689 research outputs found

    Modeling the compressive strength of geopolymeric binders by gene expression programming-GEP

    Get PDF
    GEP has been employed in this work to model the compressive strength of different types of geopolymers through six different schemes. The differences between the models were in their linking functions, number of genes, chromosomes and head sizes. The curing time, Ca(OH)2 content, the amount of superplasticizer, NaOH concentration, mold type, aluminosilicate source and H2O/Na2O molar ratio were the seven input parameters considered in the construction of the models to evaluate the compressive strength of geopolymers. A total number of 399 input-target pairs were collected from the literature, randomly divided into 299 and 100 sets and were trained and tested, respectively. The best performance model had 6 genes, 14 head size, 40 chromosomes and multiplication as linking function. This was shown by the absolute fraction of variance, the absolute percentage error and the root mean square error. These were of 0.9556, 2.4601 and 3.4716 for training phase, respectively and 0.9483, 2.8456 and 3.7959 for testing phase, respectively. However, another model with 7 genes, 12 head size, 30 chromosomes and addition as linking function showed suitable results with the absolute fraction of variance, the absolute percentage error and the root mean square of 0.9547, 2.5665 and 3.4360 for training phase, respectively and 0.9466, 2.8020 and 3.8047 for testing phase, respectively. These models showed that gene expression programming has a strong potential for predicting the compressive strength of different types of geopolymers in the considered range

    PREDICTION OF TBM PENETRATION RATE OF WATER CONVEYANCE TUNNELS IN IRAN USING MODERN METHODS

    Get PDF
    TBM has been used extensively in civil engineering activities and plays an important role in tunnelling projects. Hence, the penetration rate of these machines plays a crucial role in the success of their application. Therefore, in order to predict the TBM penetration rate in this study in several water conveyance tunnels including the tunnels of Karaj, Ghomrood, Golab, Nosoud and Sabzkooh, four intelligence techniques including multiple linear and nonlinear regression analysis, Gene Expression Programming (GEP) method, and Support Vector Machine (SVM) were applied. The obtained values of R2 and RMSE included 0.43 and 3.08 for linear regression, 0.68 and 2.3 for nonlinear regression, 0.74 and 2.09 for GEP method and 0.97 and 0.6 for SVM method, respectively which were utilized to predict TBM penetration rate. By investigating the tunnels database, the results indicated that the SVM method had the most accurate prediction of penetration rate (in terms of R2 and RMSE) and the maximum amount of R2 and the minimum amount of RMSE among all predictive modelings. Finally, respecting the amount of R2 and RMSE, the other methods like GEP method, nonlinear regression, and linear regression are listed to have the required accuracy in predicting penetration rate

    Prediction of blast-induced air overpressure using a hybrid machine learning model and gene expression programming (GEP) : a case study from an iron ore mine

    Get PDF
    Mine blasting can have a destructive effect on the environment. Among these effects, air overpressure (AOp) is a major concern. Therefore, a careful assessment of the AOp intensity should be conducted before any blasting operation in order to minimize the associated environmental detriment. Several empirical models have been established to predict and control AOp. However, the current empirical methods have many limitations, including low accuracy, poor generalizability, consideration only of linear relationships among influencing parameters, and investigation of only a few influencing parameters. Thus, the current research presents a hybrid model which combines an extreme gradient boosting algorithm (XGB) with grey wolf optimization (GWO) for accurately predicting AOp. Furthermore, an empirical model and gene expression programming (GEP) were used to assess the validity of the hybrid model (XGB-GWO). An analysis of 66 blastings with their corresponding AOp values and influential parameters was conducted to achieve the goals of this research. The efficiency of AOp prediction methods was evaluated in terms of mean absolute error (MAE), coefficient of determination (R 2 ), and root mean square error (RMSE). Based on the calculations, the XGB-GWO model has performed as well as the empirical and GEP models. Next, the most significant parameters for predicting AOp were determined using a sensitivity analysis. Based on the analysis results, stemming length and rock quality designation (RQD) were identified as two variables with the greatest influence. This study showed that the proposed XGB-GWO method was robust and applicable for predicting AOp driven by blasting operations

    Oil price forecasting using gene expression programming and artificial neural networks

    Get PDF
    This study aims to forecast oil prices using evolutionary techniques such as gene expression programming (GEP) and artificial neural network (NN) models to predict oil prices over the period from January 2, 1986 to June 12, 2012. Autoregressive integrated moving average (ARIMA) models are employed to benchmark evolutionary models. The results reveal that the GEP technique outperforms traditional statistical techniques in predicting oil prices. Further, the GEP model outperforms the NN and the ARIMA models in terms of the mean squared error, the root mean squared error and the mean absolute error. Finally, the GEP model also has the highest explanatory power as measured by the R-squared statistic. The results of this study have important implications for both theory and practice

    Proposing a rigorous empirical model for estimating the bubble point pressure in heterogeneous carbonate reservoirs

    Get PDF
     Bubble point pressure is of great significance in reservoir engineering calculations affecting the success of reservoir simulation. For determining this valuable parameter, experimental tests are the most reliable techniques; however, these measurements are costly and time-consuming. So, it is crucial to propose an empirical model for estimating bubble point pressure. The existing correlations mainly have large errors and develop based on restricted database from a specific geographical location. As a result, development of an all-inclusive correlation is essential. In current article, gene expression programming (GEP) was used to create a generalized model for bubble point pressure estimation. To do this, an all-inclusive source of data was utilized for training and testing the model from the petroleum industry. Several statistical approaches including both illustration tools and diverse error functions were utilized to show the supremacy of the developed GEP model. Consequently, the recommended model is the most accurate as compared to the similar correlations in literature with the average absolute relative error (AARE = 11.41%) and determination coefficient (R2 = 0.96). Furthermore, the solution gas-oil ratio shows to be the most influencing variable on determining bubble point pressure according to sensitivity analysis. The results of contour map analysis demonstrate that most portions of the experimental region are predicted via the GEP equation with fewer errors as compared to two well-known literature correlations. Finally, the proposed GEP model can be of high prominence for accurate bubble point pressure estimation.Cited as: Rostami, A., Daneshi, A., Miri, R. Proposing a rigorous empirical model for estimating the bubble point pressure in heterogeneous carbonate reservoirs. Advances in Geo-Energy Research, 2020, 4(2): 126-134, doi: 10.26804/ager.2020.02.0

    Current Mathematical Methods Used in QSAR/QSPR Studies

    Get PDF
    This paper gives an overview of the mathematical methods currently used in quantitative structure-activity/property relationship (QASR/QSPR) studies. Recently, the mathematical methods applied to the regression of QASR/QSPR models are developing very fast, and new methods, such as Gene Expression Programming (GEP), Project Pursuit Regression (PPR) and Local Lazy Regression (LLR) have appeared on the QASR/QSPR stage. At the same time, the earlier methods, including Multiple Linear Regression (MLR), Partial Least Squares (PLS), Neural Networks (NN), Support Vector Machine (SVM) and so on, are being upgraded to improve their performance in QASR/QSPR studies. These new and upgraded methods and algorithms are described in detail, and their advantages and disadvantages are evaluated and discussed, to show their application potential in QASR/QSPR studies in the future

    Rigorous Connectionist Models to Predict Carbon Dioxide Solubility in Various Ionic Liquids

    Get PDF
    Estimating the solubility of carbon dioxide in ionic liquids, using reliable models, is of paramount importance from both environmental and economic points of view. In this regard, the current research aims at evaluating the performance of two data-driven techniques, namely multilayer perceptron (MLP) and gene expression programming (GEP), for predicting the solubility of carbon dioxide (CO2) in ionic liquids (ILs) as the function of pressure, temperature, and four thermodynamical parameters of the ionic liquid. To develop the above techniques, 744 experimental data points derived from the literature including 13 ILs were used (80% of the points for training and 20% for validation). Two backpropagation-based methods, namely Levenberg–Marquardt (LM) and Bayesian Regularization (BR), were applied to optimize the MLP algorithm. Various statistical and graphical assessments were applied to check the credibility of the developed techniques. The results were then compared with those calculated using Peng–Robinson (PR) or Soave–Redlich–Kwong (SRK) equations of state (EoS). The highest coefficient of determination (R2 = 0.9965) and the lowest root mean square error (RMSE = 0.0116) were recorded for the MLP-LMA model on the full dataset (with a negligible difference to the MLP-BR model). The comparison of results from this model with the vastly applied thermodynamic equation of state models revealed slightly better performance, but the EoS approaches also performed well with R2 from 0.984 up to 0.996. Lastly, the newly established correlation based on the GEP model exhibited very satisfactory results with overall values of R2 = 0.9896 and RMSE = 0.0201.publishedVersio

    Shear strength assessment of reinforced recycled aggregate concrete beams without stirrups using soft computing techniques

    Get PDF
    This paper presents a study to predict the shear strength of reinforced recycled aggregate concrete beams without stirrups using soft computing techniques. The methodology involves the development of a Multi-Objective Genetic Algorithm Evolutionary Polynomial Regression (MOGA-EPR) and Gene Expression Programming (GEP) models. The input variables considered are the longitudinal reinforcement ratio, recycled coarse aggregate ratio, beam cross-section dimensions, and concrete compressive strength. Data collected from the literature were used to train and validate the models. The results showed that the MOGA-EPR and GEP models can accurately predict the shear strength of beams without stirrups. The models also performed better than equations from the codes and literature. This study provides an alternative approach to accurately predict the shear strength of reinforced recycled aggregate concrete beams without stirrups
    • 

    corecore