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Cluster analysis of DNA microarray data is an important but difficult task in knowledge discovery pro-
cesses. Many clustering methods are applied to analysis of data for gene expression, but none of them
is able to deal with an absolute way with the challenges that this technology raises. Due to this, many
applications have been developed for visually representing clustering algorithm results on DNA micro-
array data, usually providing dendrogram and heat map visualizations. Most of these applications focus
only on the above visualizations, and do not offer further visualization components to the validate the
clustering methods or to validate one another. This paper proposes using a visual analytics framework
in cluster analysis of gene expression data. Additionally, it presents a new method for finding cluster
boundaries based on properties of metric spaces. Our approach presents a set of visualization compo-
nents able to interact with each other; namely, parallel coordinates, cluster boundary genes, 3D cluster
surfaces and DNA microarray visualizations as heat maps. Experimental results have shown that our
framework can be very useful in the process of more fully understanding DNA microarray data. The
software has been implemented in Java, and the framework is publicly available at http://www.

analiticavisual.com/jcastellanos/3DVisualCluster/3D-VisualCluster.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Advances in bioinformatics have resulted in large quantities of
biological data, which have been made available in various public
databases. Biologists often wish to analyse these databases to
understand the relationships within them. Traditional approaches
are oriented towards discovering evolutionary relationships be-
tween genes or proteins by analysing their sequence and structural
similarities (Schroeder, Gilbert, Helden, & Noy, 2001).

Visual data exploration provides a means of verifying criteria or
hypotheses formulated on evolutionary processes. However, this
may also be accomplished using automatic techniques from statis-
tics or machine learning. Visual data exploration usually allows
faster data exploration and often provides better results, especially
in cases where automatic algorithms fail (Keim, 2002). Usually, this
kind of data exploration involves a three-step process: overview,
zooming and filtering, and then accessing details on demand
(Maletic, Marcus, & Collard, 2002; Shneiderman, 1996).

A single DNA microarray experiment typically evaluates a large
number of DNA sequences (genes, cDNA clones, or expressed
sequence tags) under several conditions. These conditions may
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sometimes be a series from throughout a biological process (e.g.,
the yeast-cellcycle) or a collection of different tissue samples
(e.g., normal versus cancerous tissues). In this research, we focus
on cluster analysis (Jain & Dubes, 1998, Jain, Murty, & Flynn,
1999; Kaufman & Rousseeuw, 2005; Pedrycz, 2005) done without
considering distinctions between different types of DNA se-
quences, which are generically called genes. Similarly, the condi-
tions refer uniformly to all kinds of experimental conditions,
called samples or simply conditions. On the other hand, our DNA
microarray analysis focuses on gene-based clustering analysis,
but it is also possible to perform sample-based clustering analysis
by computing the transpose matrix of the gene expression matrix
(Belacel, Wang, & Cuperlovic-Culf, 2006; Jiang, Tang, & Zhang,
2004).

Because visual data exploration is proving to be very useful in the
field of bioinformatics (Baldin & Brunak, 1998; Pal, Bandyopadhyay,
& Murthy, 2006), then combining it with data mining techniques
for gene expression data can provide knowledge of processes
that take place at the cellular level (Berrar, Dubitzky, & Granzow,
2003; Chan & Kasabov, 2004; Geoffrey, Do, & Ambroise, 2004; Han
& Kamber, 2006; Jiang et al., 2004; Olson & Delen, 2008; Speed,
2003). Genes with similar expression levels can be grouped
according to cellular functions. This approach may disclose informa-
tion about the functions of many genes for which no previous
information is available (Eisen, Spellman, Brown, & Botstein,
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1998; Tavazoie, Hughes, Campbell, Cho, & Church, 1999). Moreover,
visual analytics can be used to discover information about the
variety of available clustering algorithms. Biologists often have
problems selecting the most appropriate algorithm from a given
gene expression data set, since no single algorithm is best in every
aspect (Jiang et al., 2004).

This paper introduces visual data exploration for aggregating,
summarizing and visualizing information generated during inter-
active cluster analysis on DNA microarray data (Jain & Dubes,
1998, 1999; Kaufman & Rousseeuw, 2005; Pedrycz, 2005). As a re-
sult of our framework, we have developed a prototype tool (called
3D-VisualCluster or 3D-VC for short), which is able to explore
dendrograms, clusterings and clusters interactively with different
views (Schroeder et al., 2001; Keim, 2002). This prototype uses
principal component analysis (PCA, Jolliffe, 2002) to reduce data
dimensionality to R?, so that a first approximation of the data dis-
tribution can be analysed on a 3D scatter plot. Furthermore, paral-
lel coordinate visualization (Inselberg & Dimsdale, 1990) and DNA
microarray data views are presented using a colour scale corre-
sponding to gene expression levels (heat map). Note that connect-
ing multiple visualizations through interactive linking provides
more information than considering the visualization components
independently.

Additionally, a new method of computing cluster boundary
points is defined using the boundary definition of metric spaces.
With this method, we can display and analyse the boundary genes
of a cluster, 3D cluster surfaces, and 3D representations of refer-
ence partitions. Together, these can be seen as a new approach
for visually comparing clusterings and reference partitions. Finally,
the usefulness of our approach to gene expression research is
shown by applying several clustering methods to real data.

To conclude, we explain the structure followed by this paper.
Section 2 describes the related work, which deals with the existing
tools and components of visualization from DNA microarray data,
providing a comparative table of visual components that includes
our tool. Furthermore, a background on boundary points has also
been given. Section 3 introduces the framework for cluster analy-
sis, which provides two algorithms (boundary point and surface
reconstruction algorithm) based on the theory of metric spaces.
Section 4 explains the 3D-VC tool as a result of our framework
and gives a methodology to follow (by a set of tasks) to visually
analyse the results of the clustering methods. Section 5 outlines
the results and discussion of our framework (by the 3D-VC tool)
applied to a case study on a public data set of DNA microarray. Sec-
tion 6 describes the conclusions of our proposal. Appendices A and
B respectively give concepts on metric spaces and the theoretical
results of Section 3 on which the framework is based.

2. Related work

Cluster analysis is the technique of finding groupings within
data in such a way that these groupings make sense in the context
of a particular problem. Issues such as feature selection, missing
data imputation, outliers and noise treatment, choosing a suitable
metrics and the optimal cluster number are still open challenges.
Cluster analysis involves three main stages: pre-processing, cluster
analysis and cluster validation. The last stage includes the selection
and application of cluster validity techniques, generally divided in
internal and external measures (Datta & Datta, 2003; Handl,
Knowles, & Kell, 2005; Jiang et al., 2004; Yeung, Haynor, & Ruzzo,
2001). Visual validity can be added as a subsequent step after
applying the cluster validity measures, and the use of new and
different visualization components may help resolve the above
mentioned problems while also validating the statistical measures.

Visual validation approaches applied to DNA microarray data
have generated several commercially and publicly available tools
for data visualization (Eisen, xxxx; Reich, Ohm, Tamayo, Angelo,
& Mesirov, 2004; Saeed et al., 2003; Seo & Shneiderman, 2002;
Seo & Shneiderman, 2005; Weber et al., 2009). These tools have
the following drawbacks. Most of them do not implement dimen-
sionality reduction to represent data on a 3D scatter plot, and the
tools that do have this functionality go no further than showing
data-points. On the other hand, these tools implement a small
number of pre-fitted clustering methods, which raises problems
when validating new methods. Moreover, they do not offer a visual
interaction framework that is able to validate clustering results
according to a reference partition.

Based on the above discussion, we have designed the main fea-
tures of our prototype so as to compare it with five of the previ-
ously mentioned tools. These visualization components (or
features) are listed below with comments about their expected im-
pact on the above mentioned problems in cluster analysis.

1. DNA microarray data dendrogram analysis (MDA). This refers to
the ability of the tested tools to incorporate dendrogram analy-
sis, in the sense that the user can select and evaluate different
cut-off levels in the dendrogram. This can help the users find
the most suitable number of clusters, and offers a global view
of the constructed cluster hierarchy and the associated heat
map for the available data.

2. Scatter plot analysis (SPA). This is the ability of the tool to
implement some type of scatter plot analysis on microarray
data. This kind of graph depends on the level chosen in dendro-
gram analysis and can also be useful for validating the cluster
number. Moreover, a scatter plot allows us to detect outliers
or noise in the data, as well as to validate the inter-cluster dis-
tance used by the clustering methods.

3. Microarray parallel coordinates (MPC). Implementation of par-
allel coordinate analyses on the clusters represented as points
and heat maps. With this kind of representation, a user can val-
idate cluster homogeneity (cluster internal quality) by comple-
menting the dendrogram and scatter plot analysis.

4. Microarray statistical analysis (MSA). Whether the tool inte-
grates other statistical data analyses. This component can pro-
vide preparatory data analysis, such as feature, metric and
clustering method selection.

5. Microarray data clustering methods (MCM). Whether the tool
couples clustering methods. This component allows selection
of a clustering method and compares the results with other
methods. In this way, the method that best fits the data can
be chosen, and thus implicitly includes the selection of data
and inter-cluster distance.

Based on these points, Table 1 compares our prototype (3D-VC)
with tools from Eisen (xxxx), Saeed et al. (2003), Reich et al. (2004),
Seo and Shneiderman (2002), Weber et al. (2009), with visualiza-
tion items as the rows and tool references as the columns. A check
mark () is used to indicate that a tool provides the specified
property for that row, and “-" indicates that it does not provide
this property. Additionally, the value “b-in” means that the tool
implements the corresponding features (clustering methods or sta-
tistical measures) as built-in functionalities, and hence cannot be
extended without a considerable modification of the software.
The value “ext” means the opposite of “b-in”", since the tool has
the ability of extending its functionality by linking with external
software components (for example, through an R language API).

Some of these visual components can be improved by extending
their functionality, as in the case of Visual Exploration 3D (Weber
et al., 2009) and the proposed 3D-VC, which both implement a 3D
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Table 1

Comparative table of visualization tools versus existing visualization components. Tools: Cluster and TreeView of Eisen (xxxx), TM4 of Saeed et al. (2003), GenCluster 2.0 of Reich
et al. (2004), HCE 3.5 of Seo and Shneiderman (2002), Visual Exploration 3D of Weber et al. (2009) and 3D-VisualCluster as 3D-VC.

Features Tools

Eisen (xxxx) Saeed et al. (2003) Reich et al. (2004) Seo and Shneiderman (2002) Weber et al. (2009) 3D-VC
DNA microarray data dendrogram analysis
(MDA) 4 I I - - v
Scatter plot analysis (SPA) P P _ o o Jobede
Microarray parallel coordinates (MPC) - - - v I v
Microarray statistical analysis (MSA) b-in b-in b-in b-in b-in ext
Microarray data clustering methods (MCM)  b-in b-in b-in b-in b-in ext

¢ Dendrogram dynamic query control (DDQC). This lets users eliminate uninteresting clusters from a dendrogram and shows the interesting clusters more clearly (Seo &

Shneiderman, 2002).

> Microarray dimensionally reduction (MDR). The use of data dimensionality reduction techniques for microarray analysis on a scatter plot.
¢ Cluster boundary point (CBP). The ability of the tool to build the boundary of a cluster. That is, determining the cluster boundary genes, which allows the realization of

further analysis without taking into consideration the cluster interior genes.

43D surface reconstruction (3D-SR). Visualization of clusters or other structures in the form of 3D surfaces as an alternative to the existing visualizations.
¢ 3D reference partition representation (3D-RPR). 3D visualization of the surfaces of a reference partition from the analysed data set, and comparison of the reference

partition with the clusters of the dendrogram.

surface reconstruction. 3D-VC also improves the scatter plot
analysis by implementing cluster boundary computation and a
3D reference partition representation. 3D-VC avoids implementa-
tion of clustering methods and statistical measures as built-in
functionalities. Instead, it allows linking to other software
components by the corresponding API, and hence is easily extend-
able to newly developed clustering methods or statistical measures
through a general purpose language such as R.

2.1. Cluster boundary

Boundary points are data points that are located at the margin
of densely distributed data, and are very useful in data mining
applications since they represent a subset of the population that
possibly belongs to two or more classes (Xia, Hsu, Lee, & Ooi,
2006). Awareness of these points is also useful in classification
tasks, since they can potentially be misclassified (Jain et al., 1999).

Cluster boundary reconstruction is of great importance in DNA
microarray data analysis, since:

e the boundary genes of a cluster may be representative of the
class that this cluster determines, and so interior genes can be
discriminated by those boundary genes (Jiang et al., 2004);

e the above approach may disclose additional knowledge

about the functions of many genes and raises hypotheses

regarding mechanisms in the transcriptional regulatory net-

work (Dﬁaeseleer, Wen, Fuhrman, & Somogyi, 1998);

surface reconstruction bounded by boundary gene-points pro-

duces shapes and structures that may be meaningful in the con-

text of cluster analysis from gene expression data (pattern
recognition), that otherwise would not have been possible (Alon

et al., 1999; Duda, Hart, & Stork, 2001).

According to Xia et al. (2006), Korte and Vygen (2003), a bound-
ary point p is an object that meets the following conditions:

(a) it is within a dense region R;

(b) there exist a region R’ near p such that Density(R') >
Density(R) or Density(R') < Density(R), where the density
of a region (Density(R)) measures the relative number of
points it contains with respect to its size.

Based on these conditions, (Xia et al., 2006) developed a method
that uses the technique of reverse k nearest neighbor (RKNN) (Korn

& Muthukrishnan, 2000). Using RKNN on a data set requires the
execution of a query for each point in the data set. Thus, this is
an expensive task with complexity O(n?), where n is the size of
the data set (Tao, Papadias, & Lian, 2004). On one hand, this is a
complex method that is applied to a whole data set rather than
of a cluster. On the other hand, although this method performs
well, it is intended to separate dense regions from less dense ones,
and therefore implicitly performs a clustering task.

Our method is oriented to finding boundary points of a given
cluster, and thus the goals differs from those of the previous strat-
egy. That is, these strategies are not comparable since our method
assumes that the data has previously been grouped into clusters.
Furthermore, our method is based on the boundary definition in
terms of theoretical notions from metric spaces. This way, boundary
points focus on the set of points at the closure of a cluster that do
not belong to the interior of the cluster, as will be shown later. Fi-
nally, our method runs in O(k?) time, where k is the size of the clus-
ter, which makes it less complex and more suitable for an
interactive framework.

3. Metric-based cluster boundaries

The cluster problem can be described as “finding connected re-
gions in a multi-dimensional space containing a relatively high
density of points, separated from other such regions by a region
containing a low density of points” (Jain & Dubes, 1998), and as-
sumes that the objects to be clustered are represented as points
in the space R

Since R? with a defined metric (usually the Euclidean distance)
is a metric space (Krantz et al., 1964; Simmons, 1963), it can be as-
sumed that the gene expression matrix of a DNA microarray is a
subspace of RY, Starting from these concepts, some important def-
initions and conditions are given before we present an algorithm
which computes the boundary points of a given cluster. This algo-
rithm also improves the runtime of the cluster surface reconstruc-
tion algorithm implemented by the proposed visual framework,
3D-VC.

3.1. Boundary points of a cluster

We assume that the gene expression matrix is a bounded metric
space as stated in Proposition 1 of the theoretical results (see
Appendix B). This allows the domain in which we will work to
be defined. Next, the cluster problem is accordingly defined on
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the bounded metric space. Finally, a proposition about whether a
cluster is opened or closed is presented. This proposition is useful
for defining the problem of cluster boundary points.

In what follows, the set &% denotes a bounded subspace of
R? with an induced metric p, where d is the dimension and n
is the number of genes. That is, G’ with the metric p is a
bounded discrete metric space, called the gene metric space.
The methods introduced in this section are based on the defini-
tions and proofs given in the section entitled metric spaces (see
Appendix A).

We can now state the cluster problem on ¢,
according to Jain and Dubes (1998) as follows.

which is defined

Deﬁnltlon 1. Cluster problem on (6
Let (5 be a metric space. Then a partltlon ¢ of (5 is a collection
of subsets {C1,G,,...,C} Of 0‘) satisfying:

GnC =0, Vi, je[l,m],i#j, and

m
6y = JG, ie[l,m].

i=1
A partition € of 6! for which the above definition holds is called a
clustering, and the subsets C; are called clusters The cluster problem
consists of finding a su1table clustering of () satisfying a similarity
criteria between genes in (5 which is represented in most cases as
a distance function p.

This clustering definition is very important since different
clustering deﬁmtlons could yield distinct results for the cluster
properties in (_6 Note that in our case, a cluster C of a clustering
in a metric space (6 is a special type of subset in (‘7) where no
gene of C belongs to a different cluster of C in the same
clustering.

From Deﬁmtlons 9 and 10 in Appendix A, we can prove that a
cluster C of (ﬁ is a closed set (see Proposition 2 in Appendlx B).
As a consequence of this result, C is not an open set in (G and
the frontier of C coincides with its boundary (Definitions 8 and
12). This proposition is very important since if C was an open
cluster, then it makes no sense to think about its boundary
points.

3.2. Multidimensional algorithm to obtain cluster boundaries

The boundary points of a subset in a d-dimensional space are
very important in data mining, since analysing these points can
reveal information about the problem being addressed (Jiang
et al., 2004; Xia et al., 2006). To compute the boundary of a clus-
ter it is necessary to introduce the concept of an extreme gene,
which is fundamental in searching for cluster boundary points.
An ith extreme gene (or extreme gene) of a cluster is a gene (re-
garded as a vector in (V)ﬁ) whose ith component is either greater
or less than that for the remaining genes in the cluster. The set
of all extreme genes of a cluster C is denoted by ExmC (see Def-
inition 13 in Appendix B). An important result from the above
statement is that an extreme gene of a cluster belongs to the
boundary of such a cluster (as stated in Proposition 3 in Appen-
dix B). Note that if C is a cluster of &% then Exm C C BdC and
Card(ExmC) < 2d (Card is the cardinality of ExmC), where BdC
is the boundary of C.

We now introduce an algorithm called ClusterBoundary to find
the boundary points of a cluster (note that character % in the algo-
rithm indicates a comment). In contrast with other approaches, our
boundary definition focuses on the concept of a boundary in a met-
ric space, namely the set of points in the closure of a cluster that do
not belong to the interior of the cluster.

3.2.1. ClusterBoundary algorithm

Input: C a cluster in 6% and p the metric defined on 6.

Output: BdC, the boundary of the cluster C

1. BdC=10;

2. while C# () do

3. % Module (I)- Find all ith extreme genes in C.

4, % max.exm, min.exm search for the maximal and minimal

ith extreme genes
% respectively.
ExmC = 0);
forallic[1,d] and C # () do

ExmC := ExmC | J{g := max.exm(C,i),g", :=

min.exm(C\ {gi },i)};

9.  C:=C\{g gk}

10. endfor

11. BdC:=BdC |J ExmC;

12. % Module (II)-Compute the centroid (middle point) of
ExmC.

13. a:= centroid (ExmC);

14. % Module (IlI)-Compute the mid-points between
extreme point pairs except

15. % for gl and g, where i=j.

16. Pp:=0;

18. forallic[1,d] do

19. Py, := Py | J{middle.point(gi

20. Pm := P |J{middle.point(g’,

21. endfor

22. % Module (IV)-Compute the radius of a ball with interior
points in C as follows:

23. choose either r:==min{p(a,p)|p € Pin} or
r:=mean{p(a,p)|p € Pn}or

24, r:=max{p(a,p)|p € Pn};

25. % choosing one of the above radiuses determines the
type of approximation

26. % to the boundary of the cluster

27. % Remove interior points of the ball with center a and
radius r

28. C:=C\N(a,r);

29. endwhile

30. end

© Now

,8)lg € ExmC\ {gl,g' }};
.8)lg € ExmC\ {gl_,g"} };

The ClusterBoundary algorithm is divided in four fundamental
modules, which are explained using an example of a cluster in R>.
Module (I) (lines 3-11) carries out a search for extreme points as
shown in Fig. 1a. In this figure, the extreme points of a hypothetical
cluster are highlighted in red. At each iteration of the algorithm, the
cluster boundary is incrementally built from the extreme points
(based on Proposition 3 in Appendix B). Module (II) (lines 12-13)
computes the centroid of the extreme points, which will be the cen-
tre of the interior point ball as shown in Fig. 1b. Note that the lines
drawn between the extreme points form an eighth-sided polygon
encloses most of the points. Module (III) (lines 14-21) computes
the mid-points between each extreme point-pair, except for the
pairs (g ,g’,) where i =j. Fig. 1c shows this, as well as the possible
radiuses computed from the centroid to the mid-points. Module
(IV) (lines 22-28) determines the radius of the ball with the centre
already computed in module (II). The radius can be chosen as either
the minimal, the mean or the maximal distance between the cen-
troid and the points in the set of mid-points P,,. The option of choos-
ing different radiuses is related to the strategy for constructing the
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Fig. 1. (a) A 3D gene-point cluster with its extreme points; (b) the centroid of the extreme points and the distances (shown as lines) between the extreme points; (c) the mid-
points between the extreme points, and the radiuses computed from the centroid to the mid-points; (d) a sphere (ball) built from the centroid and a chosen radius in Figure
c; (e) interior points removed from the sphere; (f) the extreme points from (e) are moved to the set of boundary points, and a new cluster arises.

boundary of the cluster, which can be either conservative (minimal), which are also interior points of the cluster, are removed (see
intermediate (mean) or aggressive (maximal). This strategy de- Fig. 1e), whereas the polygon determined by the extreme points is
pends on how different radiuses can be used to discriminate an considered to be the current approximation of the boundary.

increasing number of interior points. The ball (a sphere in R*) with Fig. 1f shows the result of the algorithm after one iteration,
the chosen radius is shown in Fig. 1d. All interior points of the ball, where convergence toward the cluster boundary can be viewed.
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Fig. 2. Steps of the ClusterBoundary Algorithm applied to cluster (a1). The performance of the algorithm using minimum radius is shown under three iterations. Intermediate
computations are shown on (b1) and (b2). Remaining cluster and boundary of each iteration are respectively shown on {(a2),(a3)} and {(c1),(c2),(c3)}.

The next iteration takes this new cluster as its input and the
whole process is repeated until an empty cluster is obtained. If
the size of the input cluster for this algorithm is less than 2d,
then all the genes are moved to the cluster boundary. A com-
plete execution of the algorithm for a 2D cluster is given in
Fig. 2, where it has been shown the fast convergence of the algo-
rithm towards the cluster boundary, which makes this algorithm
suitable for an interactive environment. As shown in this figure,

the algorithm runs three iterations, where the input cluster for
each iteration is shown on views al, a2 and a3. The process of
computing the boundary points is shown on b1l and b2. The
boundary computed in each iteration is shown on c1, c2 and
c3, where c3 is the output of the algorithm. As the input cluster
to iteration 3 just has one gene-point, it is moved to the
boundary on ¢3 and the algorithm ends. Finally, the cluster with
its boundary points and its shape is shown on dl1 and d2
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respectively. Note that the algorithm converges towards the
boundary of the cluster in a few iterations.

From the performance and the runtime complexity (Aho,
Hopcroft, & Ullman, 1983; Gacs & Lovasz, 1999; Wilf, 1994) of
ClusterBoundary, we have that the number of mid-points in Py, is
bounded by 2d(d — 1) (see Proposition 4 in Appendix B). Hence,
the runtime of this algorithm in the worst case scenario is O(k?),
where k is the size of the input cluster (for a formal proof see
Proposition 5 in Appendix B).

3.3. Surface reconstruction based on boundary points

Surface reconstruction considers the extraction of shape infor-
mation from a point set. These point sets often contain noise,
redundancy and systematic variation arising from the experimen-
tal procedure. Therefore, a general approach to reconstructing
surfaces is a challenging problem (Hoppe et al., 1994; Heckel,
Hamann, & Uva, 1997).

The goal of surface reconstruction methods can be described as
follows: given a set of sample points X assumed to lie on or near an
unknown surface U, construct a surface model S approximating U
(Hoppe, DeRose, Duchamp, McDonald, & Stuetzle, 1992, 1994,
Mari¢, Mari¢, Mijajlovi¢, & Jovanovi¢, 2005).

The proposed algorithm is a modification of the one presented
in Berg, Cheong, Kreveld, and Overmars (2008), Boissonnat and
Teillaud (2006), which reconstructs convex hulls. In general, since
many surfaces are not convex hulls, we provide a version that
transforms the basis algorithm to obtain non-convex hulls. As a
general schema, the algorithm projects boundary points of a clus-
ter onto the plane, and determines the convex boundary points.
Second, the algorithm inserts the remaining non-convex bound-
ary points into the list of convex boundary points. Finally, the
algorithm returns an ordered list of boundary points which is
used to establish the connectivity of points in a 3D dimensional
space.

The first aim of this algorithm is to reconstruct cluster surfaces
based on boundary points as a new alternative for cluster visuali-
zation. Thus, the input of this algorithm is the cluster boundary
found by the ClusterBoundary algorithm. Note that this strategy
improves the runtime of our algorithm for surface reconstruction,
which is another advantage over the basis algorithm. The second
aim is to represent the clusters of a reference partition of a data
set as translucent 3D-surfaces, in such a way that genes grouped
by a clustering method and also belonging to a cluster of the refer-
ence partition can be viewed within the surface of such a cluster in
the space. The pseudocode for this algorithm, called Boundary-
Shape, has been outlined below.

upper hull

lower hull

Fig. 3. Convex hull of the boundary points of a cluster.

3.3.1. BoundaryShape algorithm

Input: B, the boundary of a cluster in (5,‘3 and p the metric

defined on ¢
Output: boundary.idx, index sorted list of genes in B
Require: DPoint function, a generic function to support
different criteria for including non-convex points in the
boundary
. B’ := Projection2D (B); % Projects the genes of B onto the
plane
. B':=Sort,(B'); % Sorts B’ by the x coordinate
. fisrtpos := 1;% Position of the first gene in B’
. % Initialize the index lists of upper and lower points in B’
. lupper := llower := NULL;
. % Find the position of upper convex points
. while there exists (i > firstpos) so that UpperConvexEdge
(firstpos, i, B') holds do
8. Add (lupper,i); % Adds i to the end of lupper list
9. firstpos:=1i;
10. endwhile
11. % Find the position of the lower convex points
12. fisrtpos := 1; Add (llower, fisrtpos);
13. while there exists (i > firstpos) so that LowerConvexEdge
(firstpos,i,B’) holds do
14. Add (llower,i);
15. firstpos :=1i;
16. endwhile
17. Remove the last index of lupper;
18. % Join both index lists of points, inverting lupper
19. boundary.idx := Append (llower, Reverse (lupper));
20. % Take remaining non-convex point indexes out
21. nc := NonconvexIdx (boundary.idx);
22. % Insert each index of nc in boundary.idx suitably
23. for each ic nc do
24. % Take the point-index of boundary.idx with the least
distance to i out
25. idx:= argimin{p(i,j)|j € boundary.idx}
26. % Determine whether i is inserted to the left or to the
right of idx in boundary.idx
27. % DPoint function returns a value based on a distance
criterion for three points
28. if DPoint (i,idx,idx - 1) > DPoint (i,idx,idx + 1) then
29. Insert (boundary.idx,i,idx + 1)
30. else
31. Insert (boundary.idx, i,idx)
32. endif
33. endfor
34. end

—_

NoubhwN

The BoundaryShape algorithm is an incremental approach,
which has three main parts. Namely, building a list of upper convex
point indexes (lines 6-10), a list of lower convex point indexes
(lines 11-16), and finally, to insert non-convex point-indexes into
the convex indexes list (lines 17-33). So BoundaryShape carries
first out some operations such as projecting points onto the x : y
plane and then sorts these points by x-coordinate in an ascendent
way. Afterwards, it makes a search from left to right (as shown in
Fig. 3) for upper convex points and lower convex points (while
loop, lines 7-10 and 13-16 respectively). Once found these points,
they are added to lupper and llower lists respectively. The Upper-
ConvexEdge and the LowerConvexEdge check whether the edge
formed by the vertices firstpos and i is an upper or lower convex
one, Fig. 3. Therefore, the first while loop (lines 7-10) of the
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algorithm computes only those convex hull vertices that lie on the
upper hull (blue edges in Fig. 3). That is, the part of the convex hull
running from the leftmost point P; to the rightmost point P,
when the points are listed clockwise order as shown in Fig. 3.
The second while loop (lines 13-16) does the same but for vertices
that lie on the lower hull (red edges).

At the end of the algorithm, boundary.idx is formed by joining
llower and the reverse of lupper, which allows the convex points to
be stored in anti-clockwise order. The set nc stores the remaining
non-convex points that are finally inserted into boundary.idx in
the for loop (lines 23-33). The value of idx in this loop is the point
nearest to i (the convex point closest to P’ in Fig. 3 is P;). We then
have to decide whether i is inserted to the left or the right of idx,
which is done using DPoint. DPoint is a generic function that can
use a number of distance criteria as shown in Fig. 3. Briefly, the
point P’ (Fig. 3) can be inserted to the left or right of P; based
on the smaller of the distances between (P,P;_;) and (P,Py),
the smaller of the distances from P to the edges (P;, P;_1) and (P;,-
Pi.1), the shorter of the paths connecting (P,P;_1,P;) and (P, Py, P;),
or the smaller of the areas AP'P;_P; and AP'P;,,P;. Note that, in
this figure, P should be inserted to the left of P; (the area of
AP'P;_{P; is less than the area of AP'P;,,P;), implying that the edge
(P;,P;_1) is replaced by the edges (P,P;_;) and (P,P;). This mecha-
nism allows a convex boundary to become non-convex (see also
Fig. 2d2).

The information given by the output of the BoundaryShape
algorithm is used for the 3D triangulation of the surface that

TOOL INPUT

Clustering Results
and
Datasets

\ =
e i
'
;

approximates the shape of the cluster, whose boundary was the in-
put to the algorithm.

4. The 3D-VC Framework

In this section, we use DNA microarray data to show the useful-
ness of 3D-VC in the context of knowledge discovery and visual
analytics. 3D-VC can be used for visual validation of the results
of clustering methods as an alternative to statistic validity mea-
sures (Datta & Datta, 2003; Handl et al., 2005; Jiang et al., 2004,
Yeung et al., 2001).The prototype has been written in Java and
Java-3D, providing interactive visualizations designed to analyse
clustering results, including: microarrays, dendrograms, parallel
coordinates and different views of 3D scatter plots.

To show an overview of the 3D-VC tool, a gene expression data
set called cellcycle given in Yee-Yeung (2001) has been used. The
gene expression matrix is composed of 384 genes evaluated under
17 samples, normalized to mean 0 and variance 1. The data set has
been classified by Yee-Yeung (2001) into 5 gene clusters to forms a
reference partition. Hereinafter, clusters in a reference partition
would be called reference clusters (in shorthand, r-clusters). Then,
to explore the possible clusters of this data set, the agnes agglomer-
ative algorithm (Kaufman & Rousseeuw, 2005) has been used. It has
been implemented in R language (R Development Core Team, 2006),
using the packages in Maechler (2005), Chipman and Tibshirani
(2006). The Euclidean distance has been used as the metric between
data and mean link as the inter-cluster distance to generate the
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Fig. 4. General view of the tool. There are eight linked views and six tasks of cluster visual analysis showing: microarray, dendrogram and parallel coordinates views at the
top of the figure; 3D scatter plot views at the bottom; cluster boundary points, reference partition shapes and cluster shape reconstruction.
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Fig. 5. (a) compares the current cluster by changing the shape of the points (with cubes) vs. remaining points of the data set; (b) compares the current cluster (colored) vs.
remaining points of the data set (white circle) and (c) displays only the current cluster. (For interpretation of the references to colour in this figure legend, the reader is

referred to the web version of this article.)

output dendrogram. Both, data set and algorithm have just been
selected as an example to show the functionality of the tool, so
the user can choose any other combination of data sets and
algorithms to achieve its purpose.

A general view of our prototype is presented in Fig. 4, which dis-
plays a sketch of eight linked views and six tasks of visual cluster
analysis. Note that the tasks proposed by 3D-VC in this figure,
implicitly states a methodology to follow in the visual analysis

Maximum radius

and validation of the results of a clustering method. We then ex-
plain below, each task of this methodology to describe the 3D-VC
tool.

Task 1 in Fig. 4 has as its first goal to read the results of a clus-
tering method applied to a data set of DNA microarray from an
external source (in our case, from R language). As a result of the in-
put, this task generates the HD-view, which shows (for this exam-
ple) the agnes dendrogram with its microarray (as a heat map).

Mean radius

Minimum radius

Fig. 6. Shows boundary point options; (a) displays the boundary points computed from maximum radius; (b) boundary points computed from mean radius; and (c) boundary

points computed from minimum radius.
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Table 2

Comparative table of agreement and disagreement of clustering results with respect to the reference partition of cellcycle.

Method Case #Clusters Agreement Disagreement
JC RI ARI MM
Agnes 0.20615 0.39175 —0.00455 1.63176
Diana A 5 0.20957 0.38518 —0.00048 1.64056
Eisen 0.22690 0.24387 —-0.00153 1.81936
Agnes 0.16953 0.56706 0.00485 1.37668
Diana B 13 0.13083 0.65473 0.00810 1.22939
Eisen 0.20719 0.39583 —-0.00157 1.62622

This view provides an overall analysis of the whole clustering pro-
cess. The second goal of Task 1 is to generate from the input, two
new tasks, 2 and 3, which give way to a new analysis on different
views. For its part, Task 2 in Fig. 4 has as a goal to compare the ori-
ginal and the ordered microarray according to the applied cluster-
ing method using the CDM-view. Genes in a cluster on the ordered
microarray can also be located on the original microarray (through
the red lines between both microarrays). This task is optional in the
analysis process and is also useful to compare several clustering
methods according to the reordering applied by them to the origi-
nal microarray.

On the order hand, a continuation of Task 1 is Task 3, which has
as a goal to locally explore the clusterings (and clusters) of the den-
drogram shown by Task 1, through the result given by the VCE-
view. Every level (clustering) of the dendrogram can be chosen

on the left side in the VCE-view, and the clusters of the chosen level
are shown on the right side. Therefore, this view explores in detail
each cluster in the dendrogram and moreover, it is a new visual aid
for exploring clusters on the microarray.

From Task 3, two possible tasks, Tasks 4 and 5, can be followed.
Task 4 has as a goal to carry out a zoom-in of the selected cluster in
the VCE-view and show it as a result by including parallel coordi-
nates in the PC-view. Parallel coordinates are added for each sam-
ple of genes in the cluster, providing a means of comparison of the
cluster quality. Task 5 has as a goal to give a different visualization
alternative from the VCE-view. In this case, the clustering selected
in the VCE-view (Task 3) has been shown in form of a 3D scatter
plot by applying PCA (through the covariance matrix) to reduce
the gene space dimensionality to obtain the view of the 3D-viewer.
Each cluster in the current clustering has been displayed on the

Agnes Method
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Fig. 7. Dendrogram and microarray of cellcycle for Agnes method, showing the level of 13 clusters. Clusters are enumerated from left to right.
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3D-viewer in a different colour. That is, gene-points in the same
cluster have the same colour while gene-points in different clus-
ters have different colours. Each cluster on the 3D-viewer can be
filtered for separate analysis.

Accordingly to the above, Task 5 generates the last task (task 6)
of visual analysis, which has as a goal to filter clusters from the
clustering represented on the 3D-viewer for their separately anal-
ysis through views ICA1, ICA2 and ICA3. The ICA1-view displays
the currently selected cluster with its boundary gene-points, which
have been computed by our algorithm ClusterBoundary. Note that
before to analyse views ICA2 and ICA3, we need to again read from
an external source to the tool, the reference partition of cellcycle as
shown in Task 6 (Fig. 4). Consequently, in the ICA2-view, we can
choose each r-cluster 3D shape (built from our algorithm Boun-
daryShape) from the reference partition to visually compare it with
the current cluster. This way, the r-cluster shape that better match
(by visual inspection) with the current cluster can be selected as
shows the ICA2-view. Basically, to select the r-cluster shape most
similar to the analysed cluster (represented by the cloud of points),
we observe the gene-points that fall within the r-cluster translu-
cent shape, the ones on the border of the r-cluster shape and the
ones outside of it. On the other hand, the ICA3-view is an alterna-
tive with respect to the ICA2-view, where the shape of the analysed
cluster is reconstructed (algorithm BoundaryShape) to be com-
pared with the r-cluster shapes. This view provide another way
of comparing a cluster with a r-cluster, which allows us to rein-
force the assumptions taken into account in the ICA2-view. In
our example, the current cluster as both gene-points (ICA2-view)
and shape (ICA3-view) visually match with the indicated r-cluster

in both views, which means it is a good cluster according to the ref-
erence partition. Note that each task in Fig. 4 provides different
ways to see and analyse a cluster.

Representing reference partitions from cluster boundary points
is one of the main contributions of this paper. This is because there
are several statistical indicators for comparing a clustering with a
reference partition, but there is no visual approach to validate this
comparison. In our framework, each r-cluster of the reference par-
tition is represented by a translucent 3D surface (reconstructed by
algorithm ClusterShape), which is generated from the boundary
gene-points of each r-cluster using algorithm ClusterBoundary.
Thus, the gene-points at the intersection of a cluster with a r-clus-
ter will visually fall within the surface of such a r-cluster (in the
space). In that case, one can visually check the degree of agreement
between a clustering and a reference partition, or alternatively ver-
ify the results of statistical measures. Therefore, it is possible to
visually choose the clustering of a dendrogram that best approxi-
mates the reference partition.

Other filtering options for the scatter plot can be seen in Fig. 5,
where view (a) shows the genes of the current cluster (selected on
the VCE-view in Fig. 4) in form of cubes. View (b) shows the same
cluster but differentiated by a colour different from the one of the
remaining points, and view (c) isolates the cluster. Whereas three
types of boundary corresponding to the maximum, mean and
minimum radius are displayed in Fig. 6 for the same cluster.
Boundary points have been displayed in the form of cubes and have
also been computed by algorithm ClusterBoundary. Note that the
number of boundary points in Fig. 6 increases from the maximum
radius to minimum radius, as different radiuses imply different

Diana Method
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Fig. 8. Dendrogram and microarray of cellcycle for the Diana method, showing the level of 13 clusters.
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approximations of the cluster boundary. The radius determines the
number of interior points to be removed from a cluster. Thus, the
user can choose the type of boundary according to the application.
That is, the maximum radius is more suitable to represent 3D
surfaces of r-clusters, whereas a smaller radius may be more suit-
able to represent clusters by their boundary points (or their shapes).

5. A Case Study

This section presents a case study of the cellcycle data set (Yee-
Yeung, 2001) and its reference partition of 5 r-clusters. The goal of
this case study is to show that the visual validation and the numer-
ical validation (cluster validity measures) of the results from the
clustering methods are consistent with respect to a reference par-
tition of the given data set. Note that not always visual validation
matches the numerical validation, since the numerical validations
are based on different assumptions. Then, to reach the previous
goal, we first compare the results of three clustering methods with
the reference partition for cellcycle by mean of statistical indices
that measure the similarity degree. Afterwards, we also visually
compare the quality of the used statistical indices and show the
relationships (numerical and visual) between the reference parti-
tion and the clustering results.

To this end, the hierarchical clustering methods Agnes and Dia-
na from Kaufman and Rousseeuw (2005) and Eisen from Eisen et al.
(1998), are applied to cellcycle. The following statistical indices are
used: the Rand index (RI), the Jaccard coefficient (JC), the Minkow-
ski measure (MM) (Halkidi, Batistakis, & Vazirgiannis, 2001; Sokal,

1977), and the Adjusted Rand index (ARI) (Rand, 1971). JC, RI and
ARI measure the extent of agreement between two clusterings
(JCe[0,1],RI€[0,1] and ARI < 1), whereas MM illustrates the pro-
portion of disagreement (MM > 0). When the agreement measure
value increases, the agreement grows and when the MM value de-
creases, the disagreement becomes smaller. All these numerical
indices provide evidence that strengthen or weaken the agreement
between a clustering and a reference partition, which agrees with
the goal of this case study.

Two cases (A and B in Table 2) representing different levels of
output dendrogram were chosen to compare each method with
the reference partition. Case A (column Case) selects the clustering
with 5 clusters (column #Clusters) for each dendrogram, that is, the
case where the cluster number in the dendrograms matches that of
the reference partition. Case B selects the clustering with 13 clusters
for each dendrogram, namely, the clustering that represents a good
structural grouping according to the colour intensity levels in
the microarray (for example, Fig. 7).The Method column of the table
gives the name of the method applied in each case, while the
remaining columns contain the values reached for each index in
each case. The best values for each index column are underlined.

Note that for Case A, Agnes attains the best values for the RI and
MM indices, while Diana performs best for ARI and Eisen for the in-
dex JC. This means that Agnes has more indices with the best values
than the other methods, giving further support to the conclusion
that it fits better the reference partition. In Case B, Diana gives
the best values for the RI, ARl and MM indices, and Eisen for JC.
Hence, in Case B, Diana fits better the reference partition by the
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Fig. 9. Dendrogram and microarray of cellcycle for Eisen method, showing the level of 13 clusters.
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Fig. 10. cellcycle reference partition. Each r-cluster has been displayed as a 3D surface.
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Fig. 11. Shapes of the cellcycle reference partition and the clusters that better match with each r-cluster, Agnes method.

same conclusion explained for Agnes in Case A. In general, except
for JC, Case B has better index values than Case A. Thus, the gene
distribution with 13 clusters fits better the reference partition than

the one with 5 clusters. Finally, since Diana in Case B has the higher
values on RI, ARl and MM, we can conclude that its result fits better
the cellcycle reference partition than the others in the whole table.
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5.1. Visual Check of the Results

As the final part of the case study, we now check that the index
results for Case B correspond to the visual representation of the
microarray view and with the reference partition of cellcycle in
the scatter plot view. This allows us a validation process of all
the used indices. Firstly, we show the microarray and dendrogram
view for each method in Case B in Table 2 by Figs. 7-9, which verify
that Diana finds a better gene cluster distribution than the other
methods. That is, through a visual comparison of the clusters with
similar colours, marked on the heat map (red rectangles) in those
Figs. 7-9, we can see Diana has better division of clusters than
Agnes and Eisen. In contrast, Eisen (Fig. 9) shows the worst division
of clusters on the heat map.

Secondly, we visually compare the clustering of each method in
Case B against the reference partition, aimed at finding the method
that yields the clustering most in agreement with the reference
partition. A visual representation of the cellcycle reference partition
is given by Fig. 10, which shows the 3D-surfaces of its five r-clus-
ters, computed from the ClusterShape algorithm. In order to com-
pare the r-clusters with the clusters in Case B in Table 2, a visual
inspection has been carried out for the clusters of each method
similar to these r-cluster shapes.

Figs. 11-13 show the r-clusters (in the form of 3D-surfaces)
overlapped on the clusters (represented as a cloud of gene-points)
most similar to them for each method of Case B in Table 2. For
Agnes in Fig. 11, six visual matches have visually been found for
only four clusters with respect to the reference partition. The
remaining clusters for Agnes are not considered because they are
very small and so match with any r-cluster. The process followed

to choose the r-cluster shape most similar to a cluster is to first se-
lect each r-cluster shape on the cluster and visually analyse that
the solid shape of the r-cluster matches the shape of the cloud of
gene-points described by the cluster. In addition, we visually check
the position of the gene-points of the cluster on the 3D-surface of
the r-cluster as explained for ICA2-view in Fig. 4. For Diana
(Fig. 12), seven matches have been found for only six clusters with
respect to the reference partition. For the remaining clusters no
matches have been found or the clusters have been very small.
For Eisen (Fig. 13) six matches have been found for only two clus-
ters. Note that cluster 2 in this figure is repeated four times for dif-
ferent r-clusters. This is because cluster 2 is big and therefore,
matches any r-cluster, as also happens for small clusters.

To summarize, we have completed three types of validation for
the results of Agnes, Diana and Eisen. That is, we have validated the
results using the indices in Table 2, using the dendrogram and
microarray view in Figs. 7-9, and finally by visual comparison with
a reference partition in Figs. 11-13. For this experiment, the three
tests have given the same results. Namely, in Case B, Diana (Table
2) returned the best values for the used indices. Furthermore, Dia-
na has shown the best distribution of gene clusters with respect to
the microarray and dendrogram visualization, as displayed in
Fig. 8, and have also given the best matches (six matches) between
the selected clustering and the reference partition for cellcycle. On
the other hand, Eisen achieved the worst results for the three tests
(the worst, in the sense that Eisen has been less similar to the ref-
erence partition than the other methods). In conclusion, we have
validated that the Diana method has the best performance on cell-
cycle according to its reference partition, and consequently, the
clustering that better represent cellcycle is that with 13 clusters

(1) Cluster 1 (2) Cluster 2
" Recluster 1 " Re-cluster 1

Diana method
result

(4) Cluster4

(5) Cluster5
R-cluster 3

R-cluster 4

Diana Clustering

CLUSTER #1

CLUSTER #2

CLUSTER #3

CLUSTER #4

CLUSTER #5

CLUSTER #6

Matches of clusters with r-clusters
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s
"."

Cluster 3

©) R gluster 2

(6) Cluster§
R-cluster 5

(7) Cluster 6
"' R-cluster 5
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R-CLUSTER #1

R-CLUSTER #2

R-CLUSTER #3
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Fig. 12. Shapes of the cellcycle reference partition and the clusters that best match with each r-cluster, Diana method.
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Fig. 13. Shapes of the cellcycle reference partition and the clusters that better match with each r-cluster, Eisen method.

given by Diana. Moreover, the most meaningful clusters in the
above clustering were identified according to the reference parti-
tion. These clusters are {1,2,3,4,5,6}, as shown in Figs. 8 and 12.
Finally, we have that the quantitative and visual analysis agree
and additionally, the visual analysis allows us to identify the clus-
ters that match the r-clusters.

6. Conclusions

The main goal of this paper is to provide a visual framework for
gene expression data analysis. To do this, we first have developed
an approach to DNA microarray data analysis focused on metric
spaces, which allows us to use an algorithm to find cluster bound-
ary gene-points. Based on the boundary gene-points, it is possible
to approximate the surface of a cluster, as well as represent a ref-
erence partition in the space.

These new visualizations are combined with other DNA micro-
array visualizations, such as heat maps, dendrograms and parallel
coordinates, that our framework provides through linked views.
This way, the visual analytics process can be achieved. On the other
hand, since our prototype is linked using the R language (R Devel-
opment Core Team, 2006), the results of clustering methods imple-
mented in R can be used by 3D-VC. Since R is a programming
language widely used in bioinformatics, most clustering methods
have been implemented using R in software packages.

Within this approach aimed at cluster analysis for DNA micro-
array data, we have presented a new method for computing
boundary points based on metric spaces. This method is used to
render a 3D view of a cluster from its boundary gene-points or sur-
face and a reference partition from the surfaces of its reference

clusters, and can thus be used to compare a reference partitions
and clusterings from a DNA microarray.

We have decided to combine existing visualizations with the
new ideas in our approach, so as to capitalize on the added value
gained from interaction between these approaches and thus max-
imize the benefits to the user. Moreover, the use of 3D-VC states a
methodology to follow (through a set of tasks) in the visual analy-
sis process from clustering results. A first prototype of our ap-
proach, 3D-VC, has been developed and is available at http://
www.analiticavisual.com/jcastellanos/3DVisualCluster/3D-Visual-
Cluster. Additional support of 3D-VC such as manuals, examples,
images and videos are also publicly available on this website.
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Appendix A. Metric spaces

Definition 2 (Metric spaces). If E is an arbitrary set and
p: ExE— R a mapping called the distance, then the pair (E, p)
(abbreviated to E) is a metric space if p is a metric defined on E.
That is, for all points x, y, z € E, the following are satisfied:

1. Positiveness: p(x,y) >0 if x # y, and p(x,x) = 0.

2. Symmetry: p(x,y) = p(y,x).
3. Triangle inequality: p(x,z) < p(x,y) + p(¥,2).

Definition 3 (Bounded metric spaces). Let E be a metric space con-
sisting with the metric p. If there exists a positive number k such
that p(x,y) < k for all points x, y € E, then we say that E is a bounded
metric space.

Definition 4 (Diameter of a subset of a metric space). Let A be a sub-
set of a metric space E. Consider the set of non-negative real num-
bers {p(x,y)|x €A,y €A} If this set is bounded, then it has
supremum, denoted 5(A), which is called the diameter of A.

Definition 5 (Distance between two subsets). Let A and B be two
subsets of a metric space E. The set of real numbers
{p(x,y)x €Ay eB}, is bounded below by zero. Its infimum,
denoted by p(A,B), is called the distance between A and B.

In the case that A and B can be considered as clusters, other defi-
nitions of distance between them can be given (Jain & Dubes, 1998).

Definition 6 (Subspace of a metric space). Let E be a metric space
with the metric p, and let E’ be a proper subset of E. Let p’ be the
restriction of p to E’ x E, so that p/(x,y) = p(x,y) for all xand y in E'.
Then p’ is called an induced metric and E' with the metric p’ is
called a subspace of E.

The gene expression matrix (m x n) of a DNA microarray can be
viewed as a subspace of R" (see Proposition 1).

Definition 7 (Balls). If a is a point in a metric space E with the
metric p, then the set of all points x € E such that p(a,x) < r, where
r> 0, is called a ball (or neighborhood) of centre a and radius r, and
is denoted by N(a,r).

Definition 8 (Open sets). If A is a subset in a metric space E, the
point a € A is said to be an interior point of A if it is the centre of
a ball which consists only of points in A. The set of all interior
points of A (IntA) is called the interior of A. If every point of A is
interior, then A is called an open set.

Definition 9 (Adherent points). If A is a subset of a metric space E,
the point a € E is said to be an adherent point of A if every ball with
centre a contains a point of A.

Definition 10 (Closure). If A is a subset of a metric space E, the clo-
sure of A, denoted by A, is the set of all adherent points of A. Clearly,
A CA.If A=A, we say that A is closed.

Definition 11 (Exterior points). A point is said to be an exterior
point of A if it is an interior point of the complement A°. The exte-
rior of A (Ext A) is the set of all exterior points of A.

Definition 12. (Frontier points). The setA N A, whichis not necessar-
ily empty, is called the frontier of A, denoted FrA. The boundary of a set
A, denoted BdA, is the part of the frontier of A which belongs to A.

Appendix B. Theoretical results

Proposition 1 (Gene subspace). Consider the metric space R and
without loose of generality, the Euclidean distance p’ defined on R
Let X,.q4 be a gene expression matrix of DNA microarray data, and
let csﬁ be a set consisting of all row points (genes) in X;,.4. Then (ﬁﬂ
is a bounded subspace of R? with the induced metric p with

(8% 8)) = P'(88y). for g and g, genes in 6.

Proof. This proposition can be verified from Definitions 2, 3 and 6
in Appendix A. O

Proposition 2. (Closed cluster). If (ﬁﬁ is a gene metric space with a
metric p, then every cluster C of(ﬁg is a closed set (closed cluster) in (Bﬁ.

Proof. From Definitions 9 and 10, it is necessary to prove that C = C.
We do this by reductio ad absurdum. Suppose thatx € (ﬁ‘; isan exterior
gene of C (see Definition 11) that is also an adherent gene of C. Then
x € Cand C # C,and moreover, Vr € R,3a € C,a € N(x,r) (see Defini-
tion 7).If, in particular, r = p(x,C)/2 (see Definition 5), then Za € Csuch
that a € N(x, p(x,C)/2), and so x ¢ C, which is a contradiction to our
previous assumption. Hence, x € C, C = C and thus Cis closed. O

Definition 13 (Extreme gene). Let C be a cluster of a gene metric
space G')ﬂ. A gene g € C such that g= (x1,X2,...,X;,...,Xg) is said to
be an ith extreme gene (or an extreme gene) of C, i € [1,d], if either
X; = X;orx; < xjVg' = (X{,Xy,...,X},...,x)) € C\ {g}. An ith extreme
gene g € Cis denoted as g~ when x; > x; or g’ when x; < x; in the
above mentioned condition. The set of all extreme genes of C is
denoted by ExmC.

Proposition 3 (Extreme genes and cluster boundary). If
g= (X3,X2, ... ,X,...,Xq) is an ith extreme gene of a cluster C of (93g,
then g € BdC.

Proof. It is enough to prove that g € C is not an interior gene of C.
This is true because in any ball N(g,r) with r > 0, we can find a gene
g = (x{,xy,...,X},...,x,) with either x; > x; or x; < x; (according to
the case) such that g is an ith extreme gene of Cu{g'} and
p(g,g)<r, ie[1,d]. This implies that g € N(g,r) and g’ ¢ C, so g is
not an interior gene in C and hence ge Bd C. O

Proposition 4 (Cardinality of P,). Since Py, is the set of mid-points,
where 2d extreme points are achieved from an iteration of Cluster-
Boundary, the cardinality of Py, is Card(P,,) =2d(d — 1).

Proof. The number of mid-points computed from extreme points,
and that satisfy module (III) of the algorithm, can be expressed as
42?;11 (d —1i). Expanding this expression, the required result is
reached. O

Proposition 5 (Runtime of ClusterBoundary). The temporal com-
plexity of ClusterBoundary for computing the cluster boundary in a
gene metric space (ﬁﬁ is O(k2), where k is the size of the cluster.

Proof. Module (I) of this algorithm can run in d x k steps, and each
of the other modules can run in d? steps. The above results are pro-
ven directly for modules (I) and (II), while for modules (III) and (IV)
the proof uses Proposition 4. Hence, the order of one iteration of
the algorithm is O(k x d). On the other hand, the number of itera-
tions performed by the algorithm satisfies the inequality
k — (i —1)d = 0, where i is the number of iterations. Solving this
inequality, we observe that the number of iterations is bounded
by ¥+ 1 and so, the order of ClusterBoundary is o(k*). O
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