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Spatial distribution of eye-movements after central vision loss is
consistent with an optimal visual search strategy

October 9, 2019.

A. Vasilyev and M. Hansard
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The problem of gaze allocation has previously been studied in the framework of eye-movement control
models, which require prior knowledge of visibility maps (VMs). These encode the signal-to-noise ratio,
at each point in the visual field, which can be used to define an optimal policy of gaze allocation. However,
it is not always possible to estimate the VM, in a given experimental setting, as it depends on many
factors, including the visual system of the individual observer. Hence, few eye-movement datasets include
the corresponding VM estimates. This can be problematic for the analysis of certain clinical conditions,
such as Age-related Macular Degeneration (AMD), which are associated with reduced sensitivity in
the affected locations of the visual field. The corresponding VMs are highly idiosyncratic, and cannot
be modelled by estimates obtained from healthy observers. We propose an algorithm for maximum
likelihood VM estimation, working directly from eye-movement sequences. We apply this algorithm to
two eye-tracking datasets, based on visual search tasks, obtained from AMD patients. We show that
the inferred VMs are spatially consistent with the measured visual field sensitivities. We also show that
simulations with the estimated VMs can account for the asymmetric distribution of saccade vectors,
which is typical of AMD patients.
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1. Introduction

Age-related macular degeneration (AMD) is a medical

condition which may result in reduced acuity in areas

of the visual field known as scotomas. As a result, the

visual behaviour of AMD patients differs significantly

from that of normal participants, during visual search

tasks1–3 and visual exploration of scenes.4 AMD pa-

tients have lower performance in execution of visual

tasks,5 anomalous spatial distributions of saccade vec-

tors2 and larger numbers of saccades per trial.4 Despite

the considerable number of eye-tracking experiments

conducted with AMD patients, there have been no at-

tempts to explain the statistics of their saccades using

computational models of eye-movements.6,7

Control models of eye-movements8,9 aim to eval-

uate the optimal policy of gaze allocation, for a com-

putational agent which has visual capabilities that are

based on those of human observers. These models can

produce eye-movements that are statistically consistent

with human data, including response times on visual

search tasks, spatial fixation distributions,10 length and

direction distributions of saccades,11,12 and geometri-

cal and statistical persistence of eye-movements.13 The

control models of eye-movements are formulated as

Partially Observable Markov Decision Processes (Po-

Mdps), meaning that the agent has incomplete infor-

mation about the underlying state of the visual envi-

ronment. From the point of view of control models, vi-

sual search is a recurrent process of extraction and inte-

gration of visual information at each fixation, followed

by a decision about where next to fixate. The main

characteristic that governs the decision-making process

of a computational agent in a Po-Mdp is the Visibility

Map (VM). This is the ratio of perceptual signal-to-

noise, across the visual field. Previously, it was shown

that introduction of gaze-contingent simulated scotoma
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(gaze-locked local blurring) results in adaptations of

observers’ eye-movement strategies14,15 which are con-

sistent with the change of VM, due to the simulated

scotoma. The use of control models of eye-movements

implies that VMs are known for each experimental set-

ting and participant. However, it is not always possible

to estimate the required VMs, because they depend on

the properties of the stimulus, the visual task, and the

observer’s visual system. For this reason, typical eye-

movement datasets do not include corresponding VMs.

Furthermore, in the case of clinical studies, the indi-

vidual VMs may be highly idiosyncratic, owing to the

diverse patterns of retinal degeneration.

In this paper we present a novel scheme for in-

ference of individual VMs from sequences of eye-

movements, which is inspired by the Policy Gradient

with Parameter Exploration algorithm used for estima-

tion of optimal policy in Po-Mdp.16–19 This scheme

estimates the parameters of the VM that maximize

the probability of the observed eye-movement trajec-

tories. We test this algorithm on both simulated and

actual eye-movement data.2,3 In particular, we use an

Entropy Limit Minimization (‘Infomax’) principle11 as

the basis for a generative model of eye-movements. We

hypothesize that if the main difference between AMD

patients and healthy controls is lower visual sensitivity

across the visual fields of the former, then the difference

in their visual behavior is due to their reduced ability

to extract information about the visual scene. On the

basis of analysis of eye-movements, Van der Stigchel

et al. hypothesized that there is a preference for sac-

cades towards parts of the visual field that are masked

by scotomas, at a given moment.2 This hypothesis is

realistic in the Infomax scenario for the following rea-

son. At each step of Po-Mdp, the probability distribu-

tion is updated according to the visual input; however,

because the observer is effectively blind in scotomas,

these areas cannot be eliminated as potential target lo-

cations. It follows that they may be preferred for the

next fixation. However, using simulations of the Info-

max model, we found that preference towards scotomas

takes place only for the most trivial configurations of

the VM. At the same time, we found that there is no

evidence for a correlation between the angular distri-

bution of eye-movements and the distribution of visual

field values for AMD patients.

The present work is related to the Medusa algo-

rithm for learning the observation parameters of a Po-

Mdp.20–22 This is based on matching the actions of an

oracle (i.e. a system whose parameters are unknown)

and a computational agent. Usage of this method in

the case of stochastic execution of actions will result

in noisy estimation of the objective function, with an

error that grows with a dimensionality of action space.

Our approach is based on the estimation of the proba-

bility of action sequence as a state space integral, in the

Po-Mdp, unlike sampling methods in which actions of

an oracle are compared to a given number of generated

trajectories. We have developed an algorithm capable

of inferring visibility maps in Po-Mdp with heuristic

policies. We plan to extend this approach to the infer-

ence in Po-Mdp with optimal policies estimated with

reinforcement learning methods.8,13,23 We provide a

full mathematical rationale of our method in supple-

mentary material A.3, as well as the associated code.24

The goal of this research is to show that for each

set of eye-movement trajectories, from a given human

AMD patient, there exists a choice of visibility map

that satisfies the following criteria:

• The simulation of an Infomax model with this VM

explains the spatial distribution of eye-movements.

• The probability of an eye-movement sequence, esti-

mated with this visibility map, exceeds chance level

both in training and validation sets.

• This VM is consistent with measured visual field

values, if available. In particular, areas with low

signal-to-noise ratios correspond to scotomas, which

can be identified using standard visual field tests.25

The basic statistical properties of AMD eye-movements

have been comprehensively reported in previous

works.4,5, 26–30 In particular, we use data provided by

Janssen & Verghese3 and Van der Stigchel et al.2

2. Simulation of eye-movements

We use an Infomax model of eye movements,11 in which

the stochastic execution of saccades is driven by a

greedy heuristic policy of information acquisition.13

2.1. Infomax model

At the beginning of each episode (sequence of states

and actions of an agent that ends in some terminal

state), the target is placed at image location u? =

(x?, y?), which is randomly picked from L possible lo-

cations:

u? ∈
{
u1, . . . ,u`, . . . ,uL

}
. (1)
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We assume that the target is placed on background

noise or surrounded by distractors, placed at vacant

locations. Each episode starts with a random initial lo-

cation of gaze x0 = (x0, y0), and finishes as soon as

the fixation xk corresponds to the target location u?.

Note that fixations can occur anywhere in the image,

at discrete times tk.

At each fixation xk, the observer receives sensory

observations S
(
xk, u`

)
, with ` = 1, . . . , L, which can

be abbreviated to

sk,` = S
(
xk, u`

)
. (2)

These sensory observations are independent random

variables, which represent the perceptual evidence that

the target is at each of the L locations, on the k-th fix-

ation. In particular, their values are distributed as9

p
(
sk,` |xk

)
∼ N

(
δu`,u? , 1/V (u` − xk)

)
(3)

where N(µ, σ) represents the 1d Normal distribu-

tion. The mean of the distribution is zero, unless

the target is at location u`. This dependency is con-

trolled by the Kronecker delta δu`,u? . The function

V (u− x) > 0 is the visibility map (VM), which me-

diates the retinal information. The visibility, which is

also known as the Fovea-Peripheral Operating Charac-

teristic (fpoc),8 is determined by the signal to noise

ratio at location u, given fixation at x, as argued by

Najemnik and Geisler.11 Hence 1/V (u`−xk) gives the

‘precision’ of the sensory observation sk,`. In normal

observers, the visibility function is approximately ra-

dial, V (u − x) = Vr
(
|u − x|

)
, and is determined by

retinal resolution and neural noise.

The decision making of the observer is modeled as

a Po-Mdp, with belief state bk regarding the target

location, at step k:

bk =
(
bk,1, . . . , bk,`, . . . , bk,L

)
. (4)

This is a discrete probability distribution function, de-

fined over image locations, given all observations re-

ceived up to the k-th fixation. The probability distri-

bution function is updated using Bayesian inference,23

such that

bk,` ∝ p
(
sk,` |xk

)
bk−1,`. (5)

The decision of where to fixate next is made on each

step of Po-Mdp, according to a policy of gaze alloca-

tion π:

xk+1 ← π(bk). (6)

After making the decision, the actual coordinates of

the next fixation location xk+1 are defined by execu-

tion function α(x):

xk+1 = α(xk+1) = xk+1 + ξk+1 (7)

where ξk is Gaussian-distributed spatial error, with

zero mean and standard deviation ν. The standard de-

viation can be modelled as an affine function31 of the

intended saccade amplitude

ν = ζ0 + ζ1 ‖xk+1 − xk‖ (8)

with parameters ζ0 = 0.87◦ and ζ1 = 0.084 as esti-

mated by Engbert et al.31 The next step of Po-Mdp

starts after the transition to new fixation xk+1.

The information gain that would be obtained, at

step k + 1, by candidate fixation x is

∆I(bk,x) = −
(
H(bk+1)−H(bk)

)
(9)

where H(bk) = −
L∑
`=1

bk,` log(bk,`) (10)

is the Shannon entropy. The entropy represents the ob-

server’s uncertainty about the target location. The In-

fomax policy chooses the fixation x that maximizes the

expected information gain

π : xk+1 ← arg max
x

E
[
∆I(bk,x)

]
. (11)

Hence the choice of location, according to the Infomax

model, minimizes the expected Shannon entropy of the

belief state, i.e. uncertainty of target location. The ex-

pected information gain E
[
∆I(bk,x)

]
is calculated an-

alytically by Najemnik and Geisler11 as

E
[
∆I(bk,x)

]
=

1

2

L∑
`=1

bk,` V
2(u` − x). (12)

Figure 1 illustrates the decision-making process of the

Infomax model.

2.2. Parametrization of visibility map

The visibility maps V (x) are represented by paramet-

ric models Vθ(x). These comprise sums of polar basis

functions, with coefficients θ, as follows:

Vθ(x) = Vθ(r, ψ) =∣∣∣∣ M∑
m=0

N∑
n=0

(
ϑm,nBm,n(r, ψ) + ϑ?m,nB

?
m,n(r, ψ)

)∣∣∣∣+ Vε

where r = ‖x‖, ψ = tan−1(y, x),

θ =
(
ϑ0,0, . . . , ϑM,N ; ϑ?0,0, . . . , ϑ

?
M,N

)
.

(13)
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Fig. 1. The decision making process in Infomax model. The left map represents the expected information gain (eqn. 12),
across the visual field. The white cross corresponds to the location of the current fixation on step k, while the red square
corresponds to the location of the target. The observer makes a decision to fixate at the location defined by policy:
xk+1 ← π(bk). This decision results in the saccadic eye-movement to location xk+1 = α(xk+1) marked by the red cross.
After receiving the observation at step k + 1, the observer updates its belief state. In this particular situation, the target
is not in the vicinity of xk+1, and the action resulted in reduced probability bk+1 around the fixation (red cross).

Here Bm,n(r, ψ), and B∗m,n(r, ψ) are cosine and sine

Bessel radial functions, respectively (see appendix A.1

for details). The parameter vector θ contains the corre-

sponding 2MN coefficients, ϑm,n and ϑ∗m,n. The small

regularization constant Vε = 0.01 is used to avoid any

singularity in the precision parameter of the observa-

tion model (3). Recall that the visibility map V (x),

which represents the signal-to-noise ratio across the vi-

sual field, is a positive function. For this reason, the

absolute value of the sum is taken in (13). Figure 2

shows some example visibility maps, with parameters

ϑ0,1 = 30, ϑ1,1 = −30, R0 = 8◦.
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Fig. 2. Examples of visibility map with parameters: ϑ1,0 =
30 (shared for all examples), ϑ1,1 = −30; ϑ1,2 = −30;
ϑ1,3 = −30 (upper row); ϑ∗1,1 = −30; ϑ∗1,2 = −30; ϑ∗1,3 =
−30 (lower row) and zeros for all other parameters.

2.3. Asymmetry of saccade distribution

In this section, we show how the asymmetry of the

visibility map function influences the distribution of

eye-movement vectors in the Infomax model. We sim-

ulated the Infomax model on a computational grid of

size 48×48, and varied the parameters θ of the visibility

map function. We fixed the number of radial and angu-

lar dimensions to M = 1 and N = 5, while the radius

of the visual field is R0 = 8◦. The VMs were generated

using a special case θ(α, β, `) of the parameter vector

(13), with entries

ϑm,n =


α if n = 0

αβ if n = `

0 otherwise

ϑ?m,n = 0. (14)

The parameters α and β regulate the overall level of vis-

ibility and angular amplitude respectively, for a given

frequency `. Parameters were selected as: α ∈ {30, 60},
β ∈ {0, 0.1, ..., 1}, ` ∈ {1, 2, 3, 4, 5}. For each visibility

map, defined by the above parameters, we run 10000

episodes of the Po-Mdp model, and calculate the his-

togram of saccade vectors. For each case we measured

the number of saccades in the directions that corre-

spond to regions of suppressed and enhanced of visibil-

ity (see Fig. 3, for example). We define the tendency

to move the eyes in the scotoma direction as a ratio:

the number of saccades towards the suppressed region,

divided by the number towards the enhanced region.
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Fig. 3. The visibility maps (top) and histograms of sac-
cade vectors (bottom) for parameter cases: α = 60, β = 1,
` ∈ {1, 2}. For the case ` = 1 (left), the left hemifield is the
direction of enhanced visibility, marked by number 1. We
observe the deficit of saccade towards this direction; on the
opposite side there is a surplus, in direction 2. For the case
` = 2 (right) we found a surplus of saccades towards di-
rections 1 and 3, which correspond to suppressed visibility,
and a deficit towards directions 2 and 4.

We find that in the low visibility case of α = 30,

the cases ` ∈ {1, 3} show monotonic growth of pref-

erence towards the scotoma direction, as a function of

a parameter β (Fig. 4). In the cases ` ∈ {2, 4, 5}, we

observed that the direction of better visibility is pre-

ferred for most values of parameter β. For the high

visibility case α = 60, with ` ∈ {1, 2, 3, 5}, we found

that the deficit direction is more preferred. This pref-

erence grows monotonically with β, for ` ∈ {1, 2, 3}, as

shown in Fig. 5. In the case ` = 4 the enhanced direc-

tion is less preferred, but the difference is less than 5%

of the total saccade count.
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Fig. 4. Preference towards scotoma direction in the low-
visibility case α = 30. The cases ` ∈ {1, 3} show monotonic
growth of preference towards the scotoma direction with
parameter β.
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Fig. 5. Preference towards scotoma direction in the high-
visibility case α = 60. In cases ` ∈ {1, 2, 3, 5} the deficit
direction is preferred, and this preference grow monotoni-
cally with β for cases ` ∈ {1, 2, 3}.

On the basis of our findings, we conclude that a

preference towards scotoma direction arises from the

Infomax model, given a high general level, and low an-

gular frequency of the visibility map. In the case of low

visibility, we find the preference towards the scotoma

direction only for the first two odd angular terms. Due

to the weakening of bias towards the deficit direction

with angular number `, we limit the number of angular

dimensions to N = 3, in our simulations.

Interestingly, the proportion of saccades towards

scotoma direction for the case ` = 1, β = 1, which

corresponds to the situation of complete blindness in

deficit hemifield, is consistent with that reported for pa-

tients with homonymous hemianopia (visual field loss

on the same side, for both eyes) performing a visual

search task.32

3. Parameter learning algorithm

This section develops an algorithm for estimating the

parameters of the underlying visibility map, given the

observed eye-movement sequences and the experimen-

tal task.

3.1. Probability of fixation sequences

An individual scan-path, corresponding to one ex-

perimental trial, comprises a sequence of fixations

X = (x1, . . . ,xk, . . . ,xK). We define a data set as the

concatenation X of S observed scan-paths:

X =
(
X1, . . . ,XS

)
. (15)

Recall that we have defined the visibility map through

parameter set θ, in sec. A.1. Our goal is to maximize

the log-probability of a given data set X , given a model
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defined by parameters θ:

θ? = arg max
θ

log p(X|θ). (16)

We use an optimization method that is inspired by the

Policy Gradient with Parameter Exploration scheme of

Sehnke et al.16,17 This requires a probability distribu-

tion p(θ|ρ) to be defined over possible models θ. Then

we can optimize the following objective function, with

respect to the upper-level parameters ρ:

log p(X|ρ) =

∫
Θ

log
(
p(X|θ)

)
p(θ|ρ) dθ. (17)

The gradient of this log-probability, with respect to the

upper-level parameters ρ can be expressed as follows:

∇ρ log
(
p(X|ρ)

)
=∫

Θ

log
(
p(X|θ)

)
p(θ|ρ)∇ρ log p(θ|ρ) dθ (18)

where the ‘log likelihood trick’∇ρ log p(θ|ρ) ≡ ∇ρp(θ|ρ)
/
p(θ|ρ)

is used to express the derivative of the factor p(θ|ρ)

in (17). The gradient integral (18) can now be approx-

imated, by sampling J parameter vectors θj from the

distribution p(θ|ρ), and computing the sum

∇ρ log
(
p(X|ρ)

)
≈ 1

J

J∑
j=1

log
(
p(X|θj)

)
∇ρ log p(θj |ρ)

where θj ∼ p(θ|ρ). (19)

For each parameter set θj , we evaluate the probability

p(X|θj) according to section A.3.

3.2. Estimation algorithm

The set of upper-level parameters ρ, which is used to

define the parameter distribution p(θ|ρ), comprises a

mean and standard deviation for each of the 2MN vis-

ibility parameters in (13), as follows:

µ =
(
µ1, . . . , µ2MN

)
, σ =

(
σ1, . . . , σ2MN

)
and ρ = (µ, σ).

(20)

Each parameter θi is sampled J times from the corre-

sponding normal distribution p(θi|ρ), such that θj is a

complete sample vector, with entries

θi,j ∼ N(µi, σi), i = 1, . . . , 2MN. (21)

The learning of the upper-level parameters ρ is an it-

erative process, which involves estimating the gradient

of log-probability (17), via (19), and then updating the

upper-level parameters ρ; this constitutes one learning

epoch. We define the convergence criterion for the gra-

dient as: ‖∇ρ log(p(X|ρ))‖ < ε, where ε is chosen as

1/25-th of the initial gradient magnitude.

In practice, a symmetric sampling scheme is used

for (21), because it provides more robust gradient ap-

proximation.16 The complete algorithm is presented in

Fig. 6.

Initialization

(1) Construct a data set X , by concatenating

multiple scan-paths, as in (15).

(2) Initialize the upper-level parameters ρ,

as σi ← 1, and µi ∼ N(0, 1), for all

i = 1, . . . , 2MN .

Learning

while ‖∇ρ log(p(X|ρ))‖ > ε

(1) Sample 2J parameter sets θ±j = µ± εj ,
as in sec. A.2, where εj ∼ N

(
0,diag(σ)

)
.

(2) Estimate probabilities p(X|θ±j ) of data

set X , as in sec. A.3.

(3) Compute gradient ∇ρ log(p(X|ρ)) ac-

cording to eqns. (A.4,A.5).

(4) Update upper-level parameters ρ accord-

ing to:

ρ← ρ+ λ∇ρ log(p(X|ρ))

Where λ is the learning rate constant.

Output

θ ← µ

Fig. 6. The visibility map inference algorithm, using the
symmetric sampling scheme of Sehnke et al.16

3.3. Performance on simulated data

Here we demonstrate the performance of the proposed

inference algorithm, on eye-movement trajectories sim-

ulated by the Infomax model. The set of ground truth

visibility maps was generated by random selection of

each observation parameter θi in the interval [−1, 1].

For each visibility map function in this set we ran 100

episodes of Po-Mdp on a 64× 64 computational grid.

These generated trajectories served as input for the

inference algorithm. The inferred visibility maps were

then compared with ground truth visibility maps. Each

input sequence is split between the training and vali-



October 9, 2019 4:24 output

Spatial distribution of eye-movements after central vision loss is consistent with an optimal visual search strategy 7

dation sets in a ratio of 75/25. The training set is used

for evaluation of observation parameters. The valida-

tion set is used for assessment of the performance of

learning algorithm.

We set the learning rate as λ = 0.5 in all cases.

On each computational epoch we compute the follow-

ing performance characteristics:

• Euclidean distance between ground truth VM and

inferred VM (Figure 7) on the current computa-

tional epoch divided by Euclidean norm of ground

truth.

R =

√∑L
`=1

(
Vest(u`)− Vtrue(u`)

)2√∑L
`=1 V

2
true(u`)

(22)

• The log-probability of single saccade for current pa-

rameter values for training (Figure 8) and valida-

tion sets (Figure 9) compared to chance level:

log(ps) =
log
(
p(X ,θ)/D

)
length(X )

(23)

where D = 64×64 is the dimensionality of the grid.

This representation is used because the length of

eye-movement sequence is different for each patient.

• Jensen-Shannon distance between the spatial dis-

tributions of input and simulated action sequences

(Fig. 10).

For these parameter settings, the algorithm reaches

the convergence condition at the 25th computational

epoch, according to both Euclidean and Jensen-

Shannon distances. We conclude that the algorithm

simultaneously satisfies both of these performance cri-

teria. However, the ground truth visibility map cannot

be inferred exactly, due to the variance of the estimate

A.3. Figure 11 shows three examples of inferred visi-

bility maps (lower row) from simulated eye-movements

with target visibility maps (upper row).
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Fig. 7. The Euclidean distance between ground truth and
estimated visibility map, divided by the Euclidean norm of
the ground truth, for current values of the parameters on
each computational epoch.
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Fig. 8. The log-probability of a single saccade, in the train-
ing set, for each computational epoch.
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Fig. 10. Jensen Shannon distance between the spatial dis-
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Fig. 11. The inferred visibility maps (lower row) from sim-
ulated eye-movements, with the target visibility maps (up-
per row) that correspond to three parameter cases.

In the appendix A.4 we examine the influence of

the length of the input trajectory on the performance

of the inference, and confirm that the lengths of both

simulated and experimental trajectories are sufficient

for estimation of target VM with precision that is close

to the optimal one.

4. Analysis of clinical AMD data

In this section we compare our estimates of the visibil-

ity maps with the values of visual field tests provided

to us by Janssen et al.3 and Van der Stigchel et al.2

4.1. Summary of datasets

We have used the following two sets of eye-tracking

data, to evaluate the inference algorithm.

Dataset 1. Eye tracking data from a psychophys-

ical experiment of Van der Stigchel et al.2 In this ex-

periment four AMD patients performed a visual search

task. The stimulus consisted of a visual search field with

32 c-shaped distractors, and a single o-shaped target.

The target and distractors were positioned on a hexag-

onal lattice. The positions of the target and distractors,

and the orientation of the distractors, were randomized

on each trial. Each participant completed 55 trials of

visual search. An Eyelink 1000 infrared eye-tracker was

used to record of eye-movements, and visual field values

are provided for all four AMD patients.

Dataset 2. Eye tracking data from a visual search

experiment of Janssen et al.3 In this experiment, 12

AMD patients completed 10 to 15 trials per session, in

which they searched for target objects in a scene. The

target consisted of a two-dimensional Gaussian blob,

with a spatial deviation of 0.5 deg. The stimulus back-

grounds were randomly selected from a database of 80

images of outdoor scenes. There were between zero and

nine target objects, which were superimposed at ran-

dom locations in the given image. The number of tar-

gets was chosen randomly in each trial. Visual field

values were provided for all 12 AMD patients.

If the landing position of the last saccade is within

2◦ of the target, then the trial is considered successful,

for eye-movement trajectories from all two data-sets.

Unsuccessful trials were excluded from consideration.

4.2. Performance on experimental data

In this subsection we demonstrate the performance

of the inference algorithm on the datasets from psy-

chophysical experiments.2,3

The eye-movement data comprises sequences Xs of

fixations, which are binned into a computational grid

of resolution 64 × 64. This representation of data is

used during the training phase and the evaluation of

performance. For each patient, we split the entire eye-

movement time-series into the training and test sets, in

the ratio of 75/25. The training set was used to evalu-

ate the observation parameters. The validation set was

used for assessment of the performance of the learning

algorithm. On each learning epoch we evaluated the

following metrics: average Jensen-Shannon distance be-

tween target distribution and simulated eye-movements

and average log-probability of single saccade, compared

to the chance level (23).
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Fig. 12. The log-probability of a single saccade in the
training set for each computational epoch.
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Fig. 13. The log-probability of a single saccade in the val-
idation set for each computational epoch.
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Fig. 14. Jensen-Shannon distance between the distribu-
tions of simulated and experimental eye-movements

We set the learning rate as: λ = 0.5 in this test,

and in the evaluation of VMs in section 4.4. The log-

probability of a single saccade, log(ps), was averaged

over all AMD patients and initial conditions. The fig-

ures 12 and 13 show the average log-probability of a

single saccade as a function of learning epoch in the

training and validation sets correspondingly. In most

cases, the log-probability value stabilizes around the

30th learning epoch. We show the Jensen-Shannon dis-

tance33 between the experimental and simulated sac-

cade distributions in Fig. 14.

4.3. Results of inference for dataset 1

In this subsection we discuss the results of the infer-

ence algorithm applied on eye-tracking data from Van

der Stigchel et al.2 Firstly, we present the histograms

of saccade vectors in figure 16. The upper and lower

rows of the figure plot the experimental and the simu-

lated saccade distributions, respectively. Similar to the

experiment of Janseen et al., the distributions of the

saccade vectors are anisotropic, and have maxima at

the locations away from the fovea. The main difference

in the patients’ behaviour in this experiment, compared

to the previous one, is a stronger bias towards the hori-

zontal direction. The average Jensen-Shannon distance

between experimental and simulated distributions of

the saccade vectors was 0.24, compared to the value of

0.22 for the Janssen et al. data.

The figure 18 presents the inferred VMs and the

visual field values for AMD patients. We can see that

the algorithm has identified lower sensitivity locations

which are consistent with visual field values. In the case

of P1, the algorithm identified the asymmetry of the

visibility map and shifted the location of maximal sen-

sitivity to the left hemifield. In the case of P2, the im-

paired fovea and right hemifield were identified by our

inference scheme. In the case of P4, we estimated a dis-

tribution of sensitivity that is similar to the case of P2.

The case of P3 corresponds to an irregular distribution

of the scotomas. The algorithm estimated the symmet-

ric VM with low values of sensitivity in the foveal re-

gion.

4.4. Results of inference for dataset 2

Figure 15 shows the distribution of simulated fixa-

tions at the end of the learning process, for simulated

agents.3 The intersection of dotted lines marks the lo-

cation of maximum probability. Note that, in general,

the probability density function is asymmetric, and has

a maximum away from the fovea. The Infomax model,

using the learned visibility map, captures this prop-

erty for almost all observers. The exception is patient

P5, who had a significantly shorter data-set of eye-

movement trajectories, due to better visual conditions3

and, therefore, higher performance in task execution.

The table 4.4 shows three performance metrics of infer-

ence algorithm: the distance between locations of max-

ima of experimental and simulated saccade distribu-

tions, Jensen-Shannon distance between predicted and

experimental distributions, and the p-values calculated

according to χ2 test statistics. The patients are num-

bered as P2–P11 for the Janssen et al. experiment3

and P1d–P4d for the van der Stigchel et al. experi-

ment.2 For most patients the Jensen-Shannon distance

between model and experimental distributions is lower

than 0.3, and the location of a maximum was predicted

with error lower than 3◦. Figure 17 shows the binoc-

ular scotoma maps3 (left) and inferred values of VMs

(right). The binocular scotoma maps are represented

as detection rate of the target object across the vi-

sual field. The scotoma maps were measured for two

sizes of object: 5◦×5◦ and 2.5◦×2.5◦. For patient P10

the measurements were provided for a stimulus size of

6.5◦ × 6.5◦. One can see in Figure 17 (right) that the
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Fig. 15. The distribution of experimental eye-movements (upper row) and distributions of simulated actions (lower
row), with axes are in degrees of visual angle. The intersection of dotted lines marks the maximum of each probability
density function.

inferred visibility maps are irregular, unlike those of

the normal controls performing a visual search task.11

We assume that the differences between the VMs are

caused by the presence of the scotomas. The target de-
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Fig. 16. The distribution of experimental eye-movements (upper row) and distributions of simulated actions (lower
row), with axes in degrees of visual angle. The intersection of dotted lines marks the maximum of each probability density
function.

tection rate is close to zero in the dark blue areas of

the images in Fig. 17 (right). We associate these loca-

tions with the periphery if the distance between them

and fovea is larger than 5◦, and otherwise with the sco-

tomas. For the patients P4, P5, P6, P7, P11 and P12,

the inference algorithm identified the scotomas in the

quadrants consistent with binocular scotoma maps 17.

However, even for these cases with asymmetrical vi-

sual field values, we can’t clearly see the asymmet-

rical inferred VMs. This happens for several reasons.
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(a) The binocular scotoma maps for AMD patients in
the Janssen et al. experiment.3 The scotoma maps were
measured for three sizes of target: 5◦ × 5◦, 2.5◦ × 2.5◦

and 6.5◦ × 6.5◦. For patient P10 the measurements were
provided for stimulus size of 6.5◦ × 6.5◦.
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(b) The inferred values of visibility maps for AMD
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Janssen et al. experiment.3 See Fig. 18 (right)
for the visibility maps from the van der Stigchel
et al. experiment.2

Fig. 17.

First of all, our algorithm has limited precision even

in the case of simulated eye-movements 3.3. Secondly,

we limited the number of angular dimensions to N = 3

as described in section 2.3. The limited dimensional-

ity is also a reason why the distributions of simulated

eye-movements 16 do not reflect the irregularity of the

experimental distributions. The third reason is a dif-

ference in conditions during the measurement of vi-

sual field values and VMs. In the search experiments,

VMs are measured in the presence of background noise,

which results in lower performance in the periphery.

This is not true for visual field values that do not de-

cline with eccentricity.
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van der Stigchel et al. experiment.2
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Case
Localization
error, deg.

J-S distance p-value

P2 1.67 0.214 0.875
P3 2.00 0.178 0.764
P4 1.00 0.235 0.863
P5 2.33 0.345 0.692
P6 2.00 0.256 0.845
P7 1.33 0.397 0.623
P8 1.33 0.145 0.835
P9 1.66 0.169 0.824
P10 1.33 0.226 0.792
P11 1.00 0.239 0.824
P12 2.00 0.163 0.889
P1d 1.33 0.228 0.778
P2d 1.00 0.246 0.882
P3d 3.00 0.237 0.856
P4d 2.33 0.233 0.874

Table 4.4 Prediction accuracy for the spatial distributions.
The patients from data set2 are marked by letter ‘d’ to
distinguish from the previous patients.

4.5. Identification of scotoma regions

Our main objective was to determine how the presence

of the scotomas influences visual search behaviour for

AMD patients. In this section we study the correla-

tion of four variables: visual field values, inferred visi-

bility maps, experimental distributions and simulated

distributions. The values of these four variables were

integrated in each of the four quadrants. The resulting

vectors of the experimental and the simulated distri-

butions of saccades were normalized for each patient.

These vectors are referred to as quadrant distributions.

We computed the Jensen-Shannon distances be-

tween variables for each patient and averaged the re-

sults over patients (see table 4.5 below diagonal). This

measure is called intra-patient statistical distance. In

order to evaluate the performance of the algorithm we

estimated the Jensen-Shannon distance between vari-

ables across different patients (inter-patient statistical

distance). For each variable and patient we made 14

comparisons (15 begin the number of patients), and

averaged the results over all comparisons 1
N

∑N
j=1 JSj .

The result was averaged again over all patients giving

the average Jensen-Shannon distance for each variable

(see 4.5 above diagonal).

In order to calculate the variance of estimates

of average statistical distance we used the jackknife

method of resampling.34 We estimated the average JS

distance omitting one comparison:

JSi =
1

N − 1

N∑
j=1,j 6=i

JSj (24)

On the next step we estimate the standard deviation

of the jackknife estimator:

σ
(

JS
)

=

√√√√N − 1

N

N∑
i=1

(
JSi − JS

)2

(25)

where JS = 1
N

∑N
i JSi . Next, we average the standard

deviation of the jackknife estimator over all patients.
The results are reported in the table 4.5.

Variable
VF

values
Inferred

VM
Exp.
distr.

Sim.
distr.

Visual
field values

—
0.25 ±
0.04

0.46 ±
0.05

0.49 ±
0.06

Inferred
VM

0.19 —
0.43 ±
0.06

0.39 ±
0.05

Experimental
distr.

0.43 0.43 —
0.15 ±

0.05

Simulated
distr.

0.47 0.38 0.09 —

Table 4.5 Average JS distance between variables for each
patient below the diagonal, and average JS distance be-
tween variables across different patients with standard er-
rors above the diagonal

We can see that the difference between the intra-patient

and the inter-patient statistical distance is significant

only for two cases: the distance between inferred VM

and VF values, and the distance between the simulated

and the experimental distributions of eye-movements.

For all other cases there is a chance level of similarity

both for the intra-patient and the inter-patient com-

parisons. The inter-patient statistical distance is larger

than the intra-patient distance for all cases.

5. Conclusion

We have developed and tested an algorithm for the in-

ference of visibility maps of both human observers and

computational agents.

On the basis of the average Jensen-Shannon dis-

tance at the end of the learning process, the prediction

error of maximum location, and the visual similarity

between experimental and simulated distributions, we

conclude that our Infomax model is capable of describ-

ing the spatial distribution of eye-movements for AMD
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patients. Interestingly, we find that neither the Infomax

model nor the human observer display a preference to-

wards the scotoma direction, which was observed only

in two experimental cases.2 We observe that a prefer-

ence towards impaired regions of the visual field occurs

only in the most trivial configurations of VM, such as

in the case of homonymous hemianopia (visual field

loss on the same side, for both eyes). In this case, the

ratio of the saccades towards impaired regions can be

calculated exactly, using the Infomax simulations.

Our algorithm is an iterative procedure, which

evaluates the gradient of fixation log-probability, and

subsequently updates the observation parameters. The

algorithm was inspired by the reinforcement learning

method of parameter exploring policy gradient.16 De-

spite the simplicity of this gradient-based approach,

it shows good performance, compared to alternative

methods, in the reconstruction of the observation

model for both computational agents and human ob-

servers. Our algorithm can easily be generalized for

any Po-Mdp with independent observation parame-

ters and a convolutional policy.23 In the future we plan

to extend this approach for generative models of eye-

movements that are based on reinforcement learning

methods.8,13,23
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Appendix A

Implementation of learning algorithm

This section gives full details of the parameter estima-

tion algorithm, including the VM parameterization, the

sampling scheme, and the probability computations.

A.1. Bessel Circular Functions

We use Bessel Circular Functions35 for parametrization

of the visibility map:

Bm,n(r, ψ) =

{
NmnJn(cm,nr/R) cos(nψ) if r < R

0 otherwise

(A.1)

B∗m,n(r, ψ) =

{
NmnJn(cm,nr/R) sin(nψ) if r < R

0 otherwise

(A.2)

Where cm,n is them-th zero of Jn,R = 40◦ is the radius

of the visual field, and Nmn is normalization constant:

Nmn =

√
2

1 + δn,0

1

Jn+1(cm,n)
(A.3)

A.2. Symmetric sampling

In order to calculate the gradient of objective func-

tion 18 we use symmetric parameter sampling intro-

duced for parameter exploring policy gradients.16 We

generate J perturbations εj from normal distribution

N
(
0,diag(σ)

)
and create symmetric parameter sam-

ples θ+
j = θ + εj and θ−j = θ − εj , where θ is cur-

rent value of observation parameters. After this we es-

timate log-probabilities log p(X|θ+
j ) and log p(X|θ−j )

according to A.3. Using 19 and computing derivatives

∇ρ log p(θ|ρ)17 we obtain expression for gradient in the

direction of mean parameters µ:

∇µi log p(X|ρ) =

∑J
j=1 εi,j

(
log p(X|θ+

j )− log p(X|θ−j )
)

2Jσ2
i

.

(A.4)

For estimation of gradient in the direction of stan-

dard deviations σi, we compare the mean of two log-

probabilities with baseline value of log-probability Λ

averaged over several computational epochs:

∇σi
log p(X|ρ) =(∑J
j=1 log

(
p(X|θ+

j ) p(X|θ−j )
)

2J
− Λ

)(
ε2 − σ2

i

σi

)
(A.5)

These expressions for gradient are used in computa-

tional scheme for update of parameters ρ.

A.3. Probability estimation

In this subsection we present mathematical rationale

for inference algorithm.

A.3.1. Probability of history

In the Infomax model decision where to fixate next is:

π : xk+1 ← arg max
x

E
[
∆I(bk,x)

]
. (A.6)

The term E [∆I(bk,x)] is related to the visibility map

by12

E
[
∆I(bk,x)

]
=

1

2

L∑
`=1

bk,` V
2(x,u`) (A.7)

Due to stochasticity of observation input, the belief

state bk and expected information gain E [∆I(bk,x)]
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are random variables. Our method of estimation of

probability is based on assumption of multivariate Nor-

mal distribution of expected information gain, which

was verified by implementation of tests for multivari-

ate Normality at section A.3.2. For brevity:

∆k = E [∆I(bk,x)] (A.8)

The probability of the next step in the history X de-

pends on all previous ones and parameters of visibility

map θ:

p(X|ρ) =
∏
k

p(xk+1 |xk, . . . ,x0,θ) (A.9)

The probability of history may be estimated as an in-

tegral:

p(X|θ) =
∏
k

∫
Ψ

p(xk+1|∆k) p(∆k,xk, . . . ,x0,θ) d∆k

(A.10)

The term p(xk+1|∆k) is related to the saccade length,

according to

p(xk+1|∆k) ∝ exp

(
−|xk+1 − xk|2

2ζ2
0

)
Where xk = arg max

x
∆k and the standard deviation ζ0

from 8. In order to avoid singularity of log(p(X|θ)) in

the case if probability tends to zero, we use the follow-

ing regularization:

log
(
p(X|θ)

)
=
∑
k

log

(∫
Ψ

p(xk+1|∆k) p(∆k) d∆k+ω

)
(A.11)

Where ω = 10−7 is a regularization constant. Using

assumptions of multivariate Normality of expected in-

formation gain ∆k, we compute the mean vector and

covariance matrix of ∆k according to equations A.13

and A.14. On the next step, Monte Carlo integration

is used to estimate A.11.

A.3.2. Distribution of expected information gain

The belief state is evaluated by Bayesian inference,12

using the expression:

bk,` =

b0,` exp
(∑
k

sk,`V
2(u` − xk)

)
∑
` b0,` exp

(∑
k

sk,`V 2(u` − xk)
) (A.12)

We estimate the mean and the variance of the belief

state variable bk,`, using Monte Carlo sampling of the

observation variables sk,`. Our simulations confirmed

that the correlation between the components of bk,`

at different locations is negligible, and asymptotically

tends to zero as 1/D, where D is the total number

of components, or the dimensionality of the computa-

tional grid.

The summation operation A.8 is implemented on

an array of independent and non-identically distributed

variables bk,`, which are the components of bk at dif-

ferent locations. According to the Lyapunov Central

Limit Theorem, their sum will converge to a Normal

distribution at each location. In order to check the

joint normality of the ∆k components, we used sev-

eral tests for multivariate normality: Small’s test on

univariate skewness and kurtosis,36 Mardia’s test on

multivariate skewness and kurtosis,37 Szekely-Rizzo38

and Wang-Hwang.39 The results are listed in table A.1,

below.

Test name Test statistic p-value

Small Q1 15.283 0.761
Small Q2 17.211 0.639
Small Q3 28.66 0.909

Mardia Skewness 18.638 0.401
Mardia Kurtosis 437.451 0.336

Szekely-Rizzo 2.35 0.2
Wang-Hwang 0.99 0.2

Table A.1 Results of multivariate normality tests on the
∆k information gain distributions.

The information gain was sampled using different

VMs and eye-movement trajectories. We used 50 con-

figurations of VM, and applied multivariate normality

tests for the samples of information gain variable, with

size of 1000. The typical values of test statistics and p-

values are presented in A.1. The multivariate normality

tests did not reject the hypothesis of joint normality of

information gain variables, for any VM configuration.

The mean vector and covariance matrix of information

gain are:

E
[
∆k

]
=

1

2

L∑
`=1

E[bk,`]V
2(u` − x) (A.13)

Σi,j(∆k) =
1

4

L∑
`=1

V 2(u` − xi) Σk,`(b) V 2(u` − xj)

(A.14)

where Σk,`(b) is the covariance of of the belief vector b.

These expressions use the classical definitions of error

propagation, through linear transformations.

The amplitude and noise in information gain vari-

able define the decision-making behavior of the ob-
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server. Because information gain variable is random,

the location of its maxima will vary with roll-out. How-

ever, locations with the highest amplitude and noise

will be most likely to be selected. The locations with

the highest amplitude of information gain correspond

to unexplored ones. Because, the AMD patient is ef-

fectively blind in scotoma locations, it’s a reasonable

strategy to make the next fixation to the one of scotoma

locations. However, the choice of the next location of

fixation is also influenced by the noise in information

gain, which will correspond to false positive locations of

targets on periphery. For this reason, it’s not always the

case when scotoma directions are the preferable ones,

as it was established in section 2.3. We hypothesize that

the reason of the difference in behavior between the low

and the high visibility cases is corresponding domina-

tion of amplitude-based and noise-based selections in

these cases.

A.4. Influence of length of training set

It is important that the eye-movement trajectory con-

tains enough information for inference of the observa-

tion model. In this section we investigate the influence

of length of training set on performance of the inference

algorithm.

A set of 10 ground truth visibility maps were gen-

erated by random selection of each observation param-

eter θ, as defined in A.1, over the interval [−1, 1]. For

each visibility map function, we generate eye-movement

trajectories with lengths [12, 24, 48, 96, 192], and run

episodes of Po-Mdp on a 64× 64 computational grid.

These generated trajectories served as an input for the

inference algorithm.

Figure A.1 shows the Euclidean distance between

ground truth and inferred VMs, on the final epoch, ac-

cording to the length of the training set. As expected,

both the variance and mean of the distance fall, as the

number of episodes in the training set increases. The

performance of the algorithm stabilizes after a certain

number of episodes, because estimation of the exact

VM is impossible, due to uncertainty of saccade exe-

cution and noisy estimation of the probability integral.

In summary, we recommend using data sets that con-

tain at least as many fixations as there are cells in the

computational grid.
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Fig. A.1. Euclidean distance between ground truth and
inferred visibility map on final epoch depending on the num-
ber of episodes.
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Appendix B (supplementary material)

Direct optimization of the objective function

In this section we discuss alternative approaches for

solving optimization problem 16, for comparison with

the gradient-based method developed in section 3 of

the main text. The principal challenges in this problem

are:

• Noisy estimation of log-probability due to Monte

Carlo integration.

• Presence of many local maxima in the multidimen-

sional parameter space

We selected three standard algorithms for compar-

ison with the gradient method: Nelder-Mead simplex

direct search, derivative-free Pattern Search, and Sim-

ulated Annealing, which are implemented in Matlab

Global Optimization Toolbox.

The set of 10 ground truth visibility maps were

generated by random selection of each observation pa-

rameter θ A.1 in the interval [−1, 1]. For each VM

function, we generate eye-movement trajectories with

lengths 192, and run episodes of Po-Mdp on a 64× 64

computational grid. The value of the objective func-

tion was evaluated according to equation A.11. The re-

sults of each algorithm should be compared with those

for the gradient algorithm (Fig. 7). Termination crite-

ria for all three algorithms was a lower bound on step

size |∆θ| < 0.02. The initial mesh size for the Pattern

Search algorithm was set to 0.2 for these experiments.

The initial temperature parameter for Simulated An-

nealing was set to λ = 100. The average distance to

the target VM, for all three algorithms, was close to

that of the gradient method, E[R] = 0.2, however, the

standard deviations of the distances exceeded those of

the gradient, σ[R] = 0.05. Overall, the Pattern Search

algorithm performed better than the alternatives. We

preferred using gradient method due to lower mean and

standard deviation of distances comparing to alterna-

tives, which means higher precision and reliability in

solving the optimization problem. Figures B.1, B.2, and

B.3 show the performance of the three different algo-

rithms.
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Fig. B.1. Performance of Nelder-Mead simplex algorithm.
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Fig. B.2. Performance of the Pattern Search algorithm.
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Fig. B.3. Performance of the Simulated Annealing algo-
rithm.
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