31,108 research outputs found

    A visual analytics framework for cluster analysis of DNA microarray data

    Get PDF
    Prova tipográficaCluster analysis of DNA microarray data is an important but difficult task in knowledge discovery processes. Many clustering methods are applied to analysis of data for gene expression, but none of them is able to deal with an absolute way with the challenges that this technology raises. Due to this, many applications have been developed for visually representing clustering algorithm results on DNA microarray data, usually providing dendrogram and heat map visualizations. Most of these applications focus only on the above visualizations, and do not offer further visualization components to the validate the clustering methods or to validate one another. This paper proposes using a visual analytics framework in cluster analysis of gene expression data. Additionally, it presents a new method for finding cluster boundaries based on properties of metric spaces. Our approach presents a set of visualization components able to interact with each other; namely, parallel coordinates, cluster boundary genes, 3D cluster surfaces and DNA microarray visualizations as heat maps. Experimental results have shown that our framework can be very useful in the process of more fully understanding DNA microarray data. The software has been implemented in Java, and the framework is publicly available at http://www. analiticavisual.com/jcastellanos/3DVisualCluster/3D-VisualCluster.This work has been partially funded by the Spanish Ministry of Science and Innovation, the Plan E from the Spanish Government, the European Union from the ERDF (TIN2009-14057-C03-02)

    Proteran : animated terrain evolution for visual analysis of protein folding trajectory

    Get PDF
    In the field of bio-informatics, the analysis of voluminous data is becoming increasingly crucial to understanding the underlying biology and answering important questions. Various clustering techniques such as Hierarchical, SOMs, K-means and PCA are being used to cluster gene expression data to find the functions of unknown genes. Even these sophisticated algorithms are futile if the results are not appropriately interpreted, thus visualization techniques play an important role in analyzing data. Similar to clustering of gene expression data is that of clustering the characteristics of protein folding trajectory and a good visualization tool can help visual analysis and can provide faster and deeper insights into the manner in which a protein folds. With protein characteristics data and specific visualization requirements provided by Dr. Laxmi Parida and Dr. Ruhong Zhou of the Computation Biology Group at the IBM T. J. Watson Research Center, a new 3D visualization technique was designed and developed. This customized technique helps identify the major states a protein folds into through the use of an animated terrain. This technique was implemented as part of the interactive visualization program PROTERAN and tested with the β-Hairpin clustered data provided

    chroGPS, a global chromatin positioning system for the functional analysis and visualization of the epigenome

    Get PDF
    Development of tools to jointly visualize the genome and the epigenome remains a challenge. chroGPS is a computational approach that addresses this question. chroGPS uses multidimensional scaling techniques to represent similarity between epigenetic factors, or between genetic elements on the basis of their epigenetic state, in 2D/3D reference maps. We emphasize biological interpretability, statistical robustness, integration of genetic and epigenetic data from heterogeneous sources, and computational feasibility. Although chroGPS is a general methodology to create reference maps and study the epigenetic state of any class of genetic element or genomic region, we focus on two specific kinds of maps: chroGPSfactors, which visualizes functional similarities between epigenetic factors, and chroGPSgenes, which describes the epigenetic state of genes and integrates gene expression and other functional data. We use data from the modENCODE project on the genomic distribution of a large collection of epigenetic factors in Drosophila, a model system extensively used to study genome organization and function. Our results show that the maps allow straightforward visualization of relationships between factors and elements, capturing relevant information about their functional properties that helps to interpret epigenetic information in a functional context and derive testable hypotheses

    Expression cartography of human tissues using self organizing maps

    Get PDF
    Background: The availability of parallel, high-throughput microarray and sequencing experiments poses a challenge how to best arrange and to analyze the obtained heap of multidimensional data in a concerted way. Self organizing maps (SOM), a machine learning method, enables the parallel sample- and gene-centered view on the data combined with strong visualization and second-level analysis capabilities. The paper addresses aspects of the method with practical impact in the context of expression analysis of complex data sets.
Results: The method was applied to generate a SOM characterizing the whole genome expression profiles of 67 healthy human tissues selected from ten tissue categories (adipose, endocrine, homeostasis, digestion, exocrine, epithelium, sexual reproduction, muscle, immune system and nervous tissues). SOM mapping reduces the dimension of expression data from ten thousands of genes to a few thousands of metagenes where each metagene acts as representative of a minicluster of co-regulated single genes. Tissue-specific and common properties shared between groups of tissues emerge as a handful of localized spots in the tissue maps collecting groups of co-regulated and co-expressed metagenes. The functional context of the spots was discovered using overrepresentation analysis with respect to pre-defined gene sets of known functional impact. We found that tissue related spots typically contain enriched populations of gene sets well corresponding to molecular processes in the respective tissues. Analysis techniques normally used at the gene-level such as two-way hierarchical clustering provide a better signal-to-noise ratio and a better representativeness of the method if applied to the metagenes. Metagene-based clustering analyses aggregate the tissues into essentially three clusters containing nervous, immune system and the remaining tissues. 
Conclusions: The global view on the behavior of a few well-defined modules of correlated and differentially expressed genes is more intuitive and more informative than the separate discovery of the expression levels of hundreds or thousands of individual genes. The metagene approach is less sensitive to a priori selection of genes. It can detect a coordinated expression pattern whose components would not pass single-gene significance thresholds and it is able to extract context-dependent patterns of gene expression in complex data sets.
&#xa

    Interactive visualisation and exploration of biological data

    Get PDF
    International audienceno abstrac

    Expression cartography of human tissues using self organizing maps

    Get PDF
    Background: The availability of parallel, high-throughput microarray and sequencing experiments poses a challenge how to best arrange and to analyze the obtained heap of multidimensional data in a concerted way. Self organizing maps (SOM), a machine learning method, enables the parallel sample- and gene-centered view on the data combined with strong visualization and second-level analysis capabilities. The paper addresses aspects of the method with practical impact in the context of expression analysis of complex data sets.
Results: The method was applied to generate a SOM characterizing the whole genome expression profiles of 67 healthy human tissues selected from ten tissue categories (adipose, endocrine, homeostasis, digestion, exocrine, epithelium, sexual reproduction, muscle, immune system and nervous tissues). SOM mapping reduces the dimension of expression data from ten thousands of genes to a few thousands of metagenes where each metagene acts as representative of a minicluster of co-regulated single genes. Tissue-specific and common properties shared between groups of tissues emerge as a handful of localized spots in the tissue maps collecting groups of co-regulated and co-expressed metagenes. The functional context of the spots was discovered using overrepresentation analysis with respect to pre-defined gene sets of known functional impact. We found that tissue related spots typically contain enriched populations of gene sets well corresponding to molecular processes in the respective tissues. Analysis techniques normally used at the gene-level such as two-way hierarchical clustering provide a better signal-to-noise ratio and a better representativeness of the method if applied to the metagenes. Metagene-based clustering analyses aggregate the tissues into essentially three clusters containing nervous, immune system and the remaining tissues. 
Conclusions: The global view on the behavior of a few well-defined modules of correlated and differentially expressed genes is more intuitive and more informative than the separate discovery of the expression levels of hundreds or thousands of individual genes. The metagene approach is less sensitive to a priori selection of genes. It can detect a coordinated expression pattern whose components would not pass single-gene significance thresholds and it is able to extract context-dependent patterns of gene expression in complex data sets.
&#xa
    corecore