levels.
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Table 2. Characteristics of postsurgical patients.

Discovery Cohort Validation Cohort

Surviving (n = 88) Non-Surviving (n = 29) p Surviving (n = 79) Non-Surviving (n = 33) p

Characteristics
Age 69.15 71.86 0.297 69.06 72.70 0.108

Male (n (%)) 55 (63) 18 (62) 0.967 50 (63) 23 (70) 0.517
Comorbidities (n (%))
High blood pressure 64 (73) 19 (66) 0.458 46 (58) 23 (70) 0.255

Chronic cardiovascular disease 53 (60) 14 (48) 0.259 20 (25) 10 (30) 0.587
Chronic respiratory disease 14 (16) 5 (17) 0.866 14 (18) 8 (24) 0.428

Chronic renal failure 10 (11) 6 (21) 0.205 5 (6) 3 (9) 0.605
Chronic hepatic failure 3 (3) 0 (0) 0.314 1 (1) 0 (0) 0.516

Diabetes mellitus 25 (28) 7 (24) 0.655 16 (20) 6 (18) 0.801
Cancer 23 (26) 5 (17) 0.330 17 (22) 9 (27) 0.511

Immunosuppression 4 (5) 1 (3) 0.800 4 (5) 0 (0) 0.188
Time course and outcome

Length of hospital stay 30.51 18.31 0.011 37.22 12.21 0.000
Length of ICU stay 8.26 7.03 0.525 10.58 6.61 0.021

Mortality (% (7 days)) 0 (0) 14 (48) 0.000 0 (0) 15 (45) 0.000
Mortality (% (15 days)) 0 (0) 21 (72) 0.000 0 (0) 28 (85) 0.000
Type of surgery (n (%))

Cardiac surgery 54 (61) 14 (48) 0.215 34 (43) 15 (45) 0.814
General surgery 26 (30) 12 (41) 0.238 35 (44) 15 (45) 0.911

Others 8 (9) 3 (11) 1.000 10 (13) 3 (10) 0.755
Source of infection (n (%))

Respiratory tract 19 (22) 9 (31) 0.301 20 (25) 8 (24) 0.905
Abdomen 15 (17) 5 (17) 0.981 17 (22) 8 (24) 0.752

Urinary tract 12 (14) 4 (14) 0.983 13 (16) 2 (6) 0.141
Surgical site 22 (25) 5 (17) 0.390 21 (27) 7 (21) 0.550
Bacteremia 23 (26) 7 (24) 0.831 28 (35) 7 (21) 0.139

Microbiology (n (%))
Gram + 42 (48) 9 (31) 0.116 43 (54) 10 (30) 0.020
Gram − 46 (52) 14 (48) 0.709 40 (51) 13 (39) 0.277
Fungi 17 (19) 5 (17) 0.804 16 (20) 7 (21) 0.909

Measurements at diagnosis
(median (IQR))

SOFA score 7 (7) 10 (3) 0.000 9 (3) 10 (3) 0.351
APACHE score 13 (6) 16 (6.5) 0.000 13 (5) 16 (3) 0.006

Total bilirubin (mg/dL) 0.72 (1.56) 0.99 (1.08) 0.324 0.98 (1.67) 1.27 (1.10) 0.662
Glucose (mg/dL) 157 (65) 159 (97) 0.142 169 (76) 193 (145) 0.258

Platelet count (cell/mm3) 131,000 (96,250) 100,000 (131,500) 0.415 149,000 (163,250) 123,000 (137,500) 0.565
INR 1.36 (0.37) 1.31 (0.49) 0.989 1.33 (0.33) 1.31 (0.49) 0.325

ScvO2 (%) 72.30 (11.9) 66.70 (17.1) 0.007 70.90 (18.00) 67.00 (19.10) 0.334
C-reactive protein (mg/L) 107.80 (208.4) 186.00 (228.4) 0.012 208.60 (213.50) 184.40 (241.60) 0.417

Procalcitonin (ng/mL) 0.99 (9.82) 5.24 (19.49) 0.276 3.72 (23.10) 8.02 (20.46) 0.775
Lactate (mM) 3.11 (1.86) 4.33 (5.50) 0.004 2.89 (2.11) 5.00 (5.00) 0.003

White Blood cells (cells/mm3) 13,370 (10,540) 13,560 (10,490) 0.639 15,470 (11,960) 15,350 (10,605) 0.193
Neutrophils (cells/mm3) 11,738 (9803) 12,319 (10,623) 0.585 13,614 (11,310) 12,921 (10,420) 0.192

ICU, intensive care units; SOFA, sequential organ failure assessment; APACHE, acute physiology and chronic health
evaluation; INR, international normalized ratio; ScvO2, central venous oxygen saturation. Quantitative data are
expressed as medians with interquartile range (IQR). Qualitative data are presented as percentages and absolute
numbers. A p-value ≤ 0.05 was considered to indicate significant differences (bold values).

3.2. Identification of Biomarker Genes for Mortality Risk after Surgery

A graphical representation of the expression matrix of the top decile variant genes is shown in
Figure 1a, after row-wise (genes) and column-wise (patients) clustering. The matrix is divided in
two blocks in columns and rows, since this division provided the highest step in distance between
clusters, showing that dividing patients and genes in two clusters was the optimal grouping. The color
scale suggests differences in RNA levels of genes between the two clusters of patients. The color
annotation bar (yellow and black) shows the distribution of survivors and non survivors in each cluster
of patients. The statistical significance of the difference in survival between the two patient clusters was
demonstrated by Kaplan-Meier survival analysis (Figure 1b). The Kaplan-Meier plot shows significant
differences in the prognosis of patients in Cluster 1 (high risk) and Cluster 2 (low risk), suggesting that
the expression pattern could distinguish between a high and low risk of death. The volcano plot shows
all the genes in the expression matrix, ranking them as upregulated (right end) or downregulated (left
end) in the patients of the cluster at high risk of mortality. The log-fold changes and their p-values
were determined, as well as the association with the row-wise clustering of the expression matrix
(Table S1). Cluster 1 was the smaller-sized cluster, the functional validation of which was performed
on STRING. The PPI network showed a total of 301 nodes and 42 edges, with a PPI score of >0.4 based
on the STRING database (Figure 1d).
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OLFM4, CD177, RETN, and IL1R2 were selected from the microarray analysis for validation by 
qPCR in an independent study cohort (validation cohort) to evaluate the robustness of these genes as 
candidate biomarkers. qPCR data showed similar expression patterns for these genes, with a 
significant upregulation in non-surviving patients compared with surviving patients, confirming the 
results obtained from microarray analysis (Figure 2). 

Figure 1. Identification of biomarker genes from gene expression data. (a) Heat map plot of genes
of interest. Rows represent the gene expression value and columns represent the samples. The scale
bar represents the intensity of expression of transcripts, with red indicating overexpressed transcripts
and green representing underexpressed transcripts. The top bar indicates surviving (yellow) and
non-surviving patients (black); (b) Kaplan–Meier plot showing survival probability of two groups of
patients clustered by risk mortality. The numbers below the graph indicate the number of patients at
risk of death in each group; (c) volcano plot of the differentially expressed genes, with red coloring
for fold changes >1.5 and p-value < 0.01; (d) protein–protein interaction network of differentially
expressed genes.

3.3. Validation of Biomarker Genes in the Validation Cohort

OLFM4, CD177, RETN, and IL1R2 were selected from the microarray analysis for validation by
qPCR in an independent study cohort (validation cohort) to evaluate the robustness of these genes
as candidate biomarkers. qPCR data showed similar expression patterns for these genes, with a
significant upregulation in non-surviving patients compared with surviving patients, confirming the
results obtained from microarray analysis (Figure 2).
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was collected for gene expression assays. Initially, selected genes were evaluated by ROC curve 
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and IL1R2 (0.653; 0.535–0.771). Multivariate regression modeling with these genes improved the AUC 
value to 0.760 (0.649–0.872; Figure 3b). These results were better than AUC values for APACHE and 
SOFA, and other classical biomarkers, such as lactate, procalcitonin, and C-reactive protein (Table 3). 
Notably, logistic regression modeling was performed, including the gene cluster, emergency, sex, 
and age data, as well as creatinine, bilirubin, lactate, and white-blood-cell levels, with the aim of 
improving the AUC value. This model had a very good accuracy for patients in this current study, 
increasing the AUC value to 0.800 (0.693–0.906; Figure 3b). 

Figure 2. Relative mRNA levels of OLFM4, CD177, RETN, and IL1R2 in surviving patients and
non-surviving patients as measured by qPCR. The primers and reference genes are given in the
Methods section. Horizontal lines within the boxes represent the median, and the boundaries of
the boxes indicate the 25th and 75th percentiles, while the whiskers indicate the highest and lowest
values. The Y-axis represents the RNA expression levels in arbitrary units and logarithmic scale. qPCR,
quantitative real-time polymerase chain reaction.

3.4. Mortality Prediction by Biomarkers Compared to Classical Risk Scales

We assessed the ability of gene expression levels to predict the likelihood of mortality by comparing
our results with the most used mortality risk scores, such as APACHE and SOFA. The clinical parameters
to calculate the APACHE and SOFA values were taken at the same time blood was collected for gene
expression assays. Initially, selected genes were evaluated by ROC curve analysis of the validation
cohort, with AUC used to quantify its accuracy (Figure 3a). OLFM4 showed the highest AUC (0.782;
0.687–0.877), followed by RETN (0.739; 0.628–0.850), CD177 (0.669; 0.544–0.794), and IL1R2 (0.653;
0.535–0.771). Multivariate regression modeling with these genes improved the AUC value to 0.760
(0.649–0.872; Figure 3b). These results were better than AUC values for APACHE and SOFA, and other
classical biomarkers, such as lactate, procalcitonin, and C-reactive protein (Table 3). Notably, logistic
regression modeling was performed, including the gene cluster, emergency, sex, and age data, as well
as creatinine, bilirubin, lactate, and white-blood-cell levels, with the aim of improving the AUC value.
This model had a very good accuracy for patients in this current study, increasing the AUC value to
0.800 (0.693–0.906; Figure 3b).

For survival analysis, CART was employed to determine the optimal cut-off value with higher
risk of mortality in patients with postsurgical shock (Figure 4a), and subsequently, a Kaplan–Meier
plot was performed (Figure 4b), revealing significant differences among groups by the log-rank test.
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Table 3. AUC values for different biomarkers.

Biomarker Area Asymptotic 95% Confidence Interval

SOFA score 0.580 0.456–0.705
APACHE score 0.647 0.543–0.751
Procalcitonin 0.589 0.478–0.699

C-reactive protein 0.444 0.323–0.565
White blood cells 0.447 0.332–0.563

Neutrophils 0.446 0.332–0.560

AUC, area under the curve; SOFA, sequential organ failure assessment; APACHE, acute physiology and chronic
health evaluation.

J. Clin. Med. 2020, 9, x FOR PEER REVIEW 8 of 11 

 

 
(a) 

 
(b) 

Figure 3. Quantification of mortality prediction accuracy by ROC AUC. (a) ROC AUC analysis of gene 
expression; (b) ROC AUC analysis of multivariate regression model that includes gene expression, 
emergency, sex, and age data, as well as creatinine, bilirubin, lactate, and white blood cell levels, as 
adjusted variables. ROC, receiver operating characteristic; AUC, area under the curve. 

Table 3. AUC values for different biomarkers. 

Biomarker Area Asymptotic 95% Confidence Interval 
SOFA score 0.580 0.456–0.705 

APACHE score 0.647 0.543–0.751 
Procalcitonin 0.589 0.478–0.699 

C-reactive protein 0.444 0.323–0.565 
White blood cells 0.447 0.332–0.563 

Neutrophils 0.446 0.332–0.560 
AUC, area under the curve; SOFA, sequential organ failure assessment; APACHE, acute physiology 
and chronic health evaluation. 

For survival analysis, CART was employed to determine the optimal cut-off value with higher 
risk of mortality in patients with postsurgical shock (Figure 4a), and subsequently, a Kaplan–Meier 
plot was performed (Figure 4b), revealing significant differences among groups by the log-rank test. 

  
(a) (b) 

Figure 4. Survival analysis based on regression model. (a) Risk mortality tree generated by classification 
and regression tree (CART) analysis; (b) Kaplan–Meier curve for overall survival based on CART analysis. 

  

Figure 4. Survival analysis based on regression model. (a) Risk mortality tree generated by
classification and regression tree (CART) analysis; (b) Kaplan–Meier curve for overall survival based
on CART analysis.

4. Discussion

This study analyzed gene expression patterns in patients who developed shock after a major
surgery, comparing those that survived for 30 days post operation and those that died. It showed:
(i) transcriptomic profiling could predict mortality in postoperative patients with shock; (ii) four genes
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were identified as single efficient biomarkers that distinguished between low and high risk of death;
and (iii) the gene expression cluster can predict mortality better than classical mortality risk scores.

This current study succeeded in finding a differential gene expression pattern that predicted
mortality in postoperative patients with shock. The most significant cluster of genes could be arranged
as a significant PPI network. This suggested a specific gene expression signature was associated with
the differentiation between high and low risk clusters of patients. The most significantly enriched GO
tag was immune system process (GO term 0002376). Besides this gene pattern, the study aimed to
discover single efficient biomarkers. The estimation of log-fold changes between low- and high-risk
patients for every gene, regardless of gene clustering, showed a number of overexpressed genes,
with the top four being DEGs OLFM4, CD177, RETN, and IL1R2. We gave higher importance to
these overexpressed genes on account of their functional profile, according to reactome pathways.
These pathways focus on immune responses, fibrin clot formation, and responses to metabolic stress.
By contrast, functional profiles of the many more underexpressed genes were far less indicative, with
nearly half missing functional tagging. Keratinization was associated with a few underexpressed
genes, though these were unlikely to be related to the well-established physiopathology of shock, in
sharp contrast with the overexpressed genes. For this reason, the overexpressed genes rather than the
abundant and highly significantly underexpressed genes were used in the PCR-based validation phase
on the independent cohort (Figure 1c).

Previous work has reported OLFM4 gene expression as a biomarker for sepsis diagnosis [19];
however, this work compared postsurgical septic patients versus postsurgical control patients, who
did not show any signs or symptoms. Hence, the main strength of this study is the comparison
between septic shock and non-septic shock postoperative patients, who showed higher SOFA score
than Almansa et al. report [19] for hyperlactatemia.

The selected gene cluster could predict mortality in the independent validation cohort. Thus,
the AUC values for each of the selected genes were better than the AUC values of other classical
mortality risk scores, such as APACHE and SOFA. Previous reports suggested that gene expression
patterns could be used as biomarkers to predict the survival of patients with different illnesses, such
as leukemia, gastric cancer, hepatitis, and biliary atresia, and this current study added postoperative
shock to this list [20–23]. An advantage of this current study was that it identified a small number of
genes, which would make the procedures easily transferable to hospital-based clinical laboratories,
where PCR is a fast, cheap, accurate, and reliable technique used on a daily basis. Moreover, in order
to better stratify the mortality risk on postsurgical shock patients, CART analysis was used to perform
a decision tool to classify patients, and a Kaplan–Meier plot based on CART results was created to
confirm the ability of the gene cluster to predict mortality.

In addition, survival analysis based on gene expression can also help to understand the outcome
in terms of the underlying biology [24]. In this regard, the top four overexpressed genes identified in
the current study were related to the immune system. This might suggest that patients with shock who
experienced a higher mortality were actually suffering the early stages of an unrecognized infection,
which might even cause death before it could be diagnosed [25].

Finally, three important limitations of this study should also be acknowledged. First, this study
did not analyze the evolution of gene expression patterns over time. Second, it is a single-center study;
therefore, it did not assess possible inter-hospital variation, indicating the value of extending it to a
multicenter study. Third, because of the nature of the samples, the gene expression analyses of white
blood cells mainly provided insight into immune pathways regulated at the mRNA level.

5. Conclusions

Transcript profiling can predict the survival of patients with postsurgical shock. This study
provided a transcript-based tool to classify patients as “low risk” or “high risk” with regard to survival.
However, further research is needed to validate these findings in independent prospective cohorts and
establish the clinical application of this prognostic system.
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