4,274 research outputs found

    Large Perceptual Distortions Of Locomotor Action Space Occur In Ground-Based Coordinates: Angular Expansion And The Large-Scale Horizontal-Vertical Illusion

    Get PDF
    What is the natural reference frame for seeing large-scale spatial scenes in locomotor action space? Prior studies indicate an asymmetric angular expansion in perceived direction in large-scale environments: Angular elevation relative to the horizon is perceptually exaggerated by a factor of 1.5, whereas azimuthal direction is exaggerated by a factor of about 1.25. Here participants made angular and spatial judgments when upright or on their sides to dissociate egocentric from allocentric reference frames. In Experiment 1, it was found that body orientation did not affect the magnitude of the up-down exaggeration of direction, suggesting that the relevant orientation reference frame for this directional bias is allocentric rather than egocentric. In Experiment 2, the comparison of large-scale horizontal and vertical extents was somewhat affected by viewer orientation, but only to the extent necessitated by the classic (5%) horizontal-vertical illusion (HVI) that is known to be retinotopic. Large-scale vertical extents continued to appear much larger than horizontal ground extents when observers lay sideways. When the visual world was reoriented in Experiment 3, the bias remained tied to the ground-based allocentric reference frame. The allocentric HVI is quantitatively consistent with differential angular exaggerations previously measured for elevation and azimuth in locomotor space. (PsycINFO Database Record (c) 2016 APA, all rights reserved

    Spatial attention: differential shifts in pseudoneglect direction with time-on-task and initial bias support the idea of observer subtypes

    Get PDF
    <p>Asymmetry in human spatial attention has long been documented. In the general population the majority of individuals tend to misbisect horizontal lines to the left of veridical centre. Nonetheless in virtually all previously reported studies on healthy participants, there have been subsets of people displaying rightward biases.</p> <p>In this study, we report differential time-on task effects depending on participants' initial pseudoneglect bias: participants with an initial left bias in a landmark task (in which they had to judge whether a transection mark appeared closer to the right or left end of a line) showed a significant rightward shift over the course of the experimental session, whereas participants with an initial right bias shifted leftwards.</p> <p>We argue that these differences in initial biases as well as the differential shifts with time-on task reflect genuine observer subtypes displaying diverging behavioural patterns. These observer subtypes could be driven by differences in brain organisation and/or lateralisation such as varying anatomical pathway asymmetries. </p&gt

    Towards Precision in Appearance-based Gaze Estimation in the Wild

    Full text link
    Appearance-based gaze estimation systems have shown great progress recently, yet the performance of these techniques depend on the datasets used for training. Most of the existing gaze estimation datasets setup in interactive settings were recorded in laboratory conditions and those recorded in the wild conditions display limited head pose and illumination variations. Further, we observed little attention so far towards precision evaluations of existing gaze estimation approaches. In this work, we present a large gaze estimation dataset, PARKS-Gaze, with wider head pose and illumination variation and with multiple samples for a single Point of Gaze (PoG). The dataset contains 974 minutes of data from 28 participants with a head pose range of 60 degrees in both yaw and pitch directions. Our within-dataset and cross-dataset evaluations and precision evaluations indicate that the proposed dataset is more challenging and enable models to generalize on unseen participants better than the existing in-the-wild datasets. The project page can be accessed here: https://github.com/lrdmurthy/PARKS-Gaz

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task
    • …
    corecore