1,674 research outputs found

    Inspection System And Method For Bond Detection And Validation Of Surface Mount Devices Using Sensor Fusion And Active Perception

    Get PDF
    A hybrid surface mount component inspection system which includes both vision and infrared inspection techniques to determine the presence of surface mount components on a printed wiring board, and the quality of solder joints of surface mount components on printed wiring boards by using data level sensor fusion to combine data from two infrared sensors to obtain emissivity independent thermal signatures of solder joints, and using feature level sensor fusion with active perception to assemble and process inspection information from any number of sensors to determine characteristic feature sets of different defect classes to classify solder defects.Georgia Tech Research Corporatio

    Laplacian Mixture Modeling for Network Analysis and Unsupervised Learning on Graphs

    Full text link
    Laplacian mixture models identify overlapping regions of influence in unlabeled graph and network data in a scalable and computationally efficient way, yielding useful low-dimensional representations. By combining Laplacian eigenspace and finite mixture modeling methods, they provide probabilistic or fuzzy dimensionality reductions or domain decompositions for a variety of input data types, including mixture distributions, feature vectors, and graphs or networks. Provable optimal recovery using the algorithm is analytically shown for a nontrivial class of cluster graphs. Heuristic approximations for scalable high-performance implementations are described and empirically tested. Connections to PageRank and community detection in network analysis demonstrate the wide applicability of this approach. The origins of fuzzy spectral methods, beginning with generalized heat or diffusion equations in physics, are reviewed and summarized. Comparisons to other dimensionality reduction and clustering methods for challenging unsupervised machine learning problems are also discussed.Comment: 13 figures, 35 reference

    Extension of the fuzzy integral for general fuzzy set-valued information

    Get PDF
    The fuzzy integral (FI) is an extremely flexible aggregation operator. It is used in numerous applications, such as image processing, multicriteria decision making, skeletal age-at-death estimation, and multisource (e.g., feature, algorithm, sensor, and confidence) fusion. To date, a few works have appeared on the topic of generalizing Sugeno's original real-valued integrand and fuzzy measure (FM) for the case of higher order uncertain information (both integrand and measure). For the most part, these extensions are motivated by, and are consistent with, Zadeh's extension principle (EP). Namely, existing extensions focus on fuzzy number (FN), i.e., convex and normal fuzzy set- (FS) valued integrands. Herein, we put forth a new definition, called the generalized FI (gFI), and efficient algorithm for calculation for FS-valued integrands. In addition, we compare the gFI, numerically and theoretically, with our non-EP-based FI extension called the nondirect FI (NDFI). Examples are investigated in the areas of skeletal age-at-death estimation in forensic anthropology and multisource fusion. These applications help demonstrate the need and benefit of the proposed work. In particular, we show there is not one supreme technique. Instead, multiple extensions are of benefit in different contexts and applications

    ISIPTA'07: Proceedings of the Fifth International Symposium on Imprecise Probability: Theories and Applications

    Get PDF
    B

    Feature and Decision Level Fusion Using Multiple Kernel Learning and Fuzzy Integrals

    Get PDF
    The work collected in this dissertation addresses the problem of data fusion. In other words, this is the problem of making decisions (also known as the problem of classification in the machine learning and statistics communities) when data from multiple sources are available, or when decisions/confidence levels from a panel of decision-makers are accessible. This problem has become increasingly important in recent years, especially with the ever-increasing popularity of autonomous systems outfitted with suites of sensors and the dawn of the ``age of big data.\u27\u27 While data fusion is a very broad topic, the work in this dissertation considers two very specific techniques: feature-level fusion and decision-level fusion. In general, the fusion methods proposed throughout this dissertation rely on kernel methods and fuzzy integrals. Both are very powerful tools, however, they also come with challenges, some of which are summarized below. I address these challenges in this dissertation. Kernel methods for classification is a well-studied area in which data are implicitly mapped from a lower-dimensional space to a higher-dimensional space to improve classification accuracy. However, for most kernel methods, one must still choose a kernel to use for the problem. Since there is, in general, no way of knowing which kernel is the best, multiple kernel learning (MKL) is a technique used to learn the aggregation of a set of valid kernels into a single (ideally) superior kernel. The aggregation can be done using weighted sums of the pre-computed kernels, but determining the summation weights is not a trivial task. Furthermore, MKL does not work well with large datasets because of limited storage space and prediction speed. These challenges are tackled by the introduction of many new algorithms in the following chapters. I also address MKL\u27s storage and speed drawbacks, allowing MKL-based techniques to be applied to big data efficiently. Some algorithms in this work are based on the Choquet fuzzy integral, a powerful nonlinear aggregation operator parameterized by the fuzzy measure (FM). These decision-level fusion algorithms learn a fuzzy measure by minimizing a sum of squared error (SSE) criterion based on a set of training data. The flexibility of the Choquet integral comes with a cost, however---given a set of N decision makers, the size of the FM the algorithm must learn is 2N. This means that the training data must be diverse enough to include 2N independent observations, though this is rarely encountered in practice. I address this in the following chapters via many different regularization functions, a popular technique in machine learning and statistics used to prevent overfitting and increase model generalization. Finally, it is worth noting that the aggregation behavior of the Choquet integral is not intuitive. I tackle this by proposing a quantitative visualization strategy allowing the FM and Choquet integral behavior to be shown simultaneously
    corecore