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Abstract: Mine blasting can have a destructive effect on the environment. Among these effects, air 

overpressure (AOp) is a major concern. Therefore, a careful assessment of the AOp intensity should 

be conducted before any blasting operation in order to minimize the associated environmental 

detriment. Several empirical models have been established to predict and control AOp. However, the 

current empirical methods have many limitations, including low accuracy, poor generalizability, 

consideration only of linear relationships among influencing parameters, and investigation of only a 

few influencing parameters. Thus, the current research presents a hybrid model which combines an 

extreme gradient boosting algorithm (XGB) with grey wolf optimization (GWO) for accurately 

predicting AOp. Furthermore, an empirical model and gene expression programming (GEP) were used 

to assess the validity of the hybrid model (XGB-GWO). An analysis of 66 blastings with their 

corresponding AOp values and influential parameters was conducted to achieve the goals of this 

research. The efficiency of AOp prediction methods was evaluated in terms of mean absolute error 

(MAE), coefficient of determination (R2), and root mean square error (RMSE). Based on the 

calculations, the XGB-GWO model has performed as well as the empirical and GEP models. Next, the 

most significant parameters for predicting AOp were determined using a sensitivity analysis. Based on 
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the analysis results, stemming length and rock quality designation (RQD) were identified as two 

variables with the greatest influence. This study showed that the proposed XGB-GWO method was 

robust and applicable for predicting AOp driven by blasting operations. 

Keywords: Blasting; Air overpressure (AOp); Grey wolf optimization (GWO); extreme gradient 

boosting (XGB); Hybrid model; environmental impacts 

 

Abbreviations 

Symbol Explanation Symbol Explanation 

MC Maximum charge per delay D Distance from the blast point 

RQD Rock quality designation B Burden 

S Spacing ST Stemming length 

H Depth of the blast holes RH Air humidity 

PF Powder factor NH Number of holes 

W Air humidity ICA Imperialist competitive algorithm 

BI Blasting index GP Genetic programming 

RMR Rock mass rating CA Cubist algorithm 

JA Joint aperture ANN Artificial neural network 

PSO Particle swarm optimization SFS Stochastic fractal search 

GA Genetic algorithm ANFIS Adaptive neuro-fuzzy inference system 

RF Random forest algorithm LM Levenberg–Marquardt 

CFNN Cascaded forward neural network PNN Polynomial neural network 

M5’ One of the decision tree algorithms GBM Gradient boosting machine 

BRNN Bayesian regularized neural networks HYFIS Hybrid neural fuzzy inference system 

USBM US Bureau of Mines   

1. Introduction 

Drilling and blasting is the most common, most economical, fastest and cheapest method for 

fragmentation of rocks in mining operations [1]. Each explosion releases a huge amount of energy in the 

form of temperature and pressure. Meanwhile, moving and fragmenting take up a small amount of power. 

Various adverse environmental effects are caused by the remaining energy, such as flyrock, air 

overpressure, dust, ground vibration and noise [2–6]. Gases resulting from blasting contain unused energy 

that increases air pressure above normal. This phenomenon is known as air overpressure (AOp) [7]. As a 

destructive result of mine blasting, AOp can cause damage to nearby structures [8]. Consequently, accurate 

predictions of such destructive effects are necessary to increase blasting safety.  

The intensity of AOp is affected by three groups of parameters, namely, blast design parameters, 

rock mass properties and explosive properties [9]. The second group consists of uncontrollable 

parameters, while the first and third groups include controllable parameters. Controllable parameters 

in group 1 include blasting type and blasting pattern design parameters. Furthermore, the 

characteristics of explosives (classified in group 3) like their type, power and density can be controlled 
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by engineers. Uncontrollable parameters in the second group consist of the rock mass’s RQD and 

compressive, shear and tensile strengths. These mainly depend on the complex geological and 

geotechnical conditions of the rock mass.  

Remennikov and Rose [10] have proposed solutions such as improving the structure of buildings 

and glass doors or using barriers as shields to reduce the effects of AOp. However, their efficacy was 

not significantly proven [11]. With similar objectives, experimental methods are also presented to 

calculate AOp. Also, Khandelwal and Kankar [12] and Armaghani et al. [13] showed that empirical 

equations have poor performance. In addition to low accuracy, conventional tools also have many 

limitations including studying specific areas, considering linear relationships between influence 

parameters and focusing on explosive charges per delay and monitoring distances [13]. 

Over the years, machine learning and artificial intelligence (AI) methods have been demonstrated 

to be acceptable and reliable for solving different engineering subjects, especially for prediction and 

optimization purposes [14–19]. For example, AI can be used to analyze the results of a blast, using 

machine learning algorithms to identify patterns, and then this data can be used to adjust the blast 

design for future operations [20,21]. Prediction of AOp has also been conducted using these methods. 

The artificial neural network (ANN) proposed by Khandelwal and Singh [22] was compared with 

regression methods to predict AOp. Results showed that ANN performed similarly to regression 

methods in predicting AOp with higher precision. Khandelwal and Kankar [12] for predicting AOp 

investigated and confirmed the efficacy of support vector machine (SVM). Nguyen et al. [23] 

evaluated and compared different ANN systems including ANN, BRNN and HYFIS to predict blast-

induced AOp. Similarly, a heuristic algorithm, intended to optimize ANNs for predicting AOp, was 

used successfully by Armaghani et al. [24]. Also, Hasanipanah et al. [25] developed a hybrid SVR 

model that was optimized with PSO to predict AOp. 

Several soft computing models were presented by Bui et al. [4] for predicting AOp, including 

SVM, ANN, boosted regression trees, k-nearest neighbors and RF. In another study, Zhou et al. [26] 

developed a hybrid model which combines a fuzzy system (FS) and the firefly algorithm (FFA). Their 

study demonstrated that FFA-FS could be used to predict AOp efficiently. Tran et al. [27] have 

investigated the effect of meteorology on AOp, using AOp prediction models. Their results show that 

meteorological conditions, especially  wind speed and air humidity, have a noteworthy impact on blast-

induced AOp. Zeng et al. [28] have developed an efficient method based on the Levenberg-Marquardt 

(LM) algorithm and cascaded forward neural network (CFNN) to predict AOp. In addition, the 

accuracy level of this technique has been tested using the generalized regression neural network 

(GRNN) and extreme learning machine (ELM). Table 1 summarizes some of the relevant previous 

studies conducted by various researchers. 

Blasting operations have a range of effects on the environment, including air overpressure 

(AOp) [29–31]. Therefore, AOp prediction with high accuracy is essential to determining the safe 

zone around an operation site. In many studies, machine learning has been applied to evaluate and 

predict the adverse consequences of blasting. However, the studies have not addressed the 

evaluation and prediction of air overpressure via hybrid extreme gradient boosting (XGB). Thus, 

this article develops a hybrid model which combines extreme gradient boosting (XGB) with grey 

wolf optimization (GWO) to predict AOp in open pit iron mines accurately. Furthermore, gene 

expression programming (GEP) and an empirical model were used to assess the validity of the 



360 

AIMS Geosciences  Volume 9, Issue 2, 357–381. 

hybrid model (XGB-GWO). Additionally, unlike other methods, GEP can create a simple 

mathematical expression that can be applied to different mining conditions, which is another 

advantage of this article. 

Table 1. Some recent work with machine learning techniques for air overpressure prediction. 

Research Input Method R2 

Fang, et al. [32] MC, PF, B, ST, S, D GA-CA 0.968 

Ye, et al. [3] H, PF, MC, ST, S, B, RQD, NH, D ANFIS-GA 0.945 

ANFIS-PSO 0.963 

ANFIS-SFS 0.987 

Zeng, et al. [28] PF, MC, ST, S, B, RQD, D CFNN-LM 0.92 

Murlidhar, et al. [34] BI, JA, ST, PF, MC, D GP, M5’ 0.85 

0.88 

Hajihassani, et al. [35] H, PF, MC, ST, S, B, RQD, NH, D PSO-ANN 0.94 

Nguyen and Bui [36] MC, D, P, B, S, ST ANNs-RF 0.985 

Harandizadeh and Armaghani [37] B, S, ST, PF ANFIS-PNN-GA 0.94 

Nguyen, et al. [38] MC, H, B, S, ST, PF, NH, RH, D GBM 0.95 

Nguyen, et al. [23] MC, H, BS, ST, PF, NH, W, D MLP 

BRNN 

HYFIS 

0.96 

0.93 

0.80 

AminShokravi, et al. [39] MC, D, RMR PSO 0.92 

Armaghani, et al. [13] MC, D ICA-ANN 0.90 

Khandelwal and Kankar [12] MC, D SVM 0.85 

Note: Symbols are explained in the Abbreviations section. 

2. Methodology 

Machine learning models require parameters based on datasets. Many studies have shown that 

heuristic algorithms improve machine learning accuracy and stability [40,41]. Therefore, this study 

applied a hybrid predictive approach based on ideas from the extreme gradient boosting framework 

(XGB) as well as metaheuristic algorithms: namely, grey wolf optimization (GWO). Then, gene 

expression programming (GEP) and empirical models were employed to assess the validity of the 

optimized model (XGB-GWO). By using GWO we can find the optimal values of hyperparameters of 

the regression model. Therefore, the intelligent optimization algorithm by the adjustment of three key 

parameters of the XGB model (n_estimator, maximum_depth and learning_rate) achieves higher 

accuracy. N_estimator, maximum_depth and learning_rate represent the number of trees, the 

maximum depth of a tree and the shrinkage coefficient of the tree, respectively. 

2.1. Extreme gradient boosting (XGB) 

Chen et al. [42] proposed a method based on gradient boosting [43–46]. Many engineering fields 

have implemented XGBoost for classifying and predicting problems [47]. It has performed well 
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because of the advantages of parallel processing, regularization and efficient tree pruning. XGBoost 

can solve a wide variety of data science problems quickly and accurately with parallel tree boosting. 

The core of this algorithm is optimizing the objective function [48]. 

In each iteration, XGBoost calibrates the previous predictor using the residual. Loss function 

optimization (LOF) is involved in this process. However, regularization is applied to the objective 

function during calibration to reduce overfitting. Using this description, Equation (1) describes the 

objective function as two parts: regularization and training loss. 

𝑂𝑏𝑗(Θ) = Ω (Θ)  +  𝐿(Θ) , (1) 

In Equation (1), Θ and Ω represent the parameters trained from the data and related to 

regularization, respectively. Regularization controls the complexity of the model in order to avoid 

overfitting [49]. L denotes the training loss function, which measures the model's fit to the training 

data. Complexity can be defined in a variety of ways. Equation (2), however, is often used to calculate 

the complexity of each tree. 

Ω (ℱ) =  𝛾𝑇 +
1

2
 𝜆 ∑𝜔𝑗

2

𝑇

𝑗=1

, (2) 

where γ denotes each leaf’s complexity, T represents the number of DT leaves, ω is the vector of scores 

on the leaves and λ scales the penalty. Next, XGBoost combines loss function (LOF) general gradient 

boosting with the second-order Taylor expansion. When the mean squared error is taken into account, 

equation (3) can obtain the objective function. 

𝐽(𝑡)  ≈   𝛾𝑇 + ∑ [(∑ 𝑔𝑖
𝑖∈𝑖𝑗

)𝜔𝑗 + 0.5(∑ ℎ𝑖
𝑖∈𝑖𝑗

+ 𝜆 )𝜔𝑗
2]

𝑇

𝑗=1
, (3) 

The MSE loss function’s first and second derivatives are 𝑔𝑖  and ℎ𝑖 , respectively. Also, the q 

function is used to assign data points to leaves. As a final step, we calculate the XGBoost objective 

function by referring to Equation (4). 

𝑂𝑏𝑗 =  ∑[ 𝐺𝑗𝜔𝑗 +
1

2
(𝐻𝑗 + 𝜆)𝜔𝑗

2]

𝑇

𝑗=1

+  𝛾𝑇, (4) 

Here 𝜔𝑗 are independent of each other. The definitions of the two terms 𝐺𝑗 and 𝐻𝑗 are given in 

Equation (5). 

𝐺𝑗 = ∑ 𝑔𝑖
𝑖∈𝑖𝑗

 , 𝐻𝑗 = ∑ ℎ𝑖
𝑖∈𝑖𝑗

, (5) 

In general, finding the minimum of a quadratic function can be applied to optimizing the objective 

function. In order to evaluate the performance of the model after splitting a particular node in DT, an 

objective function is used. If the model performs better than before, this division will be accepted. 

Otherwise, the division will come to a halt. Due to the inclusion of regularization phenomena, 

XGBoost can prevent over-installation more effectively [50]. 
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2.2. Grey wolf optimization (GWO) 

GWO is a metaheuristic optimization algorithm proposed by Mirjalili et al. [51] which reflects 

grey wolf family social systems in nature. Social hierarchy is very strict in the grey wolf community. 

Usually, wolf levels are divided into four categories: α, β, δ and ω. α is primarily responsible for 

making overall decisions at the first level, and the β wolf assists the α wolf at the second level. At the 

third level, δ must follow the decisions of α and β wolves. Furthermore, the lowest rank for wolves is 

ω. Also, this group must follow wolves with a higher rank. Mathematical models can be developed, 

and optimal solutions can be found based on wolves' hunting process and social hierarchy. 

α represents the optimal solution, β denotes the second, and δ shows the third optimal solution. 

All other applicant solutions are denoted by ω. In the wolf pack, D indicates the distance between the 

prey and the individual (Equations (6) and (7)). 

𝐷 =  |𝐶𝑋𝑃(𝑡) − 𝑋|, (6) 

𝐶 =  2𝑟1, 
(7) 

where C, D and XP(t) are the step length coefficient, the current number of iterations and prey location, 

respectively. Also, r1 and X are a random number ranging in (0,1) and the location of a grey wolf, 

respectively. 

A pack of individuals tries to shorten the distance between their prey and themselves by constantly 

updating the following Equations (8) and (9): 

𝑋(𝑡 − 1) = 𝑋𝑃(𝑡) − 𝐴. 𝐷, (8) 

𝐴 = 1𝑎𝑟2 − 𝑎, 
(9) 

where r2 and A are a random number ranging in (0,1) and the convergence influence factor, 

respectively. A decreases linearly with the number of iterations from 2 to 0. 

Since α, β and δ possess high levels of intelligence, they can carry more information about where 

prey can be found. This will enable them to lead the group to the hunting grounds gradually. Gradually, 

the pack makes its way to the hunting grounds. As a result, three optimal solutions will now be 

available to ignore or find other solutions, and gradually they will find the global optimal solution 

based on the three optimal solutions, which are outlined in Equations (10) to (12). 

𝐷𝛼 = |𝐶1𝑋𝛼(𝑡) − 𝑋|, (10) 

𝐷𝛽 = |𝐶1𝑋𝛽(𝑡) − 𝑋|, 
(11) 

𝐷𝛿 = |𝐶1𝑋𝛿(𝑡) − 𝑋|. 
(12) 

A decision will be made as to which individuals to include in the remaining pack relying on a 

joint decision by α, β and δ. It is now necessary to move the position shown in Equation (13). 
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𝑋(𝑡 − 1) =
𝑋1 + 𝑋2 + 𝑋3

3
, (13) 

It is possible to summarize the grey wolf optimization algorithm in this way: during the 

optimization process, it constantly updates the solution area for the location search problem and finds 

the ideal solution at the end (Figure 1). 

 

Figure 1. Structure of hybrid method based on XGB and GWO for predicting air overpressure. 
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2.3. Gene expression programming (GEP) 

The GEP method was introduced by Ferreira [52] and combines genetic programming (GP) and 

genetic algorithms (GA). As an AI developmental approach, GEP has corrected some of GA’s and 

GP's weaknesses, such as tree systems. Both of these methods differ in the following ways: the concept 

of individuals or answers. In the GEP algorithm, individuals are defined as binary fixed-length 

chromosomes. Answers from the GP method can include tree systems of varying sizes. Because GEP 

combines GA and GP, it produces chromosomes of fixed length and tree systems with different sizes 

and shapes, identified as an expression tree (ET). The GEP algorithm’s structure consists of several 

elements, including function, terminal, operator, fitness, and stop criteria [52]. 

Chromosomes are composed of two parts: a head and a tail, making them a fixed length. Functions 

and terminals are included in the head part, and terminals are also included in the end part. As a result 

of the complexity of the problems, a specific equation cannot be used to calculate the head part’s length. 

This term is defined as the input of the GEP method. Trial and error are one of the solutions [53]. 

Furthermore, the tail part's length can be calculated using Equation (14). 

𝑡 = ℎ(𝑛𝑚𝑎𝑥 − 1) + 1, (14) 

where 𝑛𝑚𝑎𝑥, h and t represent the number of arguments of the functions and the length of the head and tail. 

Solitary chromosomes in the initial population are evaluated according to a fitness function 

developed for gap problems. A number of genetic operators are used to adapt the considered 

chromosomes. Depending on the problem conditions, each chromosome may contain functions, 

constants and terminals [54,55]. The following is a general description of the GEP algorithm: 

Step 1: Depending on the problem’s conditions (size) being studied, a certain number of 

chromosomes should be determined (randomly). 

Step 2: Expression trees and mathematical equations are used to select the initial population 

chromosomes. 

Step 3: The chromosomes are fitted according to the overall fitness function (RMSE or R2). 

Alternative methods, such as the roulette wheel method, are used if the stopping criterion is not met. 

Step 4: During this step, the GEP algorithm's genetic operators, known as the core, must be linked 

to the rest of the chromosomes. 

Step 5: Lastly, the process of creating the next generation begins, and the process is repeated until 

new structures are created. 

In order to decode the programs on the chromosomes, Karva (K-Expression) was invented to 

express the codes. Inversions, mutations, triple recombination operators and triple transposition 

operators have been introduced so far as genetic operators that are used for chromosome 

modification [54]. The structure of the GEP method is illustrated in Figure 2. 
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Figure 2. Structure of the GEP method for prediction of air overpressure. 

2.4. Empirical 

In open-pit mines, the blast-induced AOp has been estimated using empirical methods. The 

technique proposed by the United States Bureau of Mines (USBM) is the most widely used empirical 

equation for predicting AOp among all available methods. Kuzu et al. [56] calculated the scaled-

distance (SD) factor for AOp predictions. USBM is an empirical method for predicting AOp based on 

site factors, the maximum charge per delay (MC) and monitoring distance (D) in open-pit mines. SD 

values determine the relationship between MC and D [56]: 

𝑆𝐷 = 𝐷𝑀𝐶−0.33 (15) 

The equation recommended by USBM has been widely adopted by researchers and is expressed 

in the following manner [57]: 

𝐴𝑂𝑝 =  𝛾(𝑆𝐷)−𝛼 (16) 

By regression analysis, AOp in decibels (dB) is calculated, and 𝛾 and 𝛼 are site factors. 

2.5. Model verification and evaluation 

Evaluation and verification of models are essential steps during model development. In order to 

determine whether a model is of high quality and whether the results produced are adequate for the 

goals pursued, it is necessary to test it. In this study, training and testing sets are used to train and 

verify predictive models. Predicted and actual values are compared using relevant evaluation indicators. 
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In this study, hybrid models will be evaluated to ensure their reliability [58]. R2, RMSE, and MAE are 

evaluation indicators.  

As defined in Equation 17, between actual and predicted values, R2 represents the square of the 

correlation. Further, the RMSE represents the standard deviation between predicted and actual values 

(Equation 18). Equation 19 defines mean absolute error as the measure of error between paired 

observations describing the same phenomenon [59].  

𝑅2 = 1 − 
∑ (𝑦𝑖 − �̂�𝑖)

2
𝑖

∑ (𝑦𝑖 − �̅�𝑖)2
𝑖

 

(17) 

𝑅𝑀𝑆𝐸 = √∑(�̂�𝑖 − 𝑦𝑖)2

𝑁

𝑖=1

/𝑁 

(18) 

𝑀𝐴𝐸 =  
∑ �̂�𝑖 − 𝑦𝑖

𝑛
𝑖=1

𝑛
 

(19) 

3. Case study and data collection 

This study analyzes the case of Chadormalu, a large open-pit iron mine located 120 kilometers 

northeast of Yazd, Iran. Figure 3 depicts the location of the Chadormalu mine in Iran in relation to 

Tehran (the capital of Iran) and Yazd. It is estimated that there are about 400 million tons of mineable 

ore reserves. Magnetite and hematite are the main components of the deposit, according to 

mineralogical studies. Mine blasting is primarily carried out with ANFO explosives. 

Figure 3. The location of the Chadormalu mine in Iran relative to Tehran (the capital) and Yazd city. 

In the current study, input and output parameters were used in developing the model. The 

influential input parameters used for air overpressure (AOp) prediction are given in Table 2. Burden 

(B), number of holes (NH), hole depth (H), spacing (S), powder factor (PF), distance (D), rock quality 
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designation (RQD), stemming (ST) and the maximum charge per delay (MC) have been employed as 

the output parameters of the models to predict air overpressure (AOp).  

Data were collected as follows: D was determined by handheld GPS, and AOp values from 

blasting operations were recorded with a sound level meter (SLM). Using blast design, the remaining 

parameters were collected. Table 2 shows the influential input and output parameters' details, symbols 

and statistical descriptions. 

For model development, 66 data pairs were used to create a database related to air overpressure 

(AOp). From the organized database, 20% of the data set was selected to test the model to ensure 

consistency. 

Table 2. Input and output data with details, symbols and statistical descriptions. 

Type of data Variable Symbol Minimum Maximum Mean Std. Deviation 

Input Burden (m) B 1.5 1.7 2.29 0.6 

Hole depth (m) H 10 24 15.41 3.95 

Spacing (m) S 2.8 4 3.37 0.4 

Powder factor 

(kg/m3) 

PF 0.34 0.66 0.487 0.13 

Distance (m) D 300 600 522.73 132 

Rock quality 

designation (%) 

RQD 60 89 74 9.51 

Stemming (m) ST 1.7 2.5 2.14 0.24 

Number of holes NH 12 59 35.14 12.4 

Maximum charge 

per delay (kg) 

MC 60 160 89.58 31.84 

Output Air overpressure 

(dB) 

AOp 89.1 122.6 107.82 8.77 

4. Results and discussion 

Predicting air overpressure requires the preparation of a database. This database was divided into 

training and test sets using the most common division ratio of 80%–20% [60]. The air overpressure 

prediction model was evaluated using several performance indicators, including R2, RMSE and MAE. 

All predictive models use the same training and test data sets. 

4.1. Hybrid model result (XGB-GWO) 

In order to avoid complexity in XGBoost modeling, three stopping criteria were considered, 

namely, n estimators, learning rate and maximum depth. If significant values are assessed for each 

parameter, overfitting can occur. Therefore, XGB parameters have been optimally determined using 

grey wolf optimization (GWO). Figure 1 illustrates the method used to develop models based on the 

XGB. It was time to set the XGB model's parameters. The optimization algorithm’s parameters are 
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shown in Table 3. Additionally, Table 3 shows the optimal parameters of the model based on the 

optimization process. 

Table 3. The optimization algorithm’s parameter and optimal parameters for the hybrid model. 

Algorithm Parameters Value Optimal parameters 

GWO Convergence parameter [2,0] learning_rate = 0.06 

maximum_depth = 1 

n_estimator = 204 

Based on the training data set, Figure 4 shows the correlation between the actual values and the 

predicted values. The training data are largely scattered near the closest fit line for the intelligent model, 

showing that training effects remain relatively favorable. XGB-based optimization techniques have 

been proposed that demonstrate high training effects with R2 values of 0.96. After the hybrid intelligent 

model has been trained, it is verified and evaluated using the testing data set. Figure 4 shows that the 

test data set is mostly distributed near the perfectly fitted line. Because the predicted AOp values and 

the actual AOp values are within the correlation, they can be classified as correlated. Hybrid models 

achieve high levels of prediction accuracy, with R2 values of 0.98. 

 

Figure 4. Actual values and predicted values on the testing and training dataset by XGB-GWO Method. 

4.2. GEP model result 

The flowchart shown in Figure 2 illustrates the gene expression programming (GEP) modeling 

process. The GEP was designed using the same testing and training datasets as the previous sections. 

The final relationship between the initial data and air overpressure was analyzed and determined by 

GeneXproTools (version 5.0).  

To build an efficient model, it is imperative to consider the fitting parameters. The number of 

chromosomes determines how long it takes for the model to run, which is crucial to the model's 

performance. For a suitable architecture, the size of the head and the number of genes must also be 

considered. Each component's complexity and the number of related equations are determined by the 
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head size and the number of genes. To achieve the most suitable GEP model, a trial and error 

mechanism was applied (Table 4). 

Table 4. Constructed 10 GEP models for predicting air overpressure. 

GEP parameters Value 

GEP model number 

1 2 3 4 5 6 7 8 9 10 

Fitness function MAE MAE RMSE MAE MAE RMSE RMSE RMSE MAE RMSE 

No. of chromosomes 40 40 40 30 40 40 40 40 40 40 

Head size 8 8 8 8 8 8 8 8 8 8 

No. of genes 3 3 3 3 4 4 4 5 5 4 

Linking function + × × × × × + + + 1 

By using R2, RMSE and MAE indices, for the testing and training data sets, the performance 

prediction of GEP models was evaluated. Of the ten models stated in Table 4, the five which had the 

most accurate predicting of air overpressure were selected (Table 5). Therefore, based on the results 

in Table 5, model No. 6 was the most accurate model among all models made by the GEP method. 

Figure 5 illustrates the scatter plot of the predicted and measured air overpressure in the selected GEP 

model by training and test data. 

Table 5. Performance indices of GEP models.  

Rank Testing Training  Model no. 

Table (6) 

Method 

MAE RMSE R2 MAE RMSE R2 

4 1.4 2.13 0.95 1.83 2.26 0.93 3 GEP 

1 0.63 1.04 0.99 1.42 2.08 0.94 6 

2 1.06 1.64 0.98 1.47 2.06 0.94 7 

5 0.84 1.35 0.98 1.68 2.56 0.92 9 

3 0.91 1.36 0.98 1.57 2.25 0.93 10 

 

Figure 5. Measured and predicted air overpressure on the training and test dataset by 

selected GEP Method. 
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The number of genes and head size in model No. 6 are 8 and 4, respectively. The expression tree 

(sub-ETs of each gene) of this model is illustrated in Figure 6. In addition to the expression trees, 

functions were linked together to construct a large and complex ET. Expressions (20) to (23) are 

mathematical expressions of each of the genes. Finally, the developed GEP equation for predicting air 

overpressure is shown in Equation (24). 

𝐺𝑒𝑛𝑒1:𝑀𝐶 + [𝐸𝑥𝑝 (6.26 − 𝑆) + 52.272] (20) 

𝐺𝑒𝑛𝑒2:𝐻 + [
1

((6.11 ∗ 𝑆𝑇) − (𝐻 − 7.78)) − (𝐵 + 1.81)
] (21) 

𝐺𝑒𝑛𝑒3: 𝑃𝐹 − [𝐿𝑛 ( 𝐿𝑛 ((−6.86 ∗ 𝑁𝐻)2 − 𝑀𝐶2))] (22) 

𝐺𝑒𝑛𝑒4:  

[
 
 
 
 
 (((

𝐻 − 6.89
𝑀𝐶 ) ∗ 𝑆2) − 𝑆)

𝑀𝐶

]
 
 
 
 
 

 (23) 

𝐴𝑖𝑟 𝑜𝑣𝑒𝑟𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

=  [𝑀𝐶 + [𝐸𝑥𝑝 (6.26 − 𝑆) + 52.272]]

∗       [𝐻 + [
1

((6.11 ∗ 𝑆𝑇) − (𝐻 − 7.78)) − (𝐵 + 1.81)
]]    

∗               [𝑃𝐹 − [𝐿𝑛 ( 𝐿𝑛 ((−6.86 ∗ 𝑁𝐻)2 − 𝑀𝐶2))]]

∗   

[
 
 
 
 
 (((

𝐻 − 6.89
𝑀𝐶 ) ∗ 𝑆2) − 𝑆)

𝑀𝐶

]
 
 
 
 
 

 

(24) 
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Figure 6. Sub-ETs of each gene for the best GEP model with addition as a linking function. 

4.3. Empirical model result 

In the empirical model, site factors 𝛾 and 𝛼 were computed from 52 blasting events (training data 

set). A multivariate regression analysis was performed using Microsoft Excel 2019. Therefore, the 

optimal values of 𝛾 and 𝛼 for the USBM model for predicting AOp are 173 and 0.1. Using the USBM 

model in this case, we can describe it as follows: 

𝐴𝑂𝑝 =  173(𝑆𝐷)0.1 (25) 

Also, Figure 7 illustrates the scatter plot of the predicted and measured air overpressure in the 

empirical (USBM) model by training and test data. 

4.4. Comparison of models and validation performance  

The efficiency of the predictive models is evaluated in this section. In this study, R2, RMSE and 

MAE (Equations 15 to 17) were employed to assess predictive models’ performance. Regarding Table 

6, the above statistical criteria and performance comparison for techniques were determined for the 

testing and training data sets. Based on these results, the correctness rate and performance of the hybrid 

XGBoost (XGB-GWO) method are preferable to the GEP and empirical models.  
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Figure 7. Measured and predicted air overpressure on the training and test dataset by 

Empirical Method. 

Table 6. Statistics of predictive models and performance comparison. 

Method Training Data Testing Data 

R2 RMSE MAE R2 RMSE MAE 

XGB- GWO  0.96 1.87 1.02 0.983 1.42 0.69 

GEP 0.94 2.06 1.47 0.989 1.04 0.63 

Empirical 0.419 6.98 6.11 0.53 6.68 5.92 

In the next step, the selected AOp prediction models’ accuracies are compared, as shown in Figure 

8. The accomplishment of the models in predicting the air overpressure in the testing and training data 

set is shown in Figure 8. Also, based on Figure 8, the GWO-XGB technique gives the most reliable 

and steady results in AOp prediction among the GEP and empirical models. 

 
Figure 8. Predictive models with prediction values on training and testing datasets. 
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As shown in Figure 9, the box plots show the distribution functions corresponding to the measured 

and predicted AOp values. Based on an exhaustive analysis of Figure 9, the XGB-GWO approach 

yielded the most promising performance relative to the GEP model due to its similar probability 

distribution to observational results. 

 
Figure 9. The box plot of predictive models (distribution function). 

A Taylor diagram illustrating the performance of the predictive models is presented in this 

subsection. Taylor diagrams are used to assess the accuracy of models by showing them in two 

dimensions [61]. Indicators of the relationship between the actual and predicted observations are R, 

RMSE and standard deviation. Each model is denoted by a term in the Taylor diagram. In an ideal 

model, the position of the point should coincide with the reference point. Figure 10 illustrates the 

predictive models developed in this study. While both models are highly accurate at predicting air 

overpressure, Figure 9 shows that the hybrid XGB-GWO model is better. 
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Figure 10. Performance comparison of predictive models with testing and training data in Taylor diagrams. 

4.5. Decay of air overpressure 

Understanding the decay of overpressures during the explosion of an explosive charge in an open 

pit mine is crucial in ensuring the safety of personnel and equipment. The pressure waves generated 

during an explosion can cause significant damage to structures and equipment, as well as pose a risk 

to the health and safety of personnel. By examining the decay of overpressures, it is possible to 

determine the safe distance for personnel and equipment from the explosion site, as well as the 

appropriate level of protective measures required. This information can also inform the design of blast 

patterns and other explosives-related procedures in order to minimize the risk of harm. Therefore, 

studying the decay of overpressures during explosions is an important aspect of ensuring the safe and 

effective use of explosives in open pit mines [62]. 

In this case, only two distances have been measured, and it is necessary to use empirical and 

GEP methods to estimate the decay of overpressures at different distances. The resulting plot can 

provide valuable insights into the behavior of air overpressure as it decays over distance, allowing 

us to identify any unexpected trends or anomalies that may require further investigation. In this 

regard, Figure 11 plots the measured, empirical and GEP predicted AOp values for different 

distances from the blasting site. 
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Figure 11. Comparison of measured, empirical, and GEP predicted AOp values at different 

distances from the blasting site. 

Analyzing the plot, we can see that the measured AOp values are highest at the closest distance 

to the explosion site (300 m) and decrease as the distance increases. Both the empirical and GEP 

predicted AOp values follow similar trends, with the GEP method predicting AOp values first that are 

generally higher than the empirical values. The plot also shows that the GEP method generally provides 

a reasonable estimate of the AOp values at different distances from the explosion site, although it tends 

to underestimate the AOp values at shorter distances. 

5. Sensitivity analysis 

During the final modeling stage, the output of the model is analyzed for its sensitivity to the input 

parameters. Analyzing the sensitivity of input parameters can provide insights into how they affect model 

output (objective function). For determining sensitivity analysis, the cosine amplitude method (CAM) is 

one method [63–65]. Equation (26) describes the CAM method in terms of an n-dimensional space. 

𝑋 = {𝑋1, 𝑋2, 𝑋3 … , 𝑋𝑛} (26) 

The m-dimensional length vector 𝑋𝑖, which is part of the array X, represents a variable in the 

given context.  

𝑋𝑖 = {𝑋𝑖1, 𝑋𝑖2, 𝑋𝑖3 … ,𝑋𝑖𝑚} (27) 

This implies that the different dimensions of 𝑋𝑖𝑗 are interrelated with those of 𝑋𝑗𝑘 , and the degree 

of correlation between them can be expressed mathematically as shown in the following equation. 
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𝑅𝑖𝑗 =
∑ 𝑋𝑖𝑘𝑋𝑗𝑘

𝑛
𝑘=1

√∑ 𝑋𝑖𝑘
2𝑚

𝑘=1 ∑ 𝑋𝑗𝑘
2𝑚

𝑘=1

 
(28) 

Input parameters have a greater influence on output as 𝑅𝑖𝑗 approaches one. It has been shown that 

input parameters have a significant effect on the output when this parameter is above 0.9 [63]. In Figure 

12, the regression prediction parameters are sensitivity analyzed. According to Figure 10, stemming 

length and RQD had the most significant effect on the air overpressure among the input elements. 

 

Figure 12. The sensitivity analysis and effect of input data on air overpressure. 

6. Conclusions 

Blasting is a commonly used method in open-pit mines for breaking down rocks. However, it can 

result in adverse effects, such as air over-pressure (AOp), ground vibration, flyrock, backbreak, and 

dust, which can have a negative impact on the surrounding environment. To address this issue, it is 

essential to predict and control the effects of blasting. In this study, an efficient and practical hybrid 

machine learning model (XGB-GWO) was proposed for predicting AOp values, and its performance 

was evaluated using gene expression programming (GEP) and an empirical model. The accuracy of 

the predictive models was assessed using standard criteria such as R2, RMSE and MAE. Additionally, 

a sensitivity analysis was conducted using the cosine amplitude method (CAM) to determine the 

intensity of input parameters at AOp. Overall, this study highlights the significance of developing 

effective models to predict the impact of blasting and minimize its adverse effects on the environment. 

In conclusion, the hybrid XGB models proposed in this study demonstrate considerable potential in 

predicting AOp and can aid XGB in adjusting hyperparameters. The performance of the predictive 
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models for test data falls within the following ranges: XGB-GWO (MAE: 0.69; RMSE: 1.42; R2: 

0.983), GEP (MAE: 0.63; RMSE: 1.04; R2: 0.989) and empirical (MAE: 5.92; RMSE: 6.68; R2: 0.53). 

It is worth noting that the XGB-GWO hybrid model outperforms the other models in terms of overall 

performance. Furthermore, a sensitivity analysis technique called cosine amplitude was used to 

determine the importance of input variables, which revealed that the stemming length and RQD had 

the most significant impact on the penetration rate. This study demonstrates that the proposed XGB-

GWO model is robust and effective in predicting blast-induced AOp, indicating its potential for 

practical applications in the mining industry.  
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