23,147 research outputs found

    Gaussian processes with linear operator inequality constraints

    Full text link
    This paper presents an approach for constrained Gaussian Process (GP) regression where we assume that a set of linear transformations of the process are bounded. It is motivated by machine learning applications for high-consequence engineering systems, where this kind of information is often made available from phenomenological knowledge. We consider a GP ff over functions on X⊂Rn\mathcal{X} \subset \mathbb{R}^{n} taking values in R\mathbb{R}, where the process Lf\mathcal{L}f is still Gaussian when L\mathcal{L} is a linear operator. Our goal is to model ff under the constraint that realizations of Lf\mathcal{L}f are confined to a convex set of functions. In particular, we require that a≤Lf≤ba \leq \mathcal{L}f \leq b, given two functions aa and bb where a<ba < b pointwise. This formulation provides a consistent way of encoding multiple linear constraints, such as shape-constraints based on e.g. boundedness, monotonicity or convexity. We adopt the approach of using a sufficiently dense set of virtual observation locations where the constraint is required to hold, and derive the exact posterior for a conjugate likelihood. The results needed for stable numerical implementation are derived, together with an efficient sampling scheme for estimating the posterior process.Comment: Published in JMLR: http://jmlr.org/papers/volume20/19-065/19-065.pd

    Estimation in high dimensions: a geometric perspective

    Full text link
    This tutorial provides an exposition of a flexible geometric framework for high dimensional estimation problems with constraints. The tutorial develops geometric intuition about high dimensional sets, justifies it with some results of asymptotic convex geometry, and demonstrates connections between geometric results and estimation problems. The theory is illustrated with applications to sparse recovery, matrix completion, quantization, linear and logistic regression and generalized linear models.Comment: 56 pages, 9 figures. Multiple minor change

    Singular Gaussian Measures in Detection Theory

    Get PDF
    No abstract availabl

    Multilevel ensemble Kalman filtering for spatio-temporal processes

    Full text link
    We design and analyse the performance of a multilevel ensemble Kalman filter method (MLEnKF) for filtering settings where the underlying state-space model is an infinite-dimensional spatio-temporal process. We consider underlying models that needs to be simulated by numerical methods, with discretization in both space and time. The multilevel Monte Carlo (MLMC) sampling strategy, achieving variance reduction through pairwise coupling of ensemble particles on neighboring resolutions, is used in the sample-moment step of MLEnKF to produce an efficient hierarchical filtering method for spatio-temporal models. Under sufficient regularity, MLEnKF is proven to be more efficient for weak approximations than EnKF, asymptotically in the large-ensemble and fine-numerical-resolution limit. Numerical examples support our theoretical findings.Comment: Version 1: 39 pages, 4 figures.arXiv admin note: substantial text overlap with arXiv:1608.08558 . Version 2 (this version): 52 pages, 6 figures. Revision primarily of the introduction and the numerical examples sectio
    • …
    corecore