
. 

J 

C H A P T E R  20 

Singular Gaussian Measures in 
DeGction Theory* 
William L. Root, Department of Aeronautical and 
Astronautical Engineering, T h e  University of Michigan 

1. INTRODUCTION 

In  the “statistical theory of signal detection,’’ as I understand the phrase, 
we are concerned with problems occurring in electrical communication engi- 
neering involving statistical inference from stochastic processes. Most of the 
work in this area has been directed to the theory of detecting or characterizing 
information-bearing signals immersed in noise with Gaussian statistics. It 
is one aspect of this narrower class of problems, the singular cases and what 
they imply about the suitability of the formulation, that is discussed here. 

We start from the model 
y ( t )  = s ( t )  + n(t) ,  (1) 

where t is a real variable, n(t) is a sample function from a real-valued Gaussian 
stochastic process ( n t ) ,  which represents the noise, s( t )  is a real-valued func- 
tion representing the signal, and y(t) represents the observed waveform. We 
assume that y(t) is known to the observer, that s ( t )  is not precisely known, and 
that n(t) is not known but has certain known statistical properties. We wish 
to make specified inferences about s ( t )  from the observation y(t). 

. , a,), where the function f 
is known to the observer but the parameters a l ,  . , a ,  are not. For 
example, in the simplest detection problem s ( t )  = a f ( t ) ,  where (Y = 0 or 1; 
the problem is then one of testing between two simple hypotheses concerning 
the mean of a Gaussian process. are real- 
valued, the problem may be one of point or interval estimation. All such 
problems in which f is known and the parameters are unknown we say are 
the sure-signal-in-noise type. 

On the other hand, s( t )  may itself be a sample function from a stochastic 
process, of which only certain statistics are known to the observer. If this is so, 
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The signal s ( t )  may be of the form f( t ;  cyl,  . 

If the parameters a1, * * * , 
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a 

we say that the problem is the noise-in-noise type. It is worth noting that 

where f is known and the ai are random variables with known joint dist,ribu- 
tion. Properly, then, the signal is a sample function from a stochastic process 
{ s t ]  ; however, since the structure of ( s t )  is much better known than that of a 
process specified in the usual way through its family of joint distributions, it  
may be more appropriate to think of the resulting problem as sure-signal-in- 
noise than as noise-in-noise. 

As in any analysis of a physical problem, the choice of an appropriate mathe- 
matical model is somewhat arbitrary; in particular, there are situations 
described usefully by either a sure-signal or a noise-in-noise model. I n  fact, 
this is usually true if the mechanism by which the channel distorts the signal 
is complicated [l]. 

I n  any event, whatever inferences are to be made from the observed wave- 
form must be made after a finite time. If we except sequential testing pro- 
cedures, we can usually fix a basic time interval, say of duration T ,  during 
which all the data are collected on which one decision or set of inferences is 
made. This interval of length T is called the observation interval; we are con- 
cerned here with problems for which there is a fixed observation interval, so 
that y( t )  in (1) is qualified by the statement 0 6 t 6 T (or a 6 t 6 a + T) .  
Note that s( t )  or n(t) may be defined for other values of T ,  for we may want 
to &e what happens when T is varied. 

I n  any electrical system whatever there is a background of thermally gen- 
erated noise (Johnson noise, shot noise, etc.) which is generally assumed to be 
representable by a stationary Gaussian stochastic process, both because it is a 
macroscopic manifestation of a great many tiny unrelated motions and because 
of experimental evidence. It is this background noise that is'represented by 
n(t) in (1). It is always present, although it may not be the chief source of 
uncertainty about the received waveform. Usually we assume that the auto- 
correlation of the process { n t )  is known (although it seems almost impossible 
that it could be known precisely) and that the mean is zero (which in the model 
in (1) is equivalent to assuming that it is known). Thus the entire family of 
finite-dimensional distributions for the ( n t )  process is taken to be available. 

For convenience we call the class of detection theory problems, character- 
ized somewhat loosely above, the Gaussian model. This term includes both 
sure-signal-in-noise and noise-in-noise cases and implies that {n t ) ,  - 00 < t 
< 00, is a stationary Gaussian process with known autocorrelation and that 
the observation interval is finite. 

Various results obtained in the last few years show that there are classes of 
decision problems that involve a model of the kind described for which a 
correct decision, or correct inference, can be made with probability 1. Such 
problems here are called singular. Slepian [2] pointed out in 1958 that the 
problem of testing between the two simple hypotheses, that a waveform 
observed for a finite time be a sample function from a Gaussian process { zt} 
or from a different Gaussian process { & I ,  both stationary and with known 
rational spectral density, is always singular except in a special case. From this 

there is also a sort of in-between case that occurs whcn s( t )  = f ( t ;  al, . . 1 an), 
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he raised the question whether much of the noisc-in-noise detection theory 
being developed was based on an adequate model, for it seems to go against 
common sense that perfect detection of signals can be accomplished in a real- 
life situation. In 1950 Grenander [3] showed that a test between two pos- 
sible mean-value functions of a Gaussian process with known statistics could 
be singular, even when the mean-value functions had finite “energy” (inte- 
grable square) and the observation period was finite. He also showed that the 
estimation of the “power level” of a Gaussian process with autocorrelation 
known except for scale is singular, again even with a finite observation interval. 
These results, which are quite simple, seem not to have been known or a t  
least appreciated by engineers working on noise-theory problems for some 
time. However, in an application of Grenander’s work Davis [4], in 1955, 
gave a. rationalization for excluding the singular cases in the problem of test- 
ing for the mean (a sure-signal-in-noise problem), and in 1958 Davenport and 
Root [5] gave a different one. Since Slepians’s paper of 1958 there has been 
a fair amount of interest in the appropriateness of the Gaussian model as it 
has been used in detection problems; see, in particular, t,he paper by Good [SI. 

I agrec with the point of view that a well-posed detection theory problem 
should not yield a singular answer (although I should not care to try to make 
this statement precise). With this as a sort of working principle, the aptness 
of the kind of model already described is discussed in Section 4, in which an 
argument is given that the Gaussian model is usually acceptable. The detec- 
tion problems deal with probability measures on infinite product spaces or on 
function spaces. They are singular, as the term is defined here, when the 
measures are relatively singular. Thus we are led to the subject of relatively 
singular measures on function spaces and, in particular, to singular Gaussian 
measures. I n  Section 2 a few basic results in this area are collected and, in 
Section 3, some more specialized results applicable to detection theory. 
Proofs are given for some of the propositions. It is likely that singular 
measures on function spaces will be of interest to some who have no interest in 
detection theory; for them the following material will perhaps be useful as an 
introductory survey. 

2. EQUIVALENT AND SINGULAR GAUSSIAN MEASURES 
Since the eventual interest here is in continuous-parameter random processes, 

whereas many of the techniques involved use representations of these processes 
in terms of denumerably many random variables, we sometimes need to carry 
relationships between pairs of measures on a Borel field to their induced meas- 
ures on a Borel subfield and vice versa. What is required usually turns out 
to be trivial, or nearly so, but it seems worthwhile to establish a procedure 
once and for all. For this purpose two simple lemmas are stated first. 

Let 0 be a set, 63 a Borel field of subsets of 0, and p and v probability meas- 
ures on 63. The probability measures p and v are mutually singular (or simply 
singular) if and only if there is a set A €  63 for which p ( A )  = 0, v ( A c )  = 0. 
The condition p, v singular is denoted by p I v. 

Consider a collection of Borel fields, each with base space 0, and measures 
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on these fields related to each other as follows. (B is a Borel field on which 
there are two probability measures p, v. The completion of p we denote 
by p, the completion of v by Y, and the Borel fields of sets measurable with 
respect to p and 3 we denote by aP, aP, respectively. Let 030 be a Borel field 
contained in both aP and a,, and PO and vo be the measure3 induced on (BO 

by p and 1, respectively. The following is derived directly from the foregoing 
definitions : 

Lemma 1. 
Let a, p, V ,  a$, p, a”, Y, (Bo, po,  and vo be defined as above. 

If po I Y O ,  then p I v. 
Suppose now, 

however, that po is equivalent to Y O  (PO - V O ) .  Let po ,  V O  be the completions 
of po, Y O ,  respectively, and denote the Borel field of sets measurable with 
respect to either P o  or Yo by 130. Suppose, further, that @ C (30 and write 
p’, v’ for the measures induced on @ by ,iio, v0, respectively. Then we can 
readily verify the following: 

Under the hypotheses of the preceding paragraph p = p‘, v = v’, 
p - P, and a0 = ap = By. 

Suppose 
there are two real-valued random processes { z L ( w ) } ,  ( y t ( w ) } ,  t E T (a linear 
parameter set) and w E !d (an abstract set), such that the smallest Borel 
field (B containing all sets of the form { wlz ( t ,  W )  E A },  A ,  a Borel set, is the same 
as the corresponding Borel field containing all sets of the form { wI y ( t ,  w )  E A 1. 
The probability measure on (B for the 2-process is p and for the y-process is v. 

Suppose also that there is a denumerable collection of random variables 
{ x k )  , each of which is equal almost everywhere with respect to both p and v 
to a function measurable with respect to a, and representations for both 
(xt) and { y t }  in terms of the Xk such that, for every t ,  zt and y t  are equal 
almost everywhere, d p  and dv ,  respectively, to functions measurable with 
respect to the Borel field (BO generated by the Xk. Then, if it can be shown 
that the measures po and vo induced on a. are equivalent, the measures 
p and v are equivalent by Lemma 2. If the measures po and v o  are singular, 
then I.I and v are singular by Lemma 1. 

Singularity and equivalence of product measures 

In  the development to be sketched here we take as starting point a theorem 
of Kakutani [7] on the equivalence or singularity of two probability measures, 
each of which is an infinite direct product of probability measures, pair-by-pair 
equivalent. Suppose p and v are equivalent measures defined on the same 
Borel field of sets from Q, then we define 

Lemma 2. - 

The application of these lemmas is made to these situations. 

L 

The function p(p,  v)  thus defined has the immediately verifiable properties: 
0 < p(p,  v) 6 1, p(p, v) = 1 if and only if p = v, p(p, v) = p(v,  p) .  Let m((B3) 
be the class of all probability measures on a. The definition of p(p, p’)  may 
be extended so that p(p, p’) is defined for all p, p’ E m(@) as follows: Let 
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v E XL(63) dominate p and p' (i.e., p << v and p' << v). Define 

Then J.  and J.' belong to t,he L2-space L z ( u )  and p ( p ,  p' )  = (J . ,  J. '),  where the 
inner product indicated is the inner product for LZ(u).  One verifies easily 
that, for arbitrary p and p', (J . ,  J.') has the same value irrespective of the 
dominating measure v used in its definition. Hence (2) may be used to define 
p ( p ,  p')  for all p, p' E m(a). With this extended definition it is clear that 
p ( p ,  p') = 0 if and only if p I p'. 

The basic theorem is then: 

Theorem 1. (Kakutani) Let (m, 1 and ( mi 1 be two consequences of proba- 
bility measures, where m, and mi  are defined on a Bore1 field a, of sets from a 

space On, and m, - mi. Then the inJinite direct product measures m = n m, 

m 

n = 1  
m 

and m' = n mk are either equivalent, m - m', or mutually singular, m I m', 
n = l  

m 

according as the infinite product n p(mn, m i )  i s  greater than zero or equal to 

zero. Moreover, 
n = l  

m 

~ ( m ,  m'> = n P(mn, mi>. 
n - 1  

The theorem is proved by imbedding ~ ( a )  in a Hilbert space in which the 
ordinary strong convergence is equivalent to some kind of convergence of the 
products of the derivatives dm'ldm. The completeness of the Hilbert space 
guarantees the existence of a limit element which corresponds to the derivative 
of the infinite product measures, in the case of convergence. The imbedding 
is accomplished by defining a metric with the aid of (2) by . 

k 

It can be then shown that n (dmL/dmk)" converges in Lz(m) to (dm'/dm)"I' 

if the product of the p(mn, mi )  converges, the case of equivalence. Thus we 

have as a subsidiary result that a subsequence of { n (dm;/dmk)} converges 
with probability 1 (dm) to dm'ldm if the latter exists. This last statement can 
be improved, of course, by application of the martingale convergence theorem 
which shows that the original sequence of partial products converges to dm'ldm 
with probability 1 (dm). 

k = l  

k 
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Gaussian process with shifted mean 

Let (xt), t E I ,  I an interval in El ,  he a real separable (with respect to 
closed sets) measurable Gaussian random process, cont,iiiuous in mean square 
and with mean zero. We take Z = [0, 11 for convenience; and we let B be the 
smallest Borel field containing all w sets of the form { wlx(t ,  w )  E A } ,  t E I ,  
where A is a Borel set. Then R(t,  s) = E x(t)  x ( s )  is a symmetric, nonnegative 
definite continuous function in [0, 11 X [O,  11, and the integral operator R on 
L2[0, 11 defined by 

R.f(t> = jO1 R(t,  s)f(s> ds, t E 10, 11 

is Hermitian, nonnegative definite and Hilbert-Schmidt. We assume, in 
addition, that R is (strictly) positive definite. Then an orthonormalized 
sequence of eigenfunctions of R corresponding to  all of its nonzero eigenvalues 
is a c.0.n.s. (complete orthonormal set) in &[O, 1). We denote eigenvalues of 
R by A,, A,, > 0, and corresponding eigenfunctions by &(t ) ,  that is, 

R d n  = An& 

( d n ,  d m >  = anm. 

The condition that R be strictly definite is not necessary for what is to follow, 
but its presence simplifies the statements a little. I t  is satisfied in the case 
that is of real interest to us, as pointed out in Section 3. 

We now let a(t) and b(t)  be continuous functions defined for t E [0, 11 
and consider the random processes 

y(t> = a(t> + z(t>, 

x ( t )  = b(t) + x ( t ) ,  

0 6 2 6 1 

0 6 t 6 1. 
(3) 

These processes are measurable and separable and have the same Borel field 
of measurable w-sets as x(t) .  By the well-known representation of Karhunen 
and Lohe ,  

X ( t )  = 1 x n + n ( t ) ,  
n 

t E LO, 11, 

where the convergence is in mean square with respect to  the probability 
measure for each t and where the random variables xn are given by 

1 -  
x n  = /o ~ ( 0  d n ( 0  dt 

and satisfy 
E x ~ Z ~  = Xn6nm. 

Ex,  = 0 

Since x ( t )  is Gaussian, the x, are jointly Gaussian random variables. 
let 

If we 

an = jO1 4 0  - d n ( Q  dt 
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then the random variables yn  = x,& + an are Gaussian and independent, as 
are the z,, = x, + b,. The measures p, and vn induced on E1 by yn  and z,, 
respectively, are equivalent, so that the theorem of Kakutani may be applied 
to yield that the product measures, which we denote by po and Y O ,  respectively, 
are either equivalent or totally singular. The probability measures po and Y O  
are the measures induced on the Bore1 field (BO C CB generated by the 5,. 

Then by Lemmas 1 and 2 the processes y ( t )  and z ( t )  are either equivalent or 
mutually singular. 

According to the theorem, po and Y O  are equivalent if and only if Hpn con- 
verge. 

. 

We have, since y ,  and zn are Gaussian, 

n 

Thus we have the result due to Grenander [3]. 

dejined by (3) are either equivalent or mutually singular. 
the series 

injinity. 

Two Gaussian processes with different autocorrelations 

It has just been noted that two Gaussian processes defined on a finite interval 
and identical except for different mean-value functions have the "zero-one" 
property of being either equivalent or singular. The same result has been 
demonstrated for arbitrary Gaussian processes on a finite interval independ- 
ently by HStjek [8] and Feldman [9, lo], who used entirely different methods 
of proof and obtained different kinds of criteria for equivalence. Here we shall 
sketch a third proof given by T. S. Pitcher in an unpublished memorandum 
[11], which yields a criterion for equivalence that is somewhat similar to that 
first obtained by Feldman. 

Suppose two real-valued Gaussian processes are defined on the interval 

Theorem 2 (Grenander). The  Gaussian random processes y ( t )  and z ( t )  
They  are equivalent if 

(an - b,)'/X, converges and singular if the series diverges to + 
n b 
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0 < t 6 1, each with mean zero, and with autocorrelation functions R(t, s) 
and S(t, s) continuous in the pair t ,  s in [0, 11 X [0, 11. We shall denote sample 
functions by z(t) and the respective probability measures on the space of sample 
functions for the two processes by po and pl . *  

* 

Thus 

Ei z(t) Jz( t )  dpi(z) = 0, i = 0, 1 
and 

Eo z(t) z(s) 3 Jz(t) z(s) dpo(z) = R(t, s) 

El z(t) z(s) = Jz(t) x ( s )  dp1(z) = s(t, s). 

The integral operators on L2[0, 11 with autocorrelations as kernels are written 

where f ( t )  is any element of L2[0, 11. 
We proceed with a series of lemmas: 

Lemma 3. 

Proof. 

If R and S have diferent zero spaces, then po I p l .  

If Rf = 0, then 

Now, since S is a nonnegative definite operator, either Sf = 0 or (Sf, f) > 0. 
In  the latter case the Gaussian random variable . 

lo1 z(t) f(t) dt = 8 

has positive variance with respect to pl-measure. Hence 

Henceforth we assume, without any real loss of generality, that both R and S 
carry only the zero element in L2[0, 11 into zero. Then R-’, S’, (R”)-l, 
(&‘%)-I are densely defined symmetric unbounded operators. In  particular, 
if R4, = A,&, (&, &) = 6,,, then for any f E Lz[O, 11 we have f = Ean&, 

* Note that  the same symbol is used for sample functions of both processes. 
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N 

z a :  < m .  If f N  = C a n + n r  then fN-f f and 
1 

N 

N 

Analogous formulas can be written for S in terms of its spectral decomposition. 
We write (RM)- '  R-S, (~'"-1 8-36. 

Lemma 4. If S"R-''" or R"S-% i s  unbounded, then po I p l .  

Suppose there exists a sequence of elements f k  in the domain of R-'$ satisfy- 
Let ing llfkll = 1 and I(SMR-%jk(l > k3. 

1 
&(x) = r(t)(R-"fk)((t) dt. 

Each &(z) is Gaussian with mean zero and 

Now, by the Tshebysheff inequality, 

so by the Borel-Cantelli lemma 

po{x l  lek(x)l 3 e, infinitely many k )  = o 
Also, since each &(z) is Gaussian, for every e > 0. 

and, again by the Borel-Cantelli lemma, 

. 
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for every n > 0 ;  that is, 
po(zllirnl&(z)l = 0 )  = 0 

pl{zllimlek(z)I = 00 1 = I. 

Let ( ej(z) } be a n y  sequence of real-valued @-vieasurable functions 
on the space of sample functions that are independent Gaussian random variables 
with respect to both pLg and p1 and which satisfy 

Lemma 5. 

EOOj = EIOj  = 0 

Eo83 = " j  > 0 

ElOjZ = p j  > 0, j = 1, 2, . . , 
ai and p j  arbitrary positive numbers. Then  the measures pb and pi induced by 
po and pl  on the Bore1 jield generated by the { O j }  are either mutually singular or 
equivalent. They  are equivalent i f  and only if 

Proof. Both statements follow from Kakutani's theorem. The first is 
For the second we need to calculate the product of the pj defined 

Let li  be the likelihood ratio for O j  with respect t o  po and p1:  

immediate. 
in that theorem. 

Then 

Now, the convergence of the product 

is equivalent to the convergence of the series 

The convergence of this series is equivalent to the convergence of 
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It follows immediately from this lemma that either po 1 p1 or [l - 

Lemma 6. If 2 [l - (aj/pj)12 < 0 0 ,  the Radon-Nikodyrn derivative of po 
i 

with respect to 1.11 on the Bore1 field generated by the ej(z) i s  

This formula follows from Kakutani's theorem and the expression l j  above. 
We know that S3'RR-"5 is densely defined. If i t  is also bounded, let X be its 

R"'S'* is also densely defined; if it is bounded extension to all of L2[0, 11. 
bounded, its extension is X- l .  

Lemma 7. If fl, f2, . . E Lz[O, 11, there will be random variables Oi(z), 
Gaussian with respect to both po and 1.11, and satisfying 

EoWj  = (fi, f j )  

Eleiej = (x*xfi, jj>. 

Proof. Since R-$' is densely defined for each i, i = 1, 2, * - , there is a 
sequence { f i j ]  such that lim f i j  = fi and such that hij = R-'fij is defined. 

Let 
i 

c#qj(z) = I,,' hi j ( t )x ( t )  dt. 

Then 
lim I;l104ij+ik = lim (Rh i j ,  hik) = llfi1I2 

lim E l & j + i k  = lim (Rlhij, h i k )  = /lXfi/l2. 

The existence of these limits implies that the sequences {&j]j have mean- 
square limits eio and eill with respect to both po and pl, and that eio and O i l  

are measurable It also follows that the ( + i j ) j  

converge in mean-square with respect to po + p1 to elements O i  in L z ( ~ o  + p1) 

and that eio = Oi[po],  eil = The eio and eil satisfy the second-moment 
requirements, so the ei do also. and 

k,+ m k ,  j - r  m 

and 

k,+ m k , j - i  m 

and all respectively. 

The ei are measurable with respect to 
631. 

We now state the main result. 

Theorem 3. (ModiJied version of Feldman's theorem). Either po - 1.11 or 
PO I p1. A necessary and suficient condition that po - p1 i s  that X*X  = ZXiPi, 
where each Pi is the projection on the one-dimensional subspace of Lz[O, 11 spanned 
by some fi f rom a n  orthonormal sequence { f i } ,  and Z ( l  - XJ2 < 00. 

. 
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I f  P O  - PI and random variables O i  are formed from the f i  as in Lemma 7, then 

~ ( t )  = Z(Pf i ) ( t )e i ( z )  (4) 
almost everywhere dt dpo  and dt d p l ,  and 

--.(z) d P o  = exp f 
dPi 

( 5 )  

Proof. We show first that if po and p1 are not totally singular, then X*X = 
ZXiPi, Pi is one-dimensional, and Z ( l  - Xi)’ < m. For by Lemma 4 X is 
bounded, so that X*X has a spectral decomposition SXdPX. Let I be the 
identity operator, and suppose that, for some e > 0, I - PI+, is infinite 
dimensional. Then there exists an infinite sequence ( h j ) ,  1 + e 6 X I  < A 2  

< .  . . , and normalized fj’s in L2[0, 11 such that   PA^+^ - &)fk = f k .  Hence 
by Lemma 7 there are Gaussian random variables & satisfying 

and 
EO ej(z) Ok(z) = 6 j k  

, El @j(z) ek(z) = ( x * x f j ,  f k )  = Bjk  d(Pxfk, fk) 3 (1 + e ) B j k .  
I 

But, then, by Lemma 5, P O  and p l  would have to be totally singular on the 
Borel field generated by the O;s, which is a contradiction. Hence 1 - P1+, 
must be finite-dimensional for every e > 0. A similar argument shows that 
PI-, must be finite-dimensional for every e > 0. Hence X*X has a discrete 
spectrum and X*X = ZXiPi, where the Pi are projections on the one-dimen- 
sional subspaces spanned by the fi. If (Oj(z)) is a sequence of Gaussian 
random variables corresponding to ( f j ) ,  as in Lemma 7, then, by Lemma 5, 
po and p l  are equivalent when restricted to the Borel field s(ei) generated by 
the ei)s and Z( l  - X j ) 2  < m. Equation ( 5 )  holds for the restriction of po 

and P I  to S(Oi) by Lemma 6. 
It remains to prove the expansion of (4), for then by Lemmas 1 and 2 

the equivalence of the restrictions of and p l  to s(&) will imply the equiv- 
alence of P O  and PI. For the dt  dpl  case it is sufficient to show that . N 

converges to zero as N 4 00.  Now 
1 

El z(t) &(z) = lim El z(t) +ij(z) = lim E1 z(t)  lo hij(u) z(u) du = lim S hij(t) 
j+ m j - r  m j+ m 

Hence 
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A similar verification shows that 

Therefore expression (6) can be written 
N lo’ Ri(t ,  t> dt - 1 XillREfiI12. 
1 

We now show that this expression converges to zero. I n  fact, since S = 

R”X*X R%, 

An analogous calculation shows that (4) holds almost everywhere dt dpo, 
which completes the proof of the theorem. 

We observe that the proof just given is based on an infinite-dimensional 
analog of the simultaneous diagonalization of two covariance matrices. The 
representation that results, and in terms of which the derivative is written, is 
perhaps interesting, but i t  is of limited usefulness because the Oi are not given 
explicitly. The restriction to processes with mean zero is not essential; 
neither Feldman nor HLjek required it, and it can be removed in the foregoing 
proof. 

HLjek’s proof is 
different and is, in fact, essentially information-theoretic. Let 21, - . * , X N  
be measurable functions on fl which are Gaussian random variables with L 

respect to two different measures; and suppose they have probability densities 
P ( Z 1 ,  The J-divergence [12] of these two densi- 
ties is defined as 

The proof given here is somewhat similar to Feldman’s. 

* . , Z N ) ,  q(s1,  * , ZN). 

(7) 
P P J = E ,  log - - E ,  log - 9  

q q 
where E,, E ,  denote expectation with respect to p -  and q-measures. The first 
term of (7) can be interpreted as the information in p relative to q ;  hence J 
can be interpreted as the sum of the information in p relative to q and the 
information in q relative to p.  Now, if { xt, t E TI is a real-valued Gaussian 
process with respect to two different probability measures on 52, the J-diver- 
gence of the processes is 

JT = SUP Jtl, ..., tn. 
f l ,  * * . ,tnET 
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Hhjek’s theorem states that the processes are singular if and only if JT is 
infiniteintuitively a highly satisfying conclusion. 

I n  addition to those already mentioned, there are papers by Middleton [13] 
and Rozanov [14] that contain results similar or related to Theorem 3.* 

3. SPECIAL RESULTS 
An interesting consequence of Theorem 3 is the following: 

Theorem 4 (Feldman). If A j  and Bj  are polynomials, with degrees respec- 
tively aj and bj ,  j = 1, 2, and bj  > aj,  then the Gaussian processes (restricted 
to a finite parameter interval) whose spectral densities are I A j ( ~ > / B j ( x ) l  have 
equivalent measures on path space if and only if ( a )  bl - al = b2 - a2, (b)  the 
ratio of the leading coeficients of A1 and B I  has the same absolute value as the 
ratio of the leading coeficients of A2 and Bz. 

The necessity for these conditions was first shown by Slepian [2], who used 
a theorem of Baxter [15]. Baxter’s theorem applied to stationary processes 
states that if x ( t )  is Gaussian, real-valued, with continuous covariance func- 
tion possessing a bounded second derivative except at the origin, and with 
mean-value function possessing a bounded derivative in [0, 11 then 

n = l  

converges with probability 1 to the difference between the right-hand and 
left-hand derivatives of the covariance function a t  the origin. Suppose two 
processes have rational densities which violate condition ( a )  of Theorem 4. 
Then, if both processes are differentiated k times, 

k = min (bj  - a i )  - 1, 
j= 1,2 

the sum of squared differences will converge to zero for samples drawn from 
one differentiated process and to a number different from zero for the other, 
with probability 1. I n  condition (b )  is violated and (a )  is satisfied, the sums 
will converge to different numbers not equal to zero. Slepian showed further 
that by using higher order differences an equivalent test for singularity can be 
made without first differentiating the processes. 

The sufficiency (and a different proof of necessity) of the conditions of 
Theorem 4 was demonstrated by Feldman [19]. Feldman stated Theorem 4 
as a corollary to  a somewhat more general theorem in which only one of the 

* Other interesting results, not used here, on the differentiability and derivatives of meas- 
ures corresponding to random processes are contained in Prokhorov [16], Appendix 2, 
Skorokhod (171, and Pitcher (181. It should be noted tha t  some of the material discussed 
can be regarded as a development of earlier work of Cameron and Martin, which is not 
referenced. Also it would appear to be closely related to  parts of extensive work on func- 
tional integration, e. g., by Segal, Friedrichs, and Gelfand, which is not referenced. 



306 STRUCTURAL PROBLEMS 

processes need have a rational spectral density. This result was made to 
follow from his basic theorem, referred to earlier, by techniques depending 
largely on certain properties of entire functions. Here we give a proof of the 
sufficiency of the conditions of Theorem 4, using Pitcher’s conditions as stated 
in Theorem 3. The proof is an adaptation of Feldman’s, modified to fit the 
different equivalence condition we are using. In particular, we use Feldman’s 
lemmas on entire functions without proof. 

The 
autocorrelation functions R ( t ,  s) and S ( t ,  s) are stationary, and (with a slight 
abuse of notation) we write them as R ( t  - s) and S ( t  - s). They are defined 
for all real s, t, are integrable and of integrable square, and have rational 
Fourier transforms. The operators R and S on L z [ - l ,  11 are defined as 
before. We must also, however, define operators Ro and So on Lz( -  m, w )  

by 

I 
‘ 

. 

We assume to start with that both processes have mean value zero. 

s 

( R o f ) ( t )  = /-”9 R ( t  - s)f(s) ds, - < t < 

Inner products and norms on Lz[-l ,  11 are denoted by (-, .), 11-11 and on 
L 2 ( -  0 0 ,  -co) (which is written just L z )  by (-, I l . l l0,  respectively. The 
Fourier transform 5(f) (in whatever sense it may be defined) of a function f is 
denoted by f. We proceed with a series of lemmas. 

Lemma 1. Iff, g E L2 and are supported on [-1, 11, then 

and analogous formulas hold for (Sof, g ) ~ .  

positive-definite square root Ry which satisjies 
Lemma 3. The operator Ro i s  Hermitian and positive-definite and has a 

We further specialize the autocorrelation function R ( t ) .  I n  particular, let 

1 

(1 + 22)U’ a(.) = u an integer 3 1. 
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Let p ( z )  = (i + z)", then 

and 

The operator Ro has an inverse R;' which is unbounded but densely defined 
on Lp. Where defined, 

Let us now define operators Rr", Q by 

RT'f = S-'{~P(P)~~ f ( ~ > l .  

Ro?f = 5-li ] P ( P ) l J ( P )  1 
Qf = ~ ' i P ( P ) P ( P > I  

for all f for which the expressions in braces belong to Lz. 
inverse Fourier transform in tjhe sense of Plancherel theory. 
ately that (Qf, Qg)o = (R;lf, g)o when either side exists. 

Here 5-l is the 
We note immedi- 

By t,he conditions on S we can write 

where A(x) ,  B ( z )  are polynomials, deg ( B )  - deg ( A )  3 1, and there are no 
poles on the real axis. 

T h e n  \ p ( ~ > ) ~ [ & ( z )  - 3(2)] has a 
5-l - transform +(t)  in L2, and 

Lemma 4. Let deg (B) - deg (A) = u. 

/_1' 1;' I+(t - $)I2 dt ds = a2 < 0 0 .  

Proof. The inverse transform exists in the Plancherel sense, since 

where P(z ) / [B( z ) [2  E L2. 

Now let D denote the class of functions belonging to C ,  for which the closure 
of their supports is contained in (-1, 1). 

Lemma 5. Let f E D. T h e n  p ( d / d z ) f  E D and 

The second assertion is a trivial consequence. 

Furthermore, p ( u ) f ( u )  E L2 and i s  of exponential type. 
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Lemma 6. Let { f n ]  be a complete orthonormnl sequence (c.0.n.s.) for LZ 
[-I, 11, f n  E a>. Let fn = s ( ~ , J ,  d n  = pfn.  Then  

- 
But f n ( t ) fn ( s )  is a c.0.n.s. in L2([-1, 11 x [ -1 ,  11); hence 

2 \(Ru#tL, dm>o - (soin, d m ) o j 2  = /‘1 ~ + ( t  - s)12dt ds = a’. 
n,m = 1 

Lemma 7. Let A = SfQ. Then  
m I c \ ( ( I  - A*A)fn, fm)012 = a2. 

n,m = 1 

Proof. This follows from Lemma 6. Since 

((1 - A * A ) f n , f m ) o  = d f , , f m )  - (Afn,  A f m ) o  

= (Rodn, Omlo - ( S ~ d n ,  d n z ) ~ .  

Lemma 8. 

Proof. 

T h e  sequence { z ~ } ,  z, = R’Qfn i s  a n  0.n.s. in L2 [- 1, I]. 
Qfn  is defined and has its support contained in ( -1 ,  1). Hence 

R’Qfn is defined. Then 

(znj zm> = (R’Qjn, R’Qfrn) = (RQfn, Q f m )  

= (RoQfn, Qfmlo = (fn, f m )  
by Lemmas 1 and 3. 

L2[ - 1, 11 0 E i s  f inite dimensional. 

Let Y = Lz[-l, 11 0 E. 

Lemma 9. I f  E i s  the closed subspace of L2 [ - 1, 11 spanned by the z,, then 

Proof. Then y E Y if and only if 

(zn, Y> = (R’Qfn, Y> = ( Q f n ,  R’Y) = 0, n = 192, * * * 

We know that the orthogonal complement of the closed subspace spanned by 
{Qf,) is finite dimensional, say of dimension N (by Feldman [19], Lemma 5) .  
Now suppose that Y has a dimension greater than N .  Then there are Y k  E Y ,  
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* , N + 1, such that for any choice of numbers ffk not all zero 

I ”  

i 
i k = 1, 2,  * 7’ f f k y k  # 0. Hence 

1 

by the strict definiteness of R and hence of R%. Since R’yk # 0, this con- 
tradicts the fact just stated that the orthogonal complement of the subspace 
spanned by { Qj,) has dimension N .  

The operator S%R-’ i s  defined and bounded on  a dense sub- 
set of &[-1, 11, hence has a bounded extension X with D ( X )  = L2[-1, 11. 
The bounded self-adjoint operator I - X * X  i s  Hilbert-Schmidt on Lz[-l, 11. 

Hence Y is of dimension N .  

Lemma 10. 

Proof. From Lemma 7 it follows routinely that A is bounded. Since 

(JS”R-~Z~,  S”R-’*”zj) = (S’Qfi, S’Qfj) 

= (SQf;, Qjj) = (SoQfi, Q f i ) ~  = (SFQfi, SFQfj)o 

= (&it AfAO, 

one has llXznll = IIAjnIlo 6 B. Hence X is densely defined and bounded on 
the closed linear manifold E spanned by the z, and can be extended to a 
bounded operator on E. Furthermore, S%‘R-%‘ is densely defined on the finite- 
dimensional subspace Lz[  - 1, 11 @ E. Hence S”R->* has a unique bounded 
extension X with domain Lz[ - 1, 11. 

In  order to prove the second assertion, we augment the o.n. system { zn 1 ,  
n = 1, 2, . , zo so that {zn}, n = - N ,  
- N + 1 ,  . . .  is a c.0.n.s. for Lt[- 1, 11. 

Then 

. , with elements Z-N+~, Z - N + ~ ,  * 

+ C I((] - x*x)*”zi, Z j ) l 2 .  
i s  -N+1 . ’ .  ,o 

2 j= -N+I: .  . . ,O 
00 

By the preceding calculation, the first sum on the right is equal to 1 I((1 - 
A*A)fi,fj)lz = a2. The second and third sums are finite, since 2 I((I - 

x * x ) Z k ,  zj)I2 = II(1 - X*X)zklI2 = / ( I  - X * X ( ( ,  and the fourth sum is 
obviously finite. 

i , j=l  

i 

Thus I - X * X  is Hilbert-Schmidt. 

The sufficiency part of Theorem 4 follows directly from Theorem 3. 
Although there are various criteria for the equivalence of Gaussian measures, 

Theorem 4 is particularly apt for noise-in-noise detection theory problems 
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because i t  states a criterion for equivalence that is fairly general and is explicit 
in terms of properties of the autocorrelation functions. Results of this kind 
for wider classes of processes would be useful. 

For discussing singularity and equivalence in sure-signal-in-noise problems, 
the following theorem [20] can be used in connection with Theorem 2. 

Theorem 5. Let R(t) be a stationary, continuous autocorrelation function 
with the properties 

, 

1. /--- IR(t)l dt < 0 0 .  

2. T h e  integral operator defined by 

i s  strictly positive definite for every T.  

Let { & , T } ,  (Xn(T)}  be, respectively, a c.0.n.s. of eigenfunctions and the set of 
associated eigenvalues of RT. Then  i f  S ( t )  E Lz, s,(T) = (s, &,T) ,  i ( p )  i s  an 
Lz- Fourier transform. of s ( t ) ,  and a ( p )  i s  the Fourier transform of R ( t ) ,  

m 

in the sense that the left-hand side converges monotonically i f  the right-hand side 
exists and diverges monotonically to + 00 otherwise. 

We can show by example that the sum on the left side may be finite for fixed 
T,  whereas the integral on the right diverges, even with the support of s ( t )  
contained in (- T ,  T) .  

A reoccurring hypothesis in what has preceded has been that if {xt} is a 
stationary random process with autocorrelat,ion function R ( t ) ,  the integral 
operator RT as defined above is strictly definite, or, what is equivalent, R T f  = 0 
implies f = 0. For a large class of processes this is true; an essentially well- 
known sufficient condition, useful for our purposes is the following: 

& 

Theorem 6. 
stochastic integral 

Let the random process {xt, - 00 < t < CQ 1 be defined by the 

where { {t 1 i s  a Brownian motion, and h i s  a real-valued function in L2. 
R ( t )  = Ex,xu+t, the operator RT, T > 0, i s  strictly positive definite. 

Fourier transforms of R ( t )  and f ( t ) .  

Then  if 

The proof follows easily from inspection of (RTf, f )  written in t'erms of the 

4. SUITABILITY OF THE STATIONARY GAUSSIAN MODEL 
As remarked earlier, i t  seems unreasonable to expect that  arbitrarily small 

error probabilities can be achieved in a radio communication or radio measure- 
ment system, which is what Theorems 2 and 4 might appear to show if the 
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s':(t) Transmitter 
s"'(t) processer 

I Receiver I Channel 1 
R l  processer 

C 
u A 

noise 

, 
Figure 1 

Gaussian model is to be believed. The two most commonly offered explana- 
tions why these results do not really violate intuition are, first, the measure- 
ments are always inaccurate and, second, the a priori data are always imperfect 
-in particular, autocorrelation functions and spectra are not completely or 
precisely known. Both explanations are obviously true statements, but I feel 
they do not answer the objection raised. Neither shows the existence of an 
absolute lower bound on error probabilities. With enough care and elabora- 
tion in obt>aining a priori data and in making and processing the measurements, 
it  would seem that an arbitrarily good performance could still be achieved in 
some instances. So, although these points are important, I shall try to explain 
away the paradox of the singular cases in a different way; in fact, in the sim- 
plest way possible, by showing the existence of constraints that prevent their 
occurrence. The essence of the explanation is that, in all cases we know 
about, singularity occurs only if the spectral densities of the two signal-plus- 
noise processes differ at infinity, but a reasonable model of the problem indi- 
cates that  the spectral densities a t  infinity are determined by the residual 
noise, hence are the same for both.* 

To fix the domain of the argument, consider the class of systems that may be 

mitter, sent through the channel, received, and processed at the receiver. 
Gaussian thermal noise is added everywhere, but presumably the most impor- 

lowest, a t  the input to the receiver, and this is all that has been indicated in 
the figure. The generated signal ~ " ' ( t )  has finite energy, that is, Jls(t)12 dt < 
to, and begins and ends in a finite time interval. It is arbitrary, but once 
chosen it is fixed, even though we may let the observation interval T change. 
The processing a t  the transmitter and at  the receiver must preserve the finite 
energy constraint and must be realizable in the usual sense that the present 
does not depend on the future. The channel must meet these same conditions; 
it may, however, perturb the signal into any one of a parametrized family of 
functions. The output of the receiver processer is the observed waveform, 
which is available for decision making. In  different contexts the receiver 
processer might be taken to be a whole radio receiver in the usual sense; 

* This idea appears in Davenport and Root [5] and in Middleton [13] and is developed at 
some length in Wainstein and Zubakov [23], Appendix 111. 

I represented as in Figure 1. A signal ~ " ' ( t )  is generated, processed a t  the trans- 

tant increment of noise is added at the point at which the signal power level is 4 
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it might be only the antenna system a t  the receiver or anything between these 
two extremes. In  fact, in a particular instance there can be a good deal of 
arbitrariness about the breakdown into transmitter, channel, and receiver. 
However, the noise always has one property: there is a t  least a part, generated 
by thermal mechanisms, that can be thought of as entering the system as white 
noise or as white up to frequencies a t  which quantum effects become important. 

For one of the simplest situations 
the observed waveform is i 

, 

Let us look first a t  sure-signals-in-noise. 

y( t )  = as(t) + n(t), 0 6 t 6 T ,  
where n(t) is stationary, Gaussian, of mean zero, and with a known continuous 
autocorrelation function R(t),  as prescribed for the Gaussian model, where s ( t )  
is known and of integrable square on [0, T ]  and a is unknown but either zero or 
one. A statistical decision whether a is zero or one is to be made. As 
Grenander observed in 1950, this problem, with no further constraints imposed, 
can be singular in two ways. First, the integral operator RT with noise auto- 
correlation as kernel may have a nonzero null space, whereas s ( t )  has a nonzero 
projection in this null space. Then there is an element + E &[O, T ]  such that 
(+, &) = 0, ?z = 1, 2, . * . , ( & )  a complete set of eigenfunctions for R, 
but (+, s) # 0. Obviously, then, the statistic (+, y) will distinguish between 
the two hypotheses with probability 1. Second, the series E!$ 
may diverge, so that again, from Theorem 2, there is a test to distinguish 
between the two hypotheses with probability 1. Suppose now, however, that 
the receiver processer C is linear as well as realizable and, in fact, can be repre- 
sented by a n  integral operator with Lz kernel h(t) .  Then from Theorem 6 
R has a zero null space, and the first kind of singularity cannot happen. 
Let h ( p )  be the Fourier transform of h(t) (i.e., h ( p )  is the so-called transfer 
function of C); then 

t 

so by Theorem 5 the second kind of singularity cannot happen either. 
for any observation interval T ,  

Indeed 

and for a maximum-likelihood test (nonzero) error probabilities may be 
calculated, depending only on the quantity on the left side of the inequality, 
which plays the role of a signal-to-noise ratio. 

Now suppose the channel perturbs the signal by delaying it, shifting its 
frequency spectrum, or changing its amplitude. As long as it does not amplify 
the signal to give it infinite energy, a bound of the kind in the inequality (8) 
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still exists, and the detection problem is nonsingular. 
different if a radio measurement is to be made. 
exist and a statistical estimate is made of the parameter a in s ( t ;  a) .  
a1, a2 be any two possiblc values of a (which may be vector-valued). 
the two Gaussian processes 

The situation is a little 
The signal will be known to 

Let 
Then 

. 

yt = s ( t ;  ai) + nt, 

?/t = ~ ( t ;  ~ 2 )  + nt, 

0 6 t 6 T 
0 6 t 6 T 4 

are mutually singular if and only if 

n 

Again, by an application of the Schwarz inequality, and with the conditions 
on the noise imposed above, this series cannot diverge if 

i = 1, 2, 

as we have assumed. The conclusion does not depend on whether CY is con- 
sidered to be an unknown or a random variable. 

Two weaknesses in the foregoing argument are the assumptions that the 
receiver processing is linear and that the noise enters the system as pure white 
noise. The point of observation at which y(t) 
is available after the noise has been introduced (actually, noise is introduced 
everywhere) is arbitrary for purposes of discussion. Thus, if it is possible to 
observe the processed waveform a t  some point past the point of noise entry 
where the waveform is a linear functional of s'(t ;  a) + n'(t), y ( t )  can be taken 
as the waveform a t  that  point and the argument applies. No further proc- 
essing of the sample functions can reduce the problem to a singular one. 

generating the signal ~ " ' ( t )  so that the square of its Fourier transform falls off 
slower at infinity than thermally generated noise and that the filtering action 
of the transmitter and channel attenuates the Fourier transform of the signal 
a t  high frequencies by more than the reciprocal of the frequency (the effect 
of a simple R-C filter). If this is true, then obvious modifications of (8) will 
restore the argument for nonsingularity. 

The discussion for noise-in-noise is similar to the foregoing, so we shorten it. 
Consider the simple detection problem 

Let us try to patch these up. 

* I n  answer to the other comment, I suggest that there is no mechanism for 

+ 

y( t )  = p s,(t) + n(t), 0 < t 6 T ,  i = 0, 1, 

where so(t) = 0 and sl(t) is a section of a sample function from a stationary 
Gaussian process with mean zero. We assume ( s l t )  and 
{nt) are mutually independent, so that {y t )  is again a Gaussian process under 
either hypothesis. The only readily applicable criterion available for the 
singularity of two stationary Gaussian processes is that  of Theorem 4; so we 
require the processers and channel as shown in Figure 1 to be linear with 

is a constant. 
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rational transfer functions. Then, if { n t )  is white noise and {sji’}, i = 0, 1, 
has rational spectral density, {y t )  has rational spectral density under either 
hypothesis. If the transmitter and channel have an over-all transfer function 
that vanishes at least as the reciprocal of the frequency a t  infinity, then the 
behavior of the spectral density of ( y t )  a t  infinity is determined entirely by the 
noise (n t )  under either hypothesis. Thus by Theorem 4 the nonsingular case 
obtains for any observation interval T.  Obviously, operations on the trans- 
mitted signal of translation (time delay) or amplification or linear combina- 
tions of these do not affect this conclusion.* 

The aim here has not been to try to “prove” the faithfulness to reality of the 

rather important apparent difficulty. This seems to me to be important if the 
Gaussian model is to be used with confidence as a basis for future more sophisti- 
cated analyses. 

I should like to acknowledge an obvious debt to Dr. T. S. Pitcher for the use 
of some of his unpublished work. I have also benefited from discussions of 
the mathematical material with Dr. Pitcher and Professor J. G. Wendel. 

. 

b 

Gaussian model, which would be foolish, but merely to try to rescue it from one 1 1  
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