910 research outputs found

    Predictive Maintenance of an External Gear Pump using Machine Learning Algorithms

    Get PDF
    The importance of Predictive Maintenance is critical for engineering industries, such as manufacturing, aerospace and energy. Unexpected failures cause unpredictable downtime, which can be disruptive and high costs due to reduced productivity. This forces industries to ensure the reliability of their equip-ment. In order to increase the reliability of equipment, maintenance actions, such as repairs, replacements, equipment updates, and corrective actions are employed. These actions affect the flexibility, quality of operation and manu-facturing time. It is therefore essential to plan maintenance before failure occurs.Traditional maintenance techniques rely on checks conducted routinely based on running hours of the machine. The drawback of this approach is that maintenance is sometimes performed before it is required. Therefore, conducting maintenance based on the actual condition of the equipment is the optimal solu-tion. This requires collecting real-time data on the condition of the equipment, using sensors (to detect events and send information to computer processor).Predictive Maintenance uses these types of techniques or analytics to inform about the current, and future state of the equipment. In the last decade, with the introduction of the Internet of Things (IoT), Machine Learning (ML), cloud computing and Big Data Analytics, manufacturing industry has moved forward towards implementing Predictive Maintenance, resulting in increased uptime and quality control, optimisation of maintenance routes, improved worker safety and greater productivity.The present thesis describes a novel computational strategy of Predictive Maintenance (fault diagnosis and fault prognosis) with ML and Deep Learning applications for an FG304 series external gear pump, also known as a domino pump. In the absence of a comprehensive set of experimental data, synthetic data generation techniques are implemented for Predictive Maintenance by perturbing the frequency content of time series generated using High-Fidelity computational techniques. In addition, various types of feature extraction methods considered to extract most discriminatory informations from the data. For fault diagnosis, three types of ML classification algorithms are employed, namely Multilayer Perceptron (MLP), Support Vector Machine (SVM) and Naive Bayes (NB) algorithms. For prognosis, ML regression algorithms, such as MLP and SVM, are utilised. Although significant work has been reported by previous authors, it remains difficult to optimise the choice of hyper-parameters (important parameters whose value is used to control the learning process) for each specific ML algorithm. For instance, the type of SVM kernel function or the selection of the MLP activation function and the optimum number of hidden layers (and neurons).It is widely understood that the reliability of ML algorithms is strongly depen-dent upon the existence of a sufficiently large quantity of high-quality training data. In the present thesis, due to the unavailability of experimental data, a novel high-fidelity in-silico dataset is generated via a Computational Fluid Dynamic (CFD) model, which has been used for the training of the underlying ML metamodel. In addition, a large number of scenarios are recreated, ranging from healthy to faulty ones (e.g. clogging, radial gap variations, axial gap variations, viscosity variations, speed variations). Furthermore, the high-fidelity dataset is re-enacted by using degradation functions to predict the remaining useful life (fault prognosis) of an external gear pump.The thesis explores and compares the performance of MLP, SVM and NB algo-rithms for fault diagnosis and MLP and SVM for fault prognosis. In order to enable fast training and reliable testing of the MLP algorithm, some predefined network architectures, like 2n neurons per hidden layer, are used to speed up the identification of the precise number of neurons (shown to be useful when the sample data set is sufficiently large). Finally, a series of benchmark tests are presented, enabling to conclude that for fault diagnosis, the use of wavelet features and a MLP algorithm can provide the best accuracy, and the MLP al-gorithm provides the best prediction results for fault prognosis. In addition, benchmark examples are simulated to demonstrate the mesh convergence for the CFD model whereas, quantification analysis and noise influence on training data are performed for ML algorithms

    A Machine Learning Approach for Gearbox System Fault Diagnosis

    Get PDF
    This study proposes a fully automated gearbox fault diagnosis approach that does not require knowledge about the specific gearbox construction and its load. The proposed approach is based on evaluating an adaptive filter's prediction error. The obtained prediction error's standard deviation is further processed with a support-vector machine to classify the gearbox's condition. The proposed method was cross-validated on a public dataset, segmented into 1760 test samples, against two other reference methods. The accuracy achieved by the proposed method was better than the accuracies of the reference methods. The accuracy of the proposed method was on average 9% higher compared to both reference methods for different support vector settings

    Exploiting generative adversarial networks as an oversampling method for fault diagnosis of an industrial robotic manipulator

    Get PDF
    Data-driven machine learning techniques play an important role in fault diagnosis, safety, and maintenance of the industrial robotic manipulator. However, these methods require data that, more often that not, are hard to obtain, especially data collected from fault condition states and, without enough and appropriated (balanced) data, no acceptable performance should be expected. Generative adversarial networks (GAN) are receiving a significant interest, especially in the image analysis field due to their outstanding generative capabilities. This paper investigates whether or not GAN can be used as an oversampling tool to compensate for an unbalanced data set in an industrial manipulator fault diagnosis task. A comprehensive empirical analysis is performed taking into account six different scenarios for mitigating the unbalanced data, including classical under and oversampling (SMOTE) methods. In all of these, a wavelet packet transform is used for feature generation while a random forest is used for fault classification. Aspects such as loss functions, learning curves, random input distributions, data shuffling, and initial conditions were also considered. A non-parametric statistical test of hypotheses reveals that all GAN based fault-diagnosis outperforms both under and oversampling classical methods while, within GAN based methods, an average accuracy difference as high as 1.68% can be achieved.FCT-through IDMEC, under LAETA, project UIDB/50022/2020.info:eu-repo/semantics/publishedVersio

    Generative Adversarial Networks Selection Approach for Extremely Imbalanced Fault Diagnosis of Reciprocating Machinery

    Get PDF
    At present, countless approaches to fault diagnosis in reciprocating machines have been proposed, all considering that the available machinery dataset is in equal proportions for all conditions. However, when the application is closer to reality, the problem of data imbalance is increasingly evident. In this paper, we propose a method for the creation of diagnoses that consider an extreme imbalance in the available data. Our approach first processes the vibration signals of the machine using a wavelet packet transform-based feature-extraction stage. Then, improved generative models are obtained with a dissimilarity-based model selection to artificially balance the dataset. Finally, a Random Forest classifier is created to address the diagnostic task. This methodology provides a considerable improvement with 99% of data imbalance over other approaches reported in the literature, showing performance similar to that obtained with a balanced set of data.National Natural Science Foundation of China, under Grant 51605406National Natural Science Foundation of China under Grant 7180104

    Pembangunan model penentuan keperluan perumahan kajian kes: Johor Bahru, Malaysia

    Get PDF
    Perumahan merupakan satu komponen penting dalam pembangunan ekonomi di mana ia telah menjadi dasar kerajaan untuk menyediakan rumah bagi setiap rakyat. Rancangan Malaysia terdahulu telah cuba merancang bagi merealisasikan dasar ini. Walaupun anggaran keperluan perumahan dibuat di bawah Rancangan Malaysia, namun anggaran tersebut tidak membayangkan keperluan sebenar pembeli dan penyewa rumah di Malaysia. Negara-negara maju telah menggunakan pelbagai model dalam menentukan keperluan perumahan. Namun begitu, model-model tersebut tidak sesuai digunakan di Malaysia kerana data yang terhad. Kajian ini memfokuskan kepada dua objektif iaitu, mengenal pasti model dan faktor yang signifikan bagi menentukan keperluan perumahan, dan kedua menghasilkan model penentuan keperluan perumahan di Malaysia. Skop kajian ini tertumpu kepada pembeli dan penyewa rumah di Daerah Johor Bahru yang dipilih melalui kaedah pesampelan kelompok pelbagai peringkat. Data diperolehi melalui borang kaji selidik dan dianalisis menggunakan pendekatan kuantitatif. Analisis statistik deskriptif digunakan bagi menghuraikan taburan kekerapan, peratus, min, dan sisihan piawai manakala statistik inferensi iaitu ujian Korelasi Pearson dan Regresi Pelbagai digunakan untuk pembentukan model. Dengan menggunakan kaedah Enter, satu model yang signifikan dapat dihasilkan (F4,178 = 353.699 p < 0.05. Adjusted R square = .886) yang signifikan terhadap dua faktor utama iaitu demografi dan kemampuan. Model yang dihasilkan bagi kajian ini adalah General Linear Model. Model ini dapat digunakan bagi menentukan keperluan perumahan di Johor Bahru. Ia juga berfungsi sebagai alat penting dalam perancangan sektor perumahan pada masa hadapan di Malaysia

    Machine learning and deep learning based methods toward Industry 4.0 predictive maintenance in induction motors: Α state of the art survey

    Get PDF
    Purpose: Developments in Industry 4.0 technologies and Artificial Intelligence (AI) have enabled data-driven manufacturing. Predictive maintenance (PdM) has therefore become the prominent approach for fault detection and diagnosis (FD/D) of induction motors (IMs). The maintenance and early FD/D of IMs are critical processes, considering that they constitute the main power source in the industrial production environment. Machine learning (ML) methods have enhanced the performance and reliability of PdM. Various deep learning (DL) based FD/D methods have emerged in recent years, providing automatic feature engineering and learning and thereby alleviating drawbacks of traditional ML based methods. This paper presents a comprehensive survey of ML and DL based FD/D methods of IMs that have emerged since 2015. An overview of the main DL architectures used for this purpose is also presented. A discussion of the recent trends is given as well as future directions for research. Design/methodology/approach: A comprehensive survey has been carried out through all available publication databases using related keywords. Classification of the reviewed works has been done according to the main ML and DL techniques and algorithms Findings: DL based PdM methods have been mainly introduced and implemented for IM fault diagnosis in recent years. Novel DL FD/D methods are based on single DL techniques as well as hybrid techniques. DL methods have also been used for signal preprocessing and moreover, have been combined with traditional ML algorithms to enhance the FD/D performance in feature engineering. Publicly available datasets have been mostly used to test the performance of the developed methods, however industrial datasets should become available as well. Multi-agent system (MAS) based PdM employing ML classifiers has been explored. Several methods have investigated multiple IM faults, however, the presence of multiple faults occurring simultaneously has rarely been investigated. Originality/value: The paper presents a comprehensive review of the recent advances in PdM of IMs based on ML and DL methods that have emerged since 2015Peer Reviewe

    Sensors Fault Diagnosis Trends and Applications

    Get PDF
    Fault diagnosis has always been a concern for industry. In general, diagnosis in complex systems requires the acquisition of information from sensors and the processing and extracting of required features for the classification or identification of faults. Therefore, fault diagnosis of sensors is clearly important as faulty information from a sensor may lead to misleading conclusions about the whole system. As engineering systems grow in size and complexity, it becomes more and more important to diagnose faulty behavior before it can lead to total failure. In the light of above issues, this book is dedicated to trends and applications in modern-sensor fault diagnosis

    Data Driven Approach to Non-stationary EMA Fault Detection and Investigation Into Remaining Useful Life

    Get PDF
    Growing interest in using Electromechanical Actuators (EMAs) to replace current hydraulic actuation methods on aircraft control surfaces has driven significant research in the area of prognostics and health management. Non- stationary speeds and loads in the course of controlling an aircraft surface make fault identification in EMAs difficult. This work presents a time- frequency analysis of EMA thrust bearing vibration signals using wavelet transforms. A relatively small EMA system is designed and built to allow for simple, quick, and repeatable component replacement. A simulated signal is developed to test four potential faults in the system. Classification is performed using an artificial neural network (ANN), which yields over 99% accuracy. Indentation faults from moderate and heavy loads are seeded in thrust bearings, which are then tested to generate data. The ANN achieves 95% classification accuracy in a two class scenario using healthy and moderately indented bearings. A three class test is executed using thrust bearings at each level of damage to perform preliminary remaining useful life (RUL) testing, where an ANN is able to identify the fault severity with an accuracy of 88%
    corecore