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Abstract

The work collected in this dissertation addresses the problem of data fusion. In other

words, this is the problem of making decisions (also known as the problem of classifi-

cation in the machine learning and statistics communities) when data from multiple

sources are available, or when decisions/confidence levels from a panel of decision-

makers are accessible. This problem has become increasingly important in recent

years, especially with the ever-increasing popularity of autonomous systems outfitted

with suites of sensors and the dawn of the “age of big data.” While data fusion is a

very broad topic, the work in this dissertation considers two very specific techniques:

feature-level fusion and decision-level fusion. In general, the fusion methods pro-

posed throughout this dissertation rely on kernel methods and fuzzy integrals. Both

are very powerful tools, however, they also come with challenges, some of which are

summarized below. I address these challenges in this dissertation.

Kernel methods for classification is a well-studied area in which data are implicitly

mapped from a lower-dimensional space to a higher-dimensional space to improve

classification accuracy. However, for most kernel methods, one must still choose a

kernel to use for the problem. Since there is, in general, no way of knowing which

kernel is the best, multiple kernel learning (MKL) is a technique used to learn the
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aggregation of a set of valid kernels into a single (ideally) superior kernel. The aggre-

gation can be done using weighted sums of the pre-computed kernels, but determining

the summation weights is not a trivial task. Furthermore, MKL does not work well

with large datasets because of limited storage space and prediction speed. These

challenges are tackled by the introduction of many new algorithms in the following

chapters. I also address MKL’s storage and speed drawbacks, allowing MKL-based

techniques to be applied to big data efficiently.

Some algorithms in this work are based on the Choquet fuzzy integral, a powerful non-

linear aggregation operator parameterized by the fuzzy measure (FM). These decision-

level fusion algorithms learn a fuzzy measure by minimizing a sum of squared error

(SSE) criterion based on a set of training data. The flexibility of the Choquet integral

comes with a cost, however—given a set of N decision makers, the size of the FM the

algorithm must learn is 2N . This means that the training data must be diverse enough

to include 2N independent observations, though this is rarely encountered in practice.

I address this in the following chapters via many different regularization functions, a

popular technique in machine learning and statistics used to prevent overfitting and

increase model generalization. Finally, it is worth noting that the aggregation behav-

ior of the Choquet integral is not intuitive. I tackle this by proposing a quantitative

visualization strategy allowing the FM and Choquet integral behavior to be shown

simultaneously.
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Chapter 1

Introduction

Information fusion is a broad multi-disciplinary topic with many applications. Gen-

erally, it refers to the process of aggregating multiple sets of data (or other type of

information) all explaining a common “thing”. For example, in the case of an au-

tonomous robot, the “thing” might be its environment and the data will likely be

collected from a suite of heterogeneous sensors outfitted on the vehicle. The robot

can gain full autonomy if there are algorithms present that can effectively fuse the

various data it collects, and make decisions based on their aggregation. Another

example more related to the autonomous agents of our species is the discrimination

of edible food versus inedible food. When presented with a nutritional candidate,

humans use their inborn sensor suites to extract informative features regarding its

edibility. For example, its smell may contain information regarding the candidate’s
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freshness—if the candidate smells rotten, it is likely inedible. Sight allows humans to

categorize the candidate which also helps the decision process—if it looks like other

foods known to be edible, it may also be edible. Ultimately, humans combine the

information gathered by these senses (and others) to make the decision to eat or not

to eat.

The above examples are examples of data-level or feature-level fusion, where the de-

cision maker essentially combined the data before any decisions were made. Another

flavor of information fusion is decision-level fusion, where there exists a panel of de-

cision makers, each making his or her own decision based on the data at hand, and

an overall decision is then determined through some process, e.g., voting. It is im-

portant to note that in this context the decision can be a “confidence” or “rating.”

A popular example of this type of fusion is the judging process in gymnastic or figure

skating competitions—a panel of judges each rate the performance of a competitor

by casting grades based on their own observations, and an overall score is assigned

to the competitor by aggregating the judges’ ratings.

These high-level examples illuminate the two types of information fusion addressed

in this dissertation: data-level fusion and feature-level fusion. The remainder of

this chapter provides some context on how the low-level tools comprising the bulk

of this dissertation fall under the roof of information fusion, and it will conclude

with an outline of contributions. Furthermore, salient terminology is introduced and

2



explained throughout the chapter.

1.1 Problem Context

It is no coincidence that the high-level examples of the previous section ultimately

ended with a decision; essentially all of the algorithms discussed in this disserta-

tion are binary decision makers, i.e., binary classifiers.1 Hence, following the typical

workflow for many machine learning or statistical prediction methods, the algorithms

discussed later will be trained on a set of training data—data accurately labeled with

known classes (labels) and is representative of the problem at hand, then tested on

testing data—data with unknown labels. The training process allows the classifier to

learn the underlying model so that accurate predictions can be made on the testing

data.

An example of a high-level feature-level fusion pipeline is shown in Figure 1.1. The

input data, which can be from various sources or even a single source, is shown on

the left and is fed into the first processing blocks that process the data in some way2.

Next, the features are fused in some manner before a single classifier gives an overall

decision. In the work that follows, I use an “off the shelf” classifier known as a support

1While the classifier I use in these algorithms is the support vector machine (SVM), generally any
classifier can be used in its place.

2In the jargon introduced in the following section, these blocks are all different kernels.
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Figure 1.1: High-level block diagram of feature-level fusion.

vector machine (SVM), and the feature-level fusion algorithms I propose focus on the

feature fusion block just before classification.

Figure 1.2 shows a similar block diagram for a decision-level fusion pipeline. Just as

with feature-level fusion, the input data is on the left and is fed to some processing

blocks. The difference here is that classification is performed before the fusion block;

each processing block gets its very own classifier. The decisions generated by the

different classifiers are then aggregated to form an overall decision by the fusion

block. Again, the classifiers I use are SVMs and the decision-level fusion methods

discussed later are included in the decision fusion block.
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Figure 1.2: High-level block diagram of decision-level fusion.

The following sections briefly explain the tools used for fusion in the following chap-

ters. Specifically, kernel SVMs and multiple kernel learning are discussed as the tools

chosen for classification and feature-level fusion, respectively, and the Choquet fuzzy

integral is introduced as the tool of choice for decision-level fusion.

1.1.1 SVMs and Kernels

A support vector machine is a type of binary classifier that finds a hyperplane in

some space that discriminates between two classes of data; for linearly separable

data, the SVM will work perfectly. This is not to say, however, that the SVM cannot

be applied to more “complex” data—data that are not linearly separable can be

accurately classified with a kernel SVM, i.e., a SVM that has been extended using

the kernel trick.
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The kernel trick allows data to be nonlinearly mapped to a new higher-dimensional

space termed the reproducing kernel Hilbert space (RKHS), where the data are (po-

tentially) linearly separable. A linear classifier implemented in the RKHS can then

perfectly discriminate the two classes. The SVM is one of the most popular classifiers

to utilize the kernel trick since its formulation turns out to be very efficient—the

nonlinear mapping can be performed implicitly through the use of kernel matrices,

Hermitian matrices whose elements represent all pairwise inner products of the train-

ing data. The elements of a kernel matrix are computed using a kernel function,

which represents the inner product of two vectors in a RKHS defined by the kernel

function chosen. There are many kernel functions to choose from, e.g., various radial

basis function kernels, polynomial kernels, sigmoidal kernels, etc., and they each have

at least one free parameter that must be chosen. This abundance of choice leads to

the problem of determining which kernel (and parameter) to employ with the SVM.

Recall that the goal of using a kernel is to project the data to a space where the data

are linearly separable, something not all kernels can achieve. This is the challenge

that multiple kernel learning (MKL) addresses.

MKL assumes that the kernel used as described in the previous paragraph is actually

a linear combination of pre-selected base kernels. One must still choose the vari-

ous base kernels with this MKL approach, but the process of learning the mixing

coefficients generally minimizes the influence of kernels that do not work well and
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maximizes the contribution of kernels that do separate the data well. In a mathe-

matical nutshell, given m base kernel matrices, Kk, MKL is the process of learning

the mixing coefficients, σk, that form an “optimal” kernel as

K =
m∑
k=1

σkKk. (1.1)

The MKL algorithms in this dissertation all assume the formulation in (1.1), and

many address the problem of learning a suitable set of mixing coefficients. Appendix

A provides a more quantitative discussion of SVMs including their kernel extension.

1.1.2 The Choquet Fuzzy Integral

Most of the decision-level fusion work in this dissertation uses the Choquet fuzzy

integral to combine the outputs of an ensemble of decision makers into a single overall

decision. This integral is extremely flexible and is parametrized by the fuzzy measure

(FM), a function that maps the power set of all decision makers to the unit interval

and can be thought of as the “worth” of a set. Therefore, we can say the Choquet

fuzzy integral is “uber-parametrized,” since aggregating the decisions from a set of

m decision-makers using the integral requires 2m terms in its FM3. Similar to MKL’s

goal of learning the “optimal” mixing coefficients based on training data, techniques

3Note that due to some properties of the FM, the number of required terms is actually 2m− 2. This
will be explained in later chapters.
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using the Choquet integral learn the FM that fits the training data.

The number of required terms of the FM explodes as 2m, so learning the FM quickly

becomes an underdetermined problem since sets of training data will rarely have the

diversity to include 2m independent observations. This manifests as a learned FM

that is only partially accurate—values of the FM driven by the training data are very

accurately learned, but the remaining values are driven only by constraints; their

values are essentially erroneous. Thus, when faced with testing data that utilizes the

incorrectly learned FM values the classification accuracy will generally suffer.

Much of the work in the following chapters addresses this problem through the use of

regularization, a technique commonly used in machine learning to prevent overfitting.

Doing so reduces the influence of the constraints on the learned FM and rather reas-

signs the influence to the regularization function; the choice of regularization function

defines how the values of the FM not driven by training data are learned.

1.2 Dissertation Outline and Contributions

The following chapters summarize my work on the data fusion problem along with

some application-specific contributions to ground penetrating radar (GPR). The re-

mainder of this section describes each chapter more concretely and explains the novel
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contributions of each chapter.

Chapter 2 proposes multiple feature-level and decision-level fusion algorithms,

demonstrates their performance when used with support vector machine classifiers,

and proposes a general method for extending multiple kernel learning-based algo-

rithms to large datasets through the use of the Nyström approximation. Experimental

results demonstrate the algorithms’ utility as well as validate their extension to “big

data”. A decision-level fusion algorithm proposed in this paper, namely decision-

level fuzzy integral multiple kernel learning (DeFIMKL), is a common thread also

appearing in the chapters that follow.

Chapters 3 and 4 further extend the fuzzy integral-based decision-level fusion al-

gorithm introduced in Chapter 2 in many ways. The novelty in Chapter 3 allows

the algorithm’s behavior to be more finely “tuned” towards various aggregation op-

erators, and that of Chapter 4 aims to improve the algorithm’s generalization by

penalizing its complexity during the learning process.

Chapter 5 applies some of the fusion techniques presented in this dissertation to

the problem of explosive hazard detection using ground penetrating radar (GPR). The

chapter is broken into three parts—Part I presents an exploration of various robust

principal component analysis (RPCA) techniques employed as a data-preprocessing
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step. Next, Part II summarizes an approach to the detection process using state-

of-the-art fusion methods and providing a picture of the entire detection pipeline

including prescreening, feature extraction, and classification. Finally, Part III ap-

plies the fusion techniques from Chapter 2 to the GPR data.

Finally, Chapter 6 concludes the dissertation and discusses future work.
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Chapter 2

Efficient Multiple Kernel

Classification using Feature and

Decision Level Fusion

The material in this chapter was previously published in IEEE Transactions on Fuzzy Systems, Vol.
PP, no. 99, 2016.
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2.1 Introduction

Consider a set of numerical feature-vector data that has the form X = {x1, . . . ,xn} ⊂

R
d, where the coordinates of xi provide feature values (e.g., bits per second, speed,

volts, etc.) describing some object (e.g., a wireless sensor network node, traffic cam-

era, or radar). We are also given a set of training labels for each feature vector, such

that we have the pair (y, X), where y = (y1, . . . , yn)
T and yi is the label of ith object.

Each yi is associated with a respective feature vector xi. The classifier learning task

is thus to learn some prediction function f , such that we can predict the label of the

feature-vectors, i.e., y = f(x).

Most classifiers delineate the classes by finding some “best” decision boundary in the

feature space. Perceptrons and linear support vector machines (SVMs) find hyper-

planes1. These classifiers are easy to train, often can be effective, and are compu-

tationally very efficient (the operational decision is just a single dot-product in the

feature space). However, they are ineffective for classes that are not linearly separa-

ble, i.e., by a hyperplane. Hence, we will use kernel classifiers to non-linearly project

the features into a high-dimensional space, where hyperplanes may be more easily

found that serve as good decision boundaries.

Specifically, we will focus on multiple kernel learning (MKL) in this chapter. As

1See Appendix A for more information regarding SVMs.
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its name implies, MKL combines multiple kernels together to form a new kernel,

and thus a new classification space. Furthermore, since kernels known to exploit the

data’s various features can be used as building blocks for MKL, it can do very well

with heterogeneous data. There are many works that discuss MKL [8, 9, 10, 11, 12,

13, 14], and nearly all of them rely on operations that aggregate kernels in ways that

preserve symmetry and positive semi-definiteness, such as element-wise addition and

multiplication. Most MKL algorithms learn a “best” kernel space in which to classify

by learning respective weights on each component kernel. Details are contained in

Section 2.4.

Two MKL formulations explored in this chapter focus on aggregation using the Cho-

quet fuzzy integral (FI) with respect to a fuzzy measure (FM) [15]. First, we inves-

tigate our previously proposed fuzzy integral: genetic algorithm (FIGA) approach to

MKL [11, 12], proving that it reduces to a special kind of linear convex sum (LCS)

kernel aggregation. This leads to the proposition of the p-norm genetic algorithm

MKL (GAMKLp) approach, which learns an MKL classifier using a genetic algorithm

and generalized p-norm weight domain. These algorithms perform a feature-level ag-

gregation of the kernel matrices, producing a new feature representation. We also

propose a decision-level MKL called DeFIMKL, which learns a FM with respect to

the Choquet FI to fuse decisions from individual kernel classifiers. The FM is learned

from training data with a regularized quadratic program (QP) approach [16]. We

15



Table 2.1
Acronyms and Select Notation

SVM support vector machine
MKL multiple kernel learning
FM fuzzy measure
FI fuzzy integral

FIGA fuzzy integral: genetic algorithm
LCS linear convex sum

GAMKLp p-norm genetic algorithm MKL
DeFIMKL decision-level fuzzy integral MKL

DeGAMKLp p-norm decision-level genetic algorithm MKL
DeLSMKL decision-level least squares MKL

QP quadratic program
MKLGL MKL group lasso
MKLGLp MKLGL with p-norm regularization

RBF radial basis function
X feature-vector data, X = {x1, . . . ,xn} ⊂ R

d

y data labels, y = (y1, . . . , yn)
T

f(x) prediction function
g fuzzy measure

π(i) sorting index in Choquet integral
φ(x) non-linear mapping of x

κ(xi,xj) kernel function, κ(xi,xj) = φ(xi)
Tφ(xj)

K kernel matrix K = [Kij = κ(xi,xj)]
fk(x) decision function using kth kernel, Kk

f g(x) decision function using Choquet integral, wrt FM g

further explore two additional decision-level methods based on a least-squares for-

mulation. We start with decision-level least-squares MKL (DeLSMKL) where we

compute the weights for decision values from an ensemble of classifiers using a closed

form expression. We then extend this method using a nonlinear cost function and use

a genetic algorithm to compute the weights in decision-level genetic algorithm MKL

(DeGAMKL).

A drawback of MKL methods is the fact that multiple kernel matrices must be stored.
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Since the size of these kernels is directly related to the number of feature-vectors in

the dataset, large datasets lead to large kernels. Thus, approximations to the kernel

matrices that reduce the required number of values to store could allow MKL methods

to be used for these large datasets. We explore the use of the Nyström approximation

for this task, and show the effects of the approximation on classifier accuracy.

The FI-based MKL approaches are first compared with a leading machine learning

MKL method, called MKL group lasso (MKLGL)2 [9] on several benchmark data

sets. We also investigate the behavior of regularization on the results of DeFIMKL.

In Section 2.2 we briefly review data fusion, and Section 2.3 introduces FMs and

FIs, specifically the fuzzy Choquet integral. Section 2.4 details the MKL methods.

A review of the preliminary experimental results generated in [17] are presented in

Section 2.6, Section 2.7 presents the details and results of our Nyström experiments,

and Section 2.8 discusses our final experiment with a large data set. Table 2.1 contains

acronyms and selected notation used in this chapter.

2.2 Data Fusion

Data fusion is a broad term for methods that use multiple sets of data, perhaps data

from different sensors or the output of multiple processes applied to the same data

2See Appendix A for more information regarding MKLGL.
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set, to improve some performance metric from a baseline established using only one

set [18]. It is a very broad area of study, and there exists a vast pool literature relating

to it; for a review of data fusion methods see [19] and [20]. Because of the breadth

of the topic, we restrict this brief overview to the types of fusion techniques most

related to the methods we employ.

Data fusion can be classified in many ways [21, 22, 23]. The taxonomy in [22] is

most appropriate to apply to our approach, describing five categories of data fusion.

The categories that encompass our fusion methods are termed feature in—feature out

(FEI-FEO) and decision in—decision out (DEI-DEO) and are briefly discussed in the

following sections.

2.2.1 Feature In—Feature Out Fusion

FEI-FEO fusion is also known as feature fusion, on which many computer vision meth-

ods rely [24, 25, 26, 27]. A popular and powerful method of feature fusion combines

the features in a multidimensional feature space using kernel methods [28, 29, 30, 31].

This allows the use of multiple kernels with classification, giving the advantage that

particular kernels can exploit certain features better than other kernels. The SVM

is a popular classifier for MKL classification, however comparable results have been

shown using a logistic regression-based classifier [32].
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2.2.2 Decision In—Decision Out Fusion

DEI-DIO fusion is commonly referred to as decision fusion. This approach is very

closely related to concept of ensemble learning, where the decisions from multiple

classifiers are combined to determine the overall decision. Indeed, this is precisely

what the DeFIMKL algorithm discussed in Section 2.4.2 does. Due to the use of

multiple classifiers, decision fusion is generally slower than feature fusion, which only

requires one classifier [33].

Decision fusion can be done in two general ways: hard or soft. Hard decision fusion is

done using the class labels from the ensemble of classifiers. A straightforward method

of hard decision fusion is the majority vote approach. Soft decision fusion is performed

using other outputs from the classifier ensemble such as the posterior probabilities,

evidences, hypotheses, etc. A simple example in this case is to linearly combine the

posterior probabilities [34]. Alternatively, for ensembles of fuzzy classifiers, the soft

decision fusion approach could be used by aggregating the fuzzy class memberships

determined by the classifiers [35].
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2.3 Fuzzy Measures and Fuzzy Integrals

FIs and FMs have been proposed for many applications and for many types of data,

from simple numeric data to intervals and type-2 fuzzy sets [36, 37, 38, 39, 40, 41, 42,

43, 44, 45, 46]. While manual specification of the FM works for small sets of sources

(there are already 16 possible combinations of sources in the power set of 4 sources),

manually specifying the values of the FM for large collections of sources is virtually

impossible. Thus, automatic methods have been proposed, such as the Sugeno λ-

measure [39] and the S-decomposable measure [47], which build the measure from

the densities (the worth of individual sources), and genetic algorithm [11, 12, 38, 48],

Gibbs sampling [49] and other learning methods [16, 50, 51], which build the measure

by using training data. Other works [52, 53, 54] have proposed learning FMs that

reflect trends in the data and have been specifically applied to crowd-sourcing, where

the worth of individuals is not known, but extracted from the data.

2.3.1 Fuzzy measure

A measurable space is the tuple (X,Ω), where X is a set and Ω is a Ω-algebra or set

of subsets of X such that
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P1. X ∈ Ω;

P2. For A ⊆ X, if A ∈ Ω, then Ac ∈ Ω;

P3. If ∀Ai ∈ Ω, then
⋃∞

i=1 Ai ∈ Ω.

A FM is a function, g : Ω → [0, 1], with the following properties:

P4. (Boundary conditions) g(∅) = 0 and g(X) = 1;

P5. (Monotonicity) If A,B ∈ Ω and A ⊆ B, then g(A) ≤ g(B).

If Ω is an infinite set, then there is also a third property guaranteeing continuity; in

practice and in this chapter, Ω is finite and thus this property is unnecessary. The

FM values of the singletons, g({xi}) = gi are commonly called the densities. Figure

2.1 illustrates the lattice of a FM for the case of n = 3.

The arguably most popular FM is the Sugeno λ-measure, which has the attractive

property of being able to be defined completely by the values of the densities. The

λ-measure has the following additional property. For A,B ∈ Ω and A ∩B = ∅,

gλ(A ∪B) = gλ(A) + gλ(B) + λgλ(A)gλ(B), (2.1a)
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g(1)
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g(1,2) g(1,3)

g(1,2,3)

g(2,3)

g(2) g(3)

Figure 2.1: Lattice of FM elements for n = 3. Monotonicity (P5) is
illustrated by the size of each circle, i.e., g({x1}) ≤ g({x1, x2}) as {x1} ⊂
{x1, x2}.

where it can be shown that λ can be found by solving [39]

λ+ 1 =
n∏

i=1

(
1 + λgi

)
, λ > −1. (2.1b)

2.3.2 Fuzzy integral

There are many forms of the FI; see [39] for detailed discussion. In general, they

are parametric aggregation operators based on the fuzzy measure, hence the selection

of measure leads to a specific aggregation operators. In practice, FIs are frequently

used for evidence fusion [48, 55, 56, 57, 58]. They combine sources of information
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by accounting for both the support of the question (the evidence) and the expected

worth of each subset of sources (as supplied by the FM g). Here, we focus on the

fuzzy Choquet integral, proposed by Murofushi and Sugeno [59, 60]. Let h : X → R

be a real-valued function that represents the evidence or support of a particular

hypothesis.3 The discrete (finite Ω) fuzzy Choquet integral is defined as

∫
C

h ◦ g = Cg(h) =
n∑

i=1

h(xπ(i)) [g(Ai)− g(Ai−1)] , (2.2)

where π is a permutation of X, such that h(xπ(1)) ≥ h(xπ(2)) ≥ . . . ≥ h(xπ(n)),

Ai = {xπ(1), . . . , xπ(i)}, and g(A0) = 0 [15, 42]. Detailed treatments of the properties

of FIs can be found in [15, 42, 61]. We now move on to showing how MKL can be

achieved using the FM and FI.

2.4 Multiple Kernel Learning

Consider some non-linear mapping function φ : xi → φ(xi) ∈ R
DK , where DK is the

dimensionality of the transformed feature vector φ(xi). For brevity, we will denote

φ(xi) as φi. With kernel algorithms, one does not need to explicitly transform xi,

one simply needs to represent the dot product φ(xi) · φ(xj) = κ(xi,xj). The kernel

function κ can take many forms, with the polynomial κ(xi,xj) = (xT
i xj + 1)p and

3Generally, when dealing with information fusion problems it is convenient to have h : X → [0, 1],
where each source is normalized to the unit-interval.
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radial-basis-function (RBF) κ(xi,xj) = exp(σ||xi − xj||2) being two of the most well

known. Given a set of n feature-vectors X, one can thus construct an n × n kernel

matrix K = [Kij = κ(xi,xj)]n×n. This kernel matrix K represents all pairwise dot

products of the feature vectors in the transformed high-dimensional space HK—called

the Reproducing Kernel Hilbert Space (RKHS).

There are many algorithms that use kernels to transform the input data to an appro-

priate and useful space; in this chapter, we focus on kernel-based classification, such

as the SVM [62, 63]. Multiple kernel algorithms, such as MKLGL [9] and FIGA [11],

take single kernel algorithms a step further by representing the feature-vector with

multiple kernels and then combining them to produce a single decision output. The

kernel combination can be computed in many ways, as long as the combination results

in a Mercer kernel [64]. For the feature-level fusion algorithms in this chapter, we will

assume that the kernel K is composed by a weighted combination of pre-computed

kernel matrices, i.e.,

K =
m∑
k=1

σkKk, (2.3)

where there are m kernels and σk is the weight applied to the kth kernel. The domain

of σ is very important and many MKL implementations only work for a single domain.

For example, Δ2 = {σ ∈ R
m : ‖σ‖2 = 1, σk ≥ 0} is the �2-norm MKL [8, 10, 13].

MKLGL [9] uses a generalized MKL instantiation that allows for an �p-norm domain

Δp = {σ ∈ R
m : ‖σ‖p = 1, σk ≥ 0}, simultaneously learning σ and the parameters of

24



an SVM on the resultant kernel K. FIGA [11] generalizes (2.3) by representing the

computation of K by the Choquet FI,

K =
m∑
k=1

[g(Ak)− g(Ak−1)]Kπ(k), (2.4)

where Ak = {Kπ(1), . . . , Kπ(k)} is a set of kernel matrices sorted by a base-learner

quality measure and the FM g is learned by a genetic algorithm (GA); in essence,

the entries of K are each the result of a Choquet FI. In Section 2.4.1 we show that

the FIGA algorithm is actually learning an LCS MKL and is equivalent to (2.3) with

σ ∈ Δ1; we will use this new discovery to propose the GAMKLp algorithm.

2.4.1 The GAMKLp algorithm

The FIGA algorithm produces an MKL classifier by learning one on the composite

kernel K with the Choquet FI as shown in (2.4). The final classification function is

learned on the kernel K, and, in past works [11, 12, 17], we have used the SVM for

this final learner. The basic steps of FIGA are as follows:

1. Compute kernel matrices Kk = [κk(xi,xj)]
n×n, k = 1, . . . ,m;

2. Train a base-learner (e.g., SVM) on each kernel Kk and record the classification

accuracy ηk, k = 1, . . . ,m;
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3. Collect sorting indices π, such that ηπ(1) ≥ ηπ(2) ≥ . . . ≥ ηπ(k);

4. Use a GA to learn the FM g, such that the classification accuracy of a learner

(e.g., SVM) on K at (2.4) is maximized.

The fitness of each chromosome in step 4) of FIGA is the classification accuracy of

the learner on K, while the genes are (m − 1) distinct values of the FM.4 Because

FIGA only learns the sorting π once, in step 2), the GA only needs to learn (m− 1)

FM values, g({Kπ(1)}), g({Kπ(1), Kπ(2)}), . . ., g({Kπ(1), . . . , Kπ(m−1)}); by property

P4, g(A0) = 0 and g(Am) = 1. This leads to Proposition 1

Proposition 1. Since the sorting order π is only found once in step 2) of FIGA, the

Choquet integral at (2.4) can be rewritten as

K =
m∑
k=1

σπ(k)Kπ(k), (2.5)

where σπ(k) = g(Ak)− g(Ak−1).

Proof. Because the sorting is not updated, the sets Ak also remain unchanged; hence,

the summation weight on Kπ(k) is the subtraction of the FM values of the same sets

(no matter their values). Hence, we can attach a single weight σπ(k) to each Kπ(k).

4In [12], an additional gene was added to indicate different types of FMs and a slightly better
performance was noted.
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Remark 1. Proposition 1 shows that the FIGA kernel composition at (2.4) is inde-

pendent of the initial sorting by π because the summation at (2.5) can be performed in

any arbitrary order and give the same result. Hence, step 3) of FIGA is unnecessary.

Proposition 2. In FIGA, the domain of σπ(k) is Δ1.

Proof. The �1 norm of σ is

m∑
k=1

σπ(k) =
m∑
k=1

g(Ak)− g(Ak−1) = g(Am)− g(A0) = 1. (2.6)

Furthermore, due to the monotonicity property (P5) of g, σπ(k) = g(Ak)− g(Ak−1) ≥

0.

Remark 2. Proposition 2 shows the domain of σ upon which FIGA learns. Taking

Propositions 1 and 2 together shows that FIGA is equivalent to using a GA to learn

the weights σ ∈ Δ1 in the kernel combination at (2.3).

In light of this discovery, we propose a GAMKLp algorithm that uses a GA to learn the

weights σ ∈ Δp of (2.3). When p = 1, we have shown that this is equivalent to FIGA.

However, because of our discoveries in Propositions 1 and 2, we can simplify and

generalize FIGA to allow for learning σ in the generalized domain Δp. The genes of

the GAMKLp algorithm are the values of the m weights of (2.3), i.e., {σ1, σ2, . . . , σm}.
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To ensure the GAMKLp genes lie in the �p-norm domain Δp, all candidate genes σ̃

are �p-norm normalized to form σ as

σ =
σ̃

p

√
m∑
i=1

|σ̃i|p
. (2.7)

The fitness of each chromosome in GAMKLp is the 5-fold cross-validation classifica-

tion accuracy of the learning algorithm—in this chapter, an SVM—trained on each

chromosome’s aggregated K.

Remark 3. While Propositions 1 and 2 show that FIGA is equivalent to GAMKL1,

the GAMKLp algorithm has the additional benefit that the genes of each chromosome

are not constrained to be monotonically increasing (as in FIGA). Hence, GAMKLp

is algorithmically more simple.

In Section 2.6, we will further investigate the performance of GAMKLp for real-world

classification tasks and in comparison with other MKL classification methods. Now

we turn to proposing a decision-level MKL fusion method using the fuzzy integral.
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Table 2.2
UCI Benchmark Data Sets

Data Set
Sonar Dermatology Wine

No. of Objects 208 366 178
No. of Features 60 33 13
Binary Classes {1} vs. {2} {1–3} vs. {4–6} {1} vs. {2,3}

Ionosphere Ecoli Glass
No. of Objects 351 336 214
No. of Features 34 7 9
Binary Classes {0} vs. {1} {1–4} vs. {5–8} {1–3} vs. {4–6}

2.4.2 The DeFIMKL algorithm

Let fk(xi) be the decision-value on feature-vector xi produced by the kth classifier

in an ensemble. The overall decision of the ensemble is computed by the Choquet

integral, where the evidence h is the set of decisions by the classifier ensemble and g

encodes the relative worth of each classifier in the ensemble. So, mathematically, the

ensemble decision f g(xi) on feature-vector xi with respect to the FM g is produced

by

f g(xi) =
m∑
k=1

fπ(k)(xi) [g(Ak)− g(Ak−1)] , (2.8)

where Ak = {fπ(1)(xi), . . . , fπ(k)(xi)}, such that fπ(1)(xi) ≥ fπ(2)(xi) ≥ . . . ≥

fπ(m)(xi). This is a generalized classifier fusion method that has been explored in

many previous works [45, 57, 58, 65].

In [16], we proposed a method to learn the FM g from training data with a regularized
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sum-of-squared error (SSE) optimization, which we now briefly describe. Let the SSE

be defined as

E2 =
n∑

i=1

(f g(xi)− yi)
2 , (2.9)

where yi is the class label for xi. It can be shown that (2.8), as a Choquet integral,

can be reformulated as

f g(xi) =
m∑
k=1

[
fπ(k)(xi)− fπ(k+1)(xi)

]
g(Ak), (2.10)

where fπ(m+1) = 0 [15]. The SSE can thus be expanded as

E2 =
n∑

i=1

(
HT

xi
u− yi

)2
, (2.11a)

where u is the lexicographically ordered FM g, i.e., u = (g({x1}), g({x2}), . . . , g({x1∪

x2}), g({x1 ∪ x3}), . . . , g({x1 ∪ x2 ∪ . . . ∪ xm}), and

Hxi
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

fπ(1)(xi)− fπ(2)(xi)

...

0

...

fπ(m)(xi)− 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.11b)
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where Hxi
is of size (2m − 1) × 1 and contains all the difference terms fπ(k)(xi) −

fπ(k+1)(xi) at the corresponding locations of Ak in u. We can now fold out the

squared term in (2.11a), producing

E2 =
n∑

i=1

(
uTHxi

HT
xi
u− 2yiH

T
xi
u+ y2i

)

= uTDu+ fTu+
n∑

i=1

y2i , (2.12)

D =
n∑

i=1

Hxi
HT

xi
, f = −

n∑
i=1

2yiHxi
.

Note that (2.12) is a quadratic function; hence, we can add in the constraints on

u, such that it represents a FM, producing a constrained QP. We can write the

monotonicity constraint on u, according to properties P4 and P5, as Cu ≤ 0, where

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ΨT
1

ΨT
2

...

ΨT
n+1

...

ΨT
m(2m−1−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.13)

and ΨT
1 is a vector representation of the monotonicity constraint, g({x1}) − g({x1 ∪

x2}) ≤ 0. Hence, C is simply a matrix of {0, 1,−1} values of size (m(2m−1 − 1)) ×

(2m − 1). See [16] for more details about the form of C. Thus, the full QP to learn
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the FM u is

min
u

0.5uT D̂u+ fTu, Cu ≤ 0, (0, 1)T ≤ u ≤ 1, (2.14)

where D̂ = 2D. We will also test the performance of �2 and �1 regularization on the

optimization at (2.14), i.e.,

min
u

0.5uT D̂u+ fTu+ λ‖u‖p, (2.15)

where p = 1 for �1 regularization and p = 2 for �2. Again, see [16] for more discussion

on this topic. The QPs at (2.14) and (2.15) provide a method to learn the FM u (i.e.,

g) from training data. We now propose a method for using this learning method for

ensemble learning with kernel SVMs.

We propose that each learner fk(xi) is a kernel classifier, each trained on a separate

kernel Kk; here, we will use the SVM. The SVM classifier decision value is

ηk(x) =
n∑

i=1

αikyiκk(xi,x)− bk, (2.16)

which is the distance of x from the hyperplane defined by the learned SVM model

parameters, αik and bk [62, 63]. Typically, the class label is then computed as

sgn{ηk(x)}. One could use fk(x) = sgn{ηk(x)} as the training input to the FM

learning at (2.12), but this eliminates information about which kernel produces the

largest class separation—essentially, the difference between ηk(x) for classes labeled
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y = +1 and y = −1. Hence, we remap ηk(x) onto the interval [−1,+1], creating the

inputs for learning by the sigmoid function,

fk(x) =
ηk(x)√
1 + η2k(x)

. (2.17)

Thus, the training data for DeFIMKL are ({Kk = [κk(xi,xj)], fk(X)},y), k =

1, . . . ,m, where Kk are the kernel matrices for each kernel function κk, fk(X) =

(fk(x1), . . . , fk(xn))
T are the remapped SVM decision values, and y = (y1, . . . , yn)

are the ground-truth labels of X = (x1, . . . ,xn), respectively. The output of the QP

learner is the FM g. A new feature vector x—from a test data set—can be classified

by the trained algorithm with the following procedure:

1. Compute the SVM decision values fk(x) by using (2.16) and (2.17);

2. Apply the Choquet integral at (2.8) with respect to the learned FM g;

3. Compute the class label by sgn{f g(x)}.

In previous work [17], the MKL algorithms discussed here have been applied to the

benchmark data sets shown in Table 2.2. The results are reviewed in the Section 2.6.
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2.4.3 The DeLSMKL Algorithm

Similar to the DeFIMKL algorithm, the following algorithms find a weighted combina-

tion of decision-values from an ensemble of classifiers to compute an overall decision.

Again, each learner is a kernel SVM classifier. Thus, the SVM classifier decision

value ηk(x) in (2.16) is normalized by a remapping onto the interval [−1,+1] using

the sigmoid function as in (2.17) to create the inputs for learning.

Consider the linear aggregation of the decisions from an ensemble of classifiers. The

overall decision in this case is

f(xi) = sgn

{
m∑
k=1

σ′
kfk(xi)

}
, (2.18)

where fk(xi) denotes the normalized decision-value on feature-vector xi by the kth

classifier in an ensemble, and we wish to compute the weights σ′
k such that fk(xi)

minimizes a particular error function as discussed later in this section. Now, given a

training set of N objects and an ensemble of M classifiers, we can form a vector of

class labels as y ∈ R
N . We can also form a matrix F ∈ R

M×N defined as

Fij = fi(xj), (2.19)

where fi(xj) is the decision value on the jth feature vector in the training data by the
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ith classifier in the ensemble. Using this notation, the overall decision in (2.18) can

be rewritten in vector form as

f = sgn
{
(σ′)T F

}
, (2.20)

where σ′ ∈ R
M is the vector of weights we wish to learn and f ∈ R

N contains the

overall ensemble decisions for each member of the training data.

Let us temporarily ignore the nonlinear signum operator in (2.20) for the remainder

of this section. In this case, the overall decision formulation, i.e., the argument of the

signum function in (2.18) and (2.20), has precisely the same form as that of linear

regression problems. Thus, the same methods used to solve regression problems can

also lend themselves to this situation. One standard method computes the weight

vector σ′ in (2.20) that minimizes the squared error between the true class labels and

the predicted class labels, or

ELS =
∥∥∥y − (σ′)T F

∥∥∥2

. (2.21)

This formulation is the well-known method of linear least squares and has the closed

form solution

σ′ = yTF†, (2.22)
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where F† denotes the Moore-Penrose pseudoinverse of F. Thus we can readily com-

pute σ′ using an ensemble of classifiers on training data and applying (2.22). We

term this approach decision-level least squares MKL (DeLSMKL).

Note that this method forces the values of σ′TF to lie as close as possible to the true

class labels y; however, their proximity to the true class labels is not important. The

only requirement is that the signs of σ′TF and y match, thus the cost function in

(2.21) is too restrictive on the values of σ′TF. We address this in the next section

where we include the nonlinear signum operator from (2.20) in the cost function.

2.4.4 The DeGAMKLp Algorithm

By introducing the signum function, the overconstrained cost function in the

DeLSMKL algorithm given in (2.23) can be relaxed to be

E =
∥∥∥y − sgn{(σ′)T F}

∥∥∥2

. (2.23)

While this could potentially improve the results, there is no longer a closed form

solution as in the case of DeLSMKL. We employ a genetic algorithm to find a weight

vector σ′ that minimizes this nonlinear cost. The DeGAMKLp algorithm parallels

the GAMKLp algorithm closely, including the normalization in (2.7). However, in-

stead of using the 5-fold cross-validation classification accuracy as the fitness of each
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chromosome as in GAMKLp, we simply use the classification accuracy for the entire

training set; empirically, DeGAMKLp works best using this fitness.

While all of the described fusion methods have their merit, they all share the detriment

that one must store m n × n kernel matrices. We address this in the next section,

producing an efficient way to perform MKL in its various forms.

2.5 The Nyström Approximation for Gram Matri-

ces

2.5.1 Background

The Nyström method has its roots in numerical solutions of integral equations, and

it was first explicitly shown that a Gram matrix K ∈ R
n×n can be approximated by

K̃ = KzK
†
zzK

T
z , (2.24)

by means of eigendecomposition approximation [66]. In this notation, z corresponds

to the indices of |z| sampled columns of K; hence Kz is the n×|z| rectangular matrix

composed of the sampled columns of K, and Kzz is the |z| × |z| matrix composed
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of the sampled row and columns of K. Note that Kzz is part of Kz, and K†
zz is the

Moore-Penrose pseudoinverse of Kzz.

Algorithms for approximating Gram matrices via PCA methods are generally O(n3);

however, the complexity of the Nystrom approximation is O(m2n), where m < n.

Note that a sparse greedy matrix approximation that has an identical form of the

Nyström approximation was introduced prior to [66] in [67], but it is computationally

more expensive and is not derived using the Nyström approximation explicitly.

2.5.2 Error Bounds and Other Development

Since the proposal of the Nyström approximation, there has been much work regarding

efficient computation, explicit bound derivation, and column sampling methods. The

work presented in [68] generalizes the work in [66] and develops an algorithm to

compute the matrix approximation in O(n) time. Furthermore, it is shown that by

using the Nyström approximation to approximate the Gram matrix K, the error is

bounded with high probability by

‖K − K̃k‖ξ ≤ ‖K −Kk‖ξ + ε

n∑
i=1

K2
ii, (2.25)

where Kk is the best rank-k approximate to K. Note that this holds in both the

�2-norm sense (ξ = 2) and Frobenius norm sense (ξ = F ). The work presented in
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[69] expresses this bound in terms of the spectral norm and further tightens the error

bound from O(N/
√
m) to O(N/m1−ρ), where ρ ∈ (0, 1/2) is a constant characterizing

the eigengap; ρ is small for large eigengaps.

Zhang and Kwok explicitly showed how the Nyström approximation error depends

on the choice of columns [70]. They note that the columns of the kernel matrix are

essentially quantized by sampling a subset, and the error bound is directly related

to the quantization error due to column sampling. Thus to minimize the error, it

is necessary to choose the columns (also called landmarks) that essentially contain

the most information, i.e., are most able to accurately represent unsampled columns.

Their algorithm chooses the landmarks as the cluster centers after using k-means

clustering on the columns of the kernel matrix, and while the results show improve-

ments over the sampling methods in [68], the algorithm is computationally inefficient

for large-scale problems since the entire kernel matrix must be available to find the

cluster centers (landmarks).

Kumar et al. proposed an ensemble Nyström method [71], where multiple Nyström

approximations to the kernel matrix are computed and linearly combined to form the

ensemble approximation

K̃ens =

p∑
r=1

μrK̃r. (2.26)

Here, μr are the mixture weights that can be defined in many ways, and K̃r is the rth

Nyström approximation of the kernel matrix K. Experimental results show that this
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approach generally improves the results from a single Nyström approximation, but

the improvements come at the cost of p times more computation. Kumar et al. also

presented a thorough treatment of sampling methods for the Nyström approximation

[72].

A recursive algorithm for computing the Nyström approximation was proposed, which

used a greedy approach to column selection [73]. This method showed experimental

performance improvements over many other methods and achieved similar perfor-

mance to the k-means clustering method [70].

2.5.3 Efficient MKL using the Nyström Approximation

MKL can be difficult or impossible to apply to large datasets since multiple kernels

must be stored to learn the kernel weights. Applying the Nyström approximation

to MKL can significantly reduce this storage requirement, thus allowing MKL to be

used on datasets that have been too large to utilize MKL in the past.

Applying the Nyström approximation to MKL starts by first replacing the kernels Kk

in (2.3) with their column-sampled versions (Kk)z, resulting in a rectangular matrix

representing the column-sampled version of K, or

Kz =
m∑
k=1

σk(Kk)z. (2.27)
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Note that since Kzz ∈ Kz, the Nyström approximation of the MKL kernel can be

computed via

K̃ = KzK†
zzKT

z , (2.28)

and K̃ can then be used in the kernel classifier. Also note that the full MKL with

m kernel matrices requires mn2 values to be stored, but by applying the Nyström

approximation by sampling c columns, where c << n, the required number of values

to store drops by a factor of c/n to mnc.

The resulting kernel K̃ is positive semi-definite, thus it can be linearized as K̃ = X̃ X̃ T ,

given the appropriate X̃ . The resulting linearized model X̃ can then be used in a

linear classifier to achieve equivalent results to the kernelized verison. We compute

X̃ via eigendecomposition of the c × c matrix Kzz. Let the columns of Uz and the

diagonal of Λz represent the eigenvectors and eigenvalues of Kzz, respectively. K†
zz

can then be decomposed as

K†
zz = UzΛ

−1
z UT

z . (2.29)

It follows that (2.28) can be rewritten as

K̃ = KzUzΛ
−1
z UT

z KT
z

= KzUzΛ
−1/2Λ−1/2UT

z KT
z

=
(KzUzΛ

−1/2
z

) (KzUzΛ
−1/2
z

)T
,

(2.30)
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and the linearized model X̃ becomes

X̃ = KzUzΛ
−1/2
z , (2.31)

which can then be used in linear classifiers and may run more quickly than their ker-

nelized counterparts. Note that while the eigendecomposition is a computationally

expensive procedure, it must only be performed on the relatively small c × c ma-

trix (O(c3)). This linearization approach for MKL follows that for the single kernel

approach known as low-rand linearized SVM proposed in [74] and packaged in [75].

2.6 Preliminary Experiments and Results

Here we review the results of the GAMKLp and DeFIMKL algorithms after apply-

ing them to benchmark data sets using SVM classifiers; we use LIBSVM to imple-

ment the classifiers [76]. Additionally, we present the results of the DeGAMKLp and

DeLSMKL. The performance of these algorithms is compared to that of the MKLGL

algorithm discussed in Section 2.4.
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Table 2.3
RBF Kernel Parameter Ranges

Data Set
Sonar Dermatology Wine Ionosphere Ecoli Glass

[-2.2, -0.5] [-2.3, 0.2] [-2.5, 2] [-2.1, 1.2] [-3, 3] [-2, 2]

2.6.1 Datasets and Algorithm Parameters

The benchmark UCI data sets [77] shown in Table 2.2 are used to evaluate the al-

gorithms. Note that in some cases multiple classes are joined together such that the

classification decision is binary. Each experiment consists of 100 trials so the results

can be statistically analyzed using a two-sample t-test. In each trial, a random draw

of 80% of the data is used for training and the remaining 20% is sequestered for

testing. Ten RBF kernels are used in each algorithm with respective RBF width σ

linearly spaced on the interval defined in Table 2.3; the same RBF parameters are

used for each algorithm.

The genetic algorithms in GAMKLp and DeGAMKLp have a population of 31 chro-

mosomes, where each chromosome is the set of �p-norm normalized weights vectors.

The GA runs for 25 generations using roulette wheel selection and elitism, where the

fittest individual is kept from each generation. One-point crossover with a rate of 60%

and a mutation rate of 5% are used, where mutation is simply a random perturbation

of the chromosome. In GAMKLp, fitness is the result of 5-fold cross validation of

the kernel-SVM accuracy using the kernel weights comprising each individual, where

43



cross validation is used to suppress the effects of over training. DeGAMKLp uses the

kernel-SVM accuracy of the entire training set, as mentioned in Section 2.4.4. Two

experiments are performed with each �p-norm GAMKLp: one with the initial popula-

tion generated randomly and another where the initial population is also seeded with

the result of the MKLGL algorithm.

The only parameter in the DeFIMKL algorithm is the regularization coefficient λ.

Once λ is defined, the QPs at (2.14) and (2.15) are solved via an interior-point solver

to obtain the FM. The results for regularization using the DeFIMKL algorithm are

generated using 10 different nonzero λs as well as the case where λ = 0, corresponding

to no regularization of (2.14).

There are no parameters that vary in the DeLSMKL algorithm. Once an ensemble of

classifiers is created and applied to the training data, the weight vector σ′ is calculated

using (2.22).

2.6.2 Results

The classification accuracies of the GAMKLp, DeFIMKL, DeGAMKLp, DeLSMKL,

and MKLGL algorithms are shown in Table 2.4 along with the standard deviations

over the 100 trials. The best algorithm(s) for each data set are shown in bold font;

a two-sample t-test at a 5% significance level is used to determine the statistically
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best algorithm(s)—hence, more than one algorithm can be considered as best. The

t-tests compare each algorithm’s distribution of accuracies against the accuracies of

every other algorithm. We see that at least two versions of the GAMKLp algorithm

have superior performance on each data set, even outperforming the well established

MKLGL algorithm on the Sonar data set. In the other data sets, the performances

of GAMKLp and MKLGL fall very close to each other and their differences are sta-

tistically insignificant.

The DeFIMKL results show that it is not as promising as the GAMKLp algorithm, and

regularization generally dampens performance. However, at least one version of the

DeFIMKL algorithm still appears in the group of superior results for half of the data

sets. Figures 2.2 and 2.3 show the results of the DeFIMKL algorithm applied to the

Sonar and Dermatology data sets, respectively. The error bars indicate plus/minus

one standard deviation over the 200 runs. Figure 2.2 and Table 2.4 show that the

�1-norm normalized kernel weights found using DeFIMKL had the best performance

when λ = 2 for the Sonar data set; however, the performance of DeFIMKL is inversely

proportional to the value of λ for the Dermatology data set. Thus, the best result

obtained from the regularized DeFIMKL algorithm occurs when the kernel weights

are �2-norm normalized with λ = 0.5. It is worthwhile to mention that even in the

cases where DeFIMKL algorithm did not achieve superior results, it was only beaten

by approximately 3%.
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Figure 2.2: DeFIMKL performance using regularization on Sonar data.
Error bars indicate ± one standard deviation.

Overall, the DeGAMKLp and DeLSMKL algorithms were not able to perform as

well as MKLGL, GAMKLp, or DeFIMKL. We see that the results of DeLSMKL

are strongly dependent on the dataset, due to the over-constrained cost formulation

discussed in Section 2.4.3. Relaxing the cost function via the DeGAMKLp algorithm

generally improves classification accuracy compared to DeLSMKL, as well as increases

the stability of the classifier across data sets.
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Figure 2.3: DeFIMKL performance using regularization on Dermatology
data—classes {1, 2, 3} versus {4, 5, 6}. Error bars indicate ± one standard
deviation.

2.7 Experiments with the Nyström Approxima-

tion

The following experiments are used to observe the merit of applying the Nyström

approximation to some of the previously discussed algorithms. The DeFIMKL and

GAMKLp algorithms are modified to utilize the Nyström approximation by applying

(2.27) and (2.28) as discussed in Section 2.5.3, where the indices in z are randomly

selected; the algorithms also use the LIBLINEAR SVM implementation [78]. The al-

gorithms are evaluated using the data sets shown in Table 2.5 from the KEEL [79] and

UCI [77] datasets, in addition to the data sets in Table 2.2. The algorithm parameters

discussed in Section 2.6.1 are used again in this experiment; however, the Nyström
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approximation is applied to the kernel matrices. The experiments are repeated using

Nyström sampling quantities ranging from 1% to 100% of the size of the data set,

allowing the effect of the Nyström sampling quantity on the classification accuracy

and run-time to be clearly visualized. Furthermore, the sampling and classification

is performed 100 times; thus, all results are based on the average of the 100 trials.

Each MKL algorithm uses 10 RBF kernels of varying widths (i.e., σ in the RBF

kernel definition): the first kernel width is always σ1 = 1
nf
, where nf is the number

of features in the data set. The remainder of the kernels are chosen such that they

are linearly spaced in the interval [nf/10, 10nf ].

2.7.1 Results

Figures 2.4 through 2.7 show the typical trend of classification accuracy versus the

Nyström sampling quantity for the GAMKL and DeFIMKL algorithms. The figures

depict the classification accuracy of the full algorithms (algorithms not using the

Nyström approximation) as dashed lines, the trend of the classification accuracy as

the Nyström sampling percentage is varied as solid lines, and the points at which the

Nyström-based algorithms’ performances drop to 5% of the performance of the full

algorithms as circles.

Of these examples, the Wine dataset clearly achieves the best performance both in
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terms of accuracy and robustness to the Nyström sampling percentage. The plots

show that by applying the Nyström approximation, we are able to use less than 10%

of the kernel matrix to achieve results essentially equivalent to the full algorithm

results, which requires the entire kernel matrix. The trend for the algorithms applied

to the Ionosphere dataset are very similar.

Figures 2.4 through 2.7 also show an example that highlights a case where the Nyström

approximation has a stronger effect on the classification accuracy. The plots given

for the Sonar dataset show that the performance decreases much more dramatically

with respect to the Nyström sampling quantity. This is typical of a high-dimensional

dataset in which a large proportion consists of points that are far apart from each

other in the kernel space, increasing the rank of the kernel matrix. In this case, a

larger number of data points are required to accurately approximate the others and

thus the matrix approximation suffers as the number of sampled points are limited.

Table 2.6 summarizes the results of applying the Nyström approximation to GAMKLp

and DeFIMKL. The values in the table represent the percentage of the full data set

required by the Nyström approximation to achieve results within 5% of the classifica-

tion accuracy acheived using the full data set, i.e., full GAMKL or DeFIMKL; these

points correspond to the circled points in Figures 2.4 through 2.7.

Note how similar the performance degradation (with respect to the Nyström sam-

pling percentage) of the different MKL approaches applied to the various datasets
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Figure 2.4: Results of using GAMKL1 on the Wine, Ionosphere, and Sonar
datasets with the Nyström approximation. Dashed line indicates full sample
performance; circle indicates sample percentage at which performance drops
5%.
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Figure 2.5: Results of using GAMKL2 on the Wine, Ionosphere, and Sonar
datasets with the Nyström approximation. Dashed line indicates full sample
performance; circle indicates sample percentage at which performance drops
5%.

is. Table 2.6 shows that we can regularly sample less than 10% of the kernel yet in-

cur negligible performance degradation. This general invariance to datasets or MKL
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Figure 2.6: Results of using DeFIMKL1 on the Wine, Ionosphere, and
Sonar datasets with the Nyström approximation. Dashed line indicates
full sample performance; circle indicates sample percentage at which per-
formance drops 5%.
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Figure 2.7: Results of using DeFIMKL2 on the Wine, Ionosphere, and
Sonar datasets with the Nyström approximation. Dashed line indicates
full sample performance; circle indicates sample percentage at which per-
formance drops 5%.

methods suggests that the performance degradation is mostly, if not all, due to the

Nyström approximation error, thus this approximation technique can be applied to
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Figure 2.8: Average speed-up percentages of classifiers using the Nyström
approximation.

other MKL approaches to yield similar results. Furthermore, the application of the

Nyström approximation makes the MKL approaches more memory-efficient, making

the application of MKL approaches to large datasets possible.

The prediction time of each experiment was recorded to show how the Nyström

approximation can also speed up classifiers. Figure 2.8 shows the average increase in

speed of the classifiers on the datasets. Notice that if we only use 20% of the data,

which Table 2.6 clearly indicates we can routinely do without sacrificing classifier

performance, the prediction speed is increased by 45—80%, depending on the dataset.

And if we choose only 5% of the data, again as Table 2.6 shows we can do with most

datasets, the prediction speed can be increased up to 92%. Therefore, in addition

to making MKL methods more memory-efficient, the Nyström approximation also

makes them faster and even more applicable to large datasets.
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2.8 Application of the Nyström Approximation to

a Large Data Set

The DeFIMKL algorithm, modified to use the Nyström approximation, is applied to

the MNIST database [80]. This database contains 60,000 training images and 10,000

testing images, each 28 × 28 pixels in dimension. There are nine total classes in this

data set, corresponding to the handwritten digits 0–9, though we split the data into

binary classes as odd vs. even. The pixel values of each image are used as the features,

thus each data point has a feature dimension of 784. The DeFIMKL algorithm uses

10 kernels as discussed in Section 2.7, and the Nyström sampling quantity is set to

1% such that the classifier can be implemented on a desktop machine with less than

8GB of available memory without parallel computing or memory-efficient mapping

techniques. Experiments were performed 20 times, and results are presented as the

average of the 20 trials.

2.8.1 Results

Figure 2.9 shows the results of applying the Nyström-based DeFIMKL algorithm to

the MNIST data. The trend is similar to DeFIMKL’s performance on the Sonar

dataset shown in Figure 2.2 in that both �1− and �2−regularized versions perform
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Figure 2.9: DeFIMKL performance using regularization on MNIST data.
Error bars indicate ± one standard deviation.

very similarly across the range of λ, however in this case the performance differences

across the range of λ are statistically insignificant. Figure 2.9 also shows that for

choices of λ ≥ 1, DeFIMKL1 tends to outperform DeFIMKL2, though inspection of

the vertical axis resolution proves that the difference is minute.

Since regularization is employed to reduce the effects of overtraining, it is no surprise

that the performance of DeFIMKL on the MNIST data is not closely tied with the

choice of the regularization parameter λ. Since we are sampling only 1% of the data

for use in the Nyström approximation, we are inherently losing information contained

in the training data, and thus already “protected” from the perils of overtraining.
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2.9 Conclusion

This chapter presents a feature-level fusion algorithm—GAMKLp—that we show is

equivalent to a fuzzy integral-based MKL approach known as FIGA. However, unlike

FIGA, GAMKLp is generalized such that σ can lie in the �p -norm domain Δp . We

also presented a decision-level fusion algorithm—DeFIMKL—that aggregates kernels

through the use of the Choquet fuzzy integral with respect to a fuzzy measure learned

by a regularized quadratic programming approach. Additionally, we propose two

other decision-level fusion algorithms, DeGAMKLp and DeLSMKL, which rely on

a genetic algorithm and a least-squares formulation, respectively. Our results show

that the GAMKLp algorithm achieves equivalent, and sometimes better, classification

accuracy than the state-of-the-art MKLGL algorithm. The DeFIMKL algorithm,

while generally not as successful as GAMKLp, is still able to match or beat MKLGL in

half of the experiments. The DeGAMKLp and DeLSMKL methods were outperformed

in every experiment and were not able to achieve the performance of the DeFIMKL

algorithm. This highlights the merit of using nonlinear aggregation for decision-level

fusion, as done by DeFIMKL.

Interpreting the results at a higher level reveals that feature-level fusion algorithms are

generally more powerful than decision-level fusion algorithms in terms of classification
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accuracy. Regardless of the data set used in each experiment, at least one feature-

level fusion algorithm emerged as a leading performer. The same cannot be said of

the decision-level fusion algorithms, though it is clear that DeFIMKL is often the best

in its class. In general, we recommend the GAMKL algorithm for situations where

processing time is not a concern since it suffers from the disadvantages associated with

genetic algorithms; the MKLGL algorithm is faster than GAMKL, however GAMKL

has been shown to converge to better results. If the situation warrants decision-level

fusion, DeFIMKL’s results suggest that it is the algorithm of choice.

Further experiments using the GAMKLp and MKLGL algorithms show that MKL

methods can be made much more efficient via the Nyström approximation with neg-

ligible impact on classifier performance. This allows MKL methods to be applied to

very large datasets where the size of the full kernel matrices is too large to store,

which we explored in an experiment with the large MNIST handwritten digit data

set.

In future work we will apply the methods discussed in this chapter to larger datasets.

Furthermore, we are working on a feature-level method for aggregating kernels with

a non-linear fuzzy integral. The main goal is to preserve the ability of the fuzzy

integral to produce non-linear aggregations of the individual kernels, while ensuring

that the result is a Mercer kernel. In order to achieve this, one must develop a way of

sorting the kernel matrix terms in the Choquet integral (and not just once with the
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base-learner training data accuracy, as does FIGA) and still aggregate with a Mercer

kernel preserving operation.
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Table 2.4
Classification Accuracy Results on Benchmark Data Sets*

Data Set
Algorithm Sonar Derm Wine

MKLGL1 83.0 (5.81) 97.3 (1.99) 99.6 (0.97)
MKLGL2 84.6 (5.11) 97.2 (1.60) 99.6 (1.02)
GAMKL1 84.0 (6.00) 97.1 (1.70) 99.4 (1.16)
GAMKL+

1 84.6 (5.67) 97.3 (1.75) 99.6 (1.00)
GAMKL2 86.0 (5.64) 97.1 (1.55) 99.5 (1.10)
GAMKL+

2 86.4 (5.62) 96.8 (1.84) 99.4 (1.16)
DeFIMKL 78.9 (5.66) 93.2 (3.07) 99.4 (1.17)

DeFIMKL1
84.9 (6.03) 84.2 (4.12) 99.5 (1.10)

λ = 2 λ = 0.5 λ = 0.5

DeFIMKL2
84.4 (6.82) 87.6 (3.80) 99.7 (0.87)

λ = 1 λ = 0.5 λ = 1.5
DeGAMKL 82.5 (5.59) 95.6 (3.01) 92.4 (2.03)
DeGAMKL1 83.2 (5.56) 94.9 (3.63) 93.0 (7.91)
DeGAMKL2 82.5 (5.79) 95.5 (3.09) 92.6 (8.68)
DeLSMKL 69.9 (8.86) 87.4 (3.81) 96.9 (2.73)

Algorithm Ionosphere Ecoli Glass
MKLGL1 95.2 (2.36) 97.1 (1.71) 94.5 (3.29)
MKLGL2 95.5 (2.40) 97.2 (1.80) 94.0 (3.53)
GAMKL1 94.8 (2.59) 97.1 (1.93) 94.0 (3.87)
GAMKL+

1 94.8 (2.53) 96.9 (1.86) 93.3 (3.99)
GAMKL2 95.1 (2.29) 97.5 (1.60) 94.0 (3.24)
GAMKL+

2 95.7 (2.39) 97.4 (1.68) 94.2 (3.49)
DeFIMKL 92.3 (7.13) 97.3 (1.77) 91.2 (3.78)

DeFIMKL1
88.8 (3.26) 91.8 (3.00) 78.1 (6.20)

λ = 4 λ = 3 λ = 0.5

DeFIMKL2
90.0 (3.35) 91.9 (3.26) 83.1 (4.83)
λ = 0.5 λ = 2.5 λ = 0.5

DeGAMKL 87.4 (10.20) 91.7 (3.20) 85.7 (5.80)
DeGAMKL1 84.9 (11.31) 91.7 (3.15) 84.3 (7.42)
DeGAMKL2 90.3 (7.37) 91.6 (2.85) 84.6 (7.52)
DeLSMKL 65.9 (5.22) 91.2 (2.89) 84.2 (6.36)

*Bold indicates best result according to a two-valued t-test at a 5% signifi-
cance level.

+The initial seed of the genetic algorithm is the weight vector found with
MKLGL.
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Table 2.5
Additional Data Sets for Nyström Verification

Data Set
SPECTF Heart Haberman Pima WDBC

No. Objects 267 306 768 569
No. Features 44 3 8 30

Binary Classes {0} vs. {1} {+} vs. {-} {+} vs. {-} {M} vs. {B}
Australian Bupa SA Heart

No. Objects 690 345 462
No. Features 14 6 9

Binary Classes {0} vs. {1} {1} vs. {2} {0} vs. {1}

Table 2.6
Nyström Sampling Percentage Required to Achieve Equivalent

Classification Results as Full Sample

Algorithm
Data Set GAMKL1 GAMKL2 DeFIMKL1 DeFIMKL2

Sonar 56% 45% 41% 35%
Dermatology 10% 9% 7% 6%

Wine 5% 6% 7% 5%
Ionosphere 8% 8% 10% 11%

Ecoli 4% 5% 1% 2%
Glass 12% 19% 8% 5%

SPECTF Heart 1% 1% 5% 1%
Haberman 1% 1% 1% 1%

Pima 3% 3% 3% 1%
Australian 2% 2% 3% 2%

Bupa 8% 10% 12% 17%
SA Heart 3% 1% 1% 1%
WDBC 2% 2% 3% 3%
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Chapter 3

Visualization and Learning of the

Choquet Integral With Limited

Training Data

The material in this chapter is submitted for publication in IEEE Transactions on Fuzzy Systems,
April 2017.
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3.1 Introduction

In many fields, we are often faced with the task of making decisions based on a set

of feature-vector data X = {x1,x2, ...,xn} ⊂ R
d. This data is typically accompanied

by a set of training labels for each feature-vector, giving the pair (y, X), where y =

(y1, y2, ..., yn)
T is a vector of labels such that yi is the label of feature-vector xi. This

problem can be considered a classification task, and is typically tackled by training a

classifier such that it can accurately predict the class label of a new sample of data

where the label is not known. More concretely, the data (y, X) are used to learn some

prediction function f such that we can accurately predict the label of feature vectors

as y = f(x).

Linear classifiers are typically nothing more than a hyperplane in the feature-space

representing the decision boundary, and training these classifiers involves finding the

hyperplane’s parameters in some optimal way. A very popular hyperplane classifier

is the support vector machine (SVM) because it is easy to train and computationally

efficient. The drawback to linear SVMs (and other linear classifiers), however, is that

they require the data to be linearly separable—a distribution very rarely encountered

with real data. One way around this is to instead use their kernel-based variants

where the data are non-linearly projected to a high-dimensional space where a suitable

hyperplane is more likely to be found. While this appears to solve the problem of
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non-separable data, it has its own baggage: what kernel function should be used?

Multiple kernel learning (MKL) typically answers this question by learning a new

kernel through the combination of predetermined kernels while maintaining symme-

try and positive-semidefiniteness, an approach discussed in many works [2, 8, 9, 10,

11, 12, 17]. These approaches fall under the roof of feature-level fusion in that they

combine different “looks” at the data (each represented by an individual kernel) and

use a single classifier to determine the predicted class label. Another MKL technique

uses multiple kernel-based classifiers, each utilizing a different kernel. The outputs of

these classifiers is then combined at the decision-level using some aggregation func-

tion. This approach to decision-level fusion is the premise for the decision-level fuzzy

integral multiple kernel learning (DeFIMKL) classifier discussed in Section 3.3, where

aggregation is performed via the Choquet fuzzy integral (FI) with respect to a fuzzy

measure (FM). Once again though we have a roadblock: how do we specify the FM?

The task we investigate in this work is learning a FM. Many previous works [81, 82, 83]

have shown that an underlying FM can be learned from training data, though here we

show that only a subset of the FM is accurately learned from the training data and

the remaining FM terms simply follow the constraints from the learning process. In

other words, only a subset of the FM is learned in a data-driven manner. Thus when

asked to classify a new sample of data using the Choquet FI, we risk utilizing terms

from the FM that were not learned accurately from the training data, leading to an
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erroneous prediction. In this work, we propose a method to more accurately learn

the FM terms that are not data-driven. The method assumes that some knowledge

of the underlying FM structure is known and thus can be encoded in the learning

process as discussed in Section 3.4.

The remainder of this chapter is organized as follows. Section 3.2 discusses fuzzy

measures and the Choquet fuzzy integral; it also introduces our strategy of simulta-

neously visualizing the FM and behavior of the Choquet integral. Section 3.3 reviews

learning a fuzzy measure through minimizing the sum-of-squared error (SSE) via

quadratic programming (QP)—the backbone of the DeFIMKL algorithm—as well as

its behavior with insufficient training data. Section 3.4 proposes an extension to

the DeFIMKL algorithm, allowing knowledge of the underlying FM to be encoded

into the QP, and Section 3.6 summarizes experiments with real-world and contrived

datasets. Finally, Section 3.7 concludes the chapter and discusses our future work.

3.2 Fuzzy Measures and Fuzzy Integrals

FIs and FMs are used for many applications and for many types of data, from simple

numeric data to intervals and type-2 fuzzy sets [36, 37, 42, 44, 46]. While manual spec-

ification of the FM works for small sets of sources, manually specifying the values of
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the FM for large collections of sources is virtually impossible. Thus, automatic meth-

ods have been proposed, such as the Sugeno λ-measure [39] and the S-decomposable

measure [47], which build the measure from the densities1, and genetic algorithm

[12, 48], Gibbs sampling [49] and other learning methods, which build the measure

by using training data. Other works [52, 53, 54] have proposed learning FMs that

reflect trends in the data and have been specifically applied to crowd-sourcing, where

the worth of individuals is not known, and is thus extracted from the data.

3.2.1 Fuzzy measures

A measurable space is the tuple (X,Ω), where X is a set and Ω is an Ω-algebra or

set of subsets of X such that

P1. X ∈ Ω;

P2. For A ⊆ X, if A ∈ Ω, then Ac ∈ Ω;

P3. If ∀Ai ∈ Ω, then
⋃∞

i=1 Ai ∈ Ω.

A FM is a set-valued function, g : Ω → [0, 1], with the following properties:

P4. (Boundary conditions) g(∅) = 0 and g(X) = 1;

1The FM values of the singletons, g({xi}) = gi are commonly called the densities.
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P5. (Monotonicity) If A,B ∈ Ω and A ⊆ B, g(A) ≤ g(B).

If Ω is an infinite set, then there is also a third property to guarantee continuity; how-

ever, in practice and in this chapter, Ω is finite and thus this property is unnecessary.

While fuzzy measures provide a way for quantifying the worth of combinations of

sources, fuzzy integrals can be used to aggregate the information from these sources.

3.2.2 Fuzzy integrals

There are many forms of the FI; see [39] for detailed discussion. In practice, FIs

are frequently used for evidence fusion [48, 55, 56, 57]. They combine sources of

information by accounting for both the support of the question (the evidence) and

the expected worth of each subset of sources (as supplied by the FM g). Here, we

focus on the fuzzy Choquet integral, proposed by Murofushi and Sugeno [59, 60]. Let

h : X → R be a real-valued function that represents the evidence or support of a

particular hypothesis.2 The discrete (finite Ω) fuzzy Choquet integral is defined as

∫
C

h ◦ g = Cg(h) =
n∑

i=1

h(xπ(i)) [g(Ai)− g(Ai−1)] , (3.1)

2Generally, when dealing with information fusion problems it is convenient to have h : X → [0, 1],
where each source is normalized to the unit-interval.
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where π is a permutation of X, such that h(xπ(1)) ≥ h(xπ(2)) ≥ . . . ≥ h(xπ(n)),

Ai = {xπ(1), . . . , xπ(i)}, and g(A0) = 0 [15, 42]. Detailed treatments of the properties

of FIs can be found in [15, 42, 61].

3.2.3 Common Aggregations via the Choquet Integral

It is well known that the Choquet integral is a powerful aggregation operator

parametrized by a FM, and thus can represent many aggregation functions [58]. For

example, the Choquet integral acts as the maximum operator when the FM is all 1s

(except g{∅} = 0, due to boundary constraints), the minimum operator when the

FM is all 0s (except g{X} = 1, due to boundary constraints), and the mean operator

when g(Ai) = |Ai|/n, ∀Ai ⊂ X.

3.2.4 Visualizing the Fuzzy Integral

The FM lattice (Hasse diagram) is a convenient method to visualize a FM; Figure 3.1

illustrates the lattice of a FM for the case of n = 3. Note that the size of the individual

nodes in the lattice indicates their relative magnitude, and monotonicity is apparent

since nodes at higher levels in the lattice are larger—or at least as large—than those

below.

67



g(1)

g( )

g(1,2) g(1,3)

g(1,2,3)

g(2,3)

g(2) g(3)

Figure 3.1: Lattice of FM elements for n = 3. Monotonicity (P5) is
illustrated by the size of each node, i.e., g({x1}) ≤ g({x1, x2}) as {x1} ⊂
{x1, x2}. Note that shorthand notation is used where g(1, 3) is equivalent to
g({x1, x3}).

The FM lattice alone, while useful for showing a FM, does not give insight into how the

Choquet integral at (3.1) utilizes the lattice due to the π-permutation. Therefore, for

a particular input we also show the path through the lattice followed by the Choquet

integral. For example, suppose that a particular data sample x and hypothesis h

gives rise to the permutation π = {2, 1, 3}. Then, for an arbitrary FM, the lattice

visualization includes the path shown in Figure 3.2. This visualization strategy allows

us to summarize the FM as well as the Choquet integral’s paths.

68



0

0.1 0.4 0.25

0.6 0.4 0.85

1

Figure 3.2: The path taken by the Choquet integral due to a single input
inducing the permutation π = {2, 1, 3}. Note that the FM was arbitrarily
defined in this example, and their distribution (ordering) follows that of
Figure 3.1.

Figure 3.3: Lattice of learned FM and paths for random training data from
the Ionosphere data set using m = 10. Note there are numerous untouched
nodes and their learned values are driven by the constraints in (3.9).
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3.3 The DeFIMKL Algorithm

The DeFIMKL algorithm was introduced in [17] as a method of decision-level fusion

in the context of classification, where a set of decisions from an ensemble of classifiers

are non-linearly fused via the Choquet FI. To mathematically describe the algorithm,

let the decision-value for feature-vector xi from the kth classifier in an ensemble be

fk(xi); the set of decisions from the ensemble comprise the evidence h for the Choquet

integral. The evidence is then integrated with respect to the FM g, which encodes the

relative worth of each classifier in the ensemble. This results in the ensemble decision

fg(xi) for feature-vector xi with respect to the FM g,

fg(xi) =
m∑
k=1

fπ(k)(xi) [g(Ak)− g(Ak−1)] , (3.2)

where Ak = {fπ(1)(xi), . . . , fπ(k)(xi)}, such that fπ(1)(xi) ≥ fπ(2)(xi) ≥ . . . ≥

fπ(m)(xi). This method has been explored in many previous works as a generalized

classifier fusion method [45, 57, 58, 65].

The FM completely specifies the behavior of the Choquet integral. Thus, the next step

in understanding the DeFIMKL algorithm is assigning a FM for the Choquet integral

in (3.2), of which there are many methods. For example, the Sugeno λ-measure [39]

may be naively used after specifying the FM values of the singletons; however, there
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is no guarantee that this choice of FM will yield acceptable results when used with

(3.2) since it does not take training data into account. To address this, we suggested

a data-driven method to learn the FM g through regularized sum-of-squared error

(SSE) optimization in [16]. This method is summarized next.

Let the SSE be defined as

E2 =
n∑

i=1

(fg(xi)− yi)
2 . (3.3)

It can be shown that (3.2), as a Choquet integral, can be reformulated as

fg(xi) =
m∑
k=1

[
fπ(k)(xi)− fπ(k+1)(xi)

]
g(Ak), (3.4)

where fπ(m+1) = 0 [15]. We can then expand the SSE as

E2 =
n∑

i=1

(
HT

xi
u− yi

)2
, (3.5a)

where u is the lexicographically ordered FM g, i.e., u =
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(g({x1}), g({x2}), . . . , g({x1, x2}), g({x1, x3}), . . . , g({x1, x2, . . . , xm})), and

Hxi
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...

fπ(1)(xi)− fπ(2)(xi)

...

0

...

fπ(m)(xi)− 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.5b)

where Hxi
is of size (2m − 1) × 1 and contains all the difference terms fπ(k)(xi) −

fπ(k+1)(xi) at the corresponding locations of Ak in u. Finally, folding out the squared

term in (3.5a) produces

E2 =
n∑

i=1

(
uTHxi

HT
xi
u− 2yiH

T
xi
u+ y2i

)

= uTDu+ fTu+
n∑

i=1

y2i , (3.6)

D =
n∑

i=1

Hxi
HT

xi
, f = −

n∑
i=1

2yiHxi
.

Since (3.6) is a quadratic function, we can add constraints on u such that it represents

a FM, leading to a constrained QP. We can write the boundary and monotonicity
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constraints on u (see properties P4 and P5) as Cu ≤ 0, where

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ΨT
1

ΨT
2

...

ΨT
n+1

...

ΨT
m(2m−1−1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.7)

and ΨT
1 is a vector representation of the monotonicity constraint, g{x1}−g{x1, x2} ≤

0. Hence, C is simply a matrix of {0, 1,−1} values of size (m(2m−1 − 1))× (2m − 1)

with the form

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 · · · −1 0 · · · · · · 0

1 0 · · · 0 −1 · · · · · · 0

...
...

...
...

...
...

...
...

0 0 · · · 0 0 · · · 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.8)

Thus, the full QP to learn the FM u is

min
u

0.5uT D̂u+ fTu, Cu ≤ 0, (0, 1)T ≤ u ≤ 1, (3.9)

where D̂ = 2D. Note that an additional regularization term can be included in the
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QP as

min
u

0.5uT D̂u+ fTu+ λv∗(u), (3.10)

where λ is the regularization weight and v∗(·) is some regularization function. For ex-

ample, �p-norm regularization is applied when v∗(u) = ‖u‖p. �1 and �2 regularization

of this QP are discussed in [16, 17].

The QPs at (3.9) and (3.10) provide a method to learn the FM u (i.e., g) from training

data, thus completing the requirements for calculating the Choquet integral at (3.2).

We now review how to use a kernel classifier to determine the decision-value fk(xi).

Specifically, we will show how to use the SVM with this algorithm.

Suppose that each learner fk(xi) is a kernel SVM, each trained on a separate kernel

Kk. The SVM classifier decision value is

ηk(x) =
n∑

i=1

αikyiκk(xi,x)− bk, (3.11)

which is interpreted as the distance of x from the hyperplane defined by the learned

SVM model parameters, αik and bk [62, 63]. The class label is typically computed as

sgn{ηk(x)},3 which could be used as the training input to the FM learning at (3.6),

however, we remap ηk(x) onto the interval [−1,+1] via the sigmoid function to create

3Note that the sgn(·) function discards information about how well the kernel separates the classes
of data.

74



inputs for learning as

fk(x) =
ηk(x)√
1 + η2k(x)

. (3.12)

Thus, the training data for DeFIMKL are ({Kk = [κk(xi,xj)], fk(X)},y), k =

1, . . . ,m, where Kk are the kernel matrices for each kernel function κk, fk(X) =

(fk(x1), . . . , fk(xn))
T are the remapped SVM decision values, and y = (y1, . . . , yn)

are the ground-truth labels of X = (x1, . . . ,xn), respectively; the output of the QP

learner is the FM g. Algorithm 1 summarizes the training process. After training, a

new feature vector x—from a test data set—can be classified by via the procedure

summarized in Algorithm 2.

Algorithm 1: DeFIMKL Classifier Training

Data: (xi, yi) - feature vector and label pairs; Kk - kernel matrices
Result: u - Lexicographically ordered fuzzy measure vector
for each kernel matrix do

Compute the kernel SVM classifier decision values, ηk, as in (3.11).
Remap the decision values onto the interval [−1,+1] as fk using (3.12).

Solve the minimization problem in (3.9) for the FM u.
Algorithm 2: DeFIMKL Classifier Prediction

Data: x - feature vector; Kk - kernel matrices; u - learned fuzzy measure vector
Result: y - Predicted class label
Compute the SVM decision values fk(x) by using (3.11) and (3.12).
Apply the Choquet integral at (3.2) with respect to the learned FM u.
Compute the class label as y = sgn{fg(x)}.
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3.3.1 FM Learning Behavior with Insufficient Training Data

Learning the entire FM for a DeFIMKL classifier utilizingm classifiers requires at least

2m (or 2m − 2, observing the boundary conditions in property P4) rank-independent

observations. Therefore, since so many rank-independent observations are rarely en-

countered in training data sets, there will likely be values of the FM that are not

data-driven. Figure 3.3 shows an example of this in the wild, where the Ionosphere

dataset [77] was used to train DeFIMKL with 10 classifiers. Note that there are many

nodes in the lattice that are never “touched” by the training data; the learned values

for these nodes is completely driven by the monotonicity constraints in the QP, the

choice of regularization used, and the initialization used in the QP solver. It is there-

fore highly unlikely that the learned values at these nodes accurately represent the

underlying FM, and if Algorithm 2 is applied to a new data point that utilizes one or

more of the untouched nodes, prediction accuracy will suffer. The following contrived

example demonstrates the behavior of the �2-regularized DeFIMKL algorithm with

insufficient training data.

Example 1. Learning an Underdetermined FM via �2-regularized DeFIMKL. A

three-SVM �2-regularized DeFIMKL algorithm (i.e., m = 3, however these results

are also indicative of the behavior when m > 3) is trained with a synthetic dataset

that purposefully avoids two nodes in the fuzzy lattice and was generated using the
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underlying FM shown in Table 3.1; the underlying FM was arbitrarily assigned. The

FM learned by the DeFIMKL algorithm with λ = 1 is also shown in Table 3.1, la-

beled as “�2−min”. Note that two nodes in the lattice, corresponding to g({x2}) and

g({x1, x2}) were not driven by the training data, and thus are essentially driven by

the monotonicity constraints.

What we see is that all nodes touched by the training data (i.e., nodes traversed

by the Choquet integral) are learned successfully with minimal error (well within

5%). However, the two nodes untouched by the training data are assigned values

based on monotonicity constraints. The node corresponding to g({x2}) gets a value

of essentially 0, satisfying the monotonicity constraint that g({∅}) ≤ g({x2}) ≤

min(g({x1, x2}), g({x2, x3})), and the node corresponding to g({x1, x2}) gets a value

of 0.14 to satisfy the constraint max(g({x1}), g({x2})) ≤ g({x1, x2}) ≤ g({X}). Note

that in both of these cases, the learned FM value is essentially the minimum value

permitted by the monotonicity constraints. This, as will be shown in the following

section, is due to the �2-regularization of the DeFIMKL algorithm.

3.4 FM Learning with a Specified Goal

The standard DeFIMKL algorithm discussed in the previous section assumes that

the structure of the underlying FM is not known, thus no information regarding the
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Table 3.1
Underlying and learned FMs (excluding g({∅}) and g(X) whose values are
0 and 1, respectively, due to the boundary conditions). The learned FM
terms marked with an asterisk are not addressed by the training data.

Regularization labels indicate the type of norm employed and the
aggregation goal. For example, “�1-min” indicates a goal of that for
minimum aggregation (g = 0) and �1-regularization (‖u− g‖1).

Goal Regularization
FM Term Underlying �2-min† �2-max �2-mean
g({x1}) 0.14 0.14 0.19 0.15
g({x2})* 0.29 0.00017 0.93 0.33
g({x3}) 0.43 0.43 0.44 0.44

g({x1, x2})* 0.57 0.14 1 0.67
g({x1, x3}) 0.71 0.69 0.71 0.71
g({x2, x3}) 0.86 0.83 0.93 0.87

FM Term Underlying �1-min‡ �1-max �1-mean
g({x1}) 0.14 0.12 0.14 0.15
g({x2})* 0.29 8.7e-9 0.86 0.33
g({x3}) 0.43 0.43 0.43 0.43

g({x1, x2})* 0.57 0.12 1 0.67
g({x1, x3}) 0.71 0.71 0.71 0.7
g({x2, x3}) 0.86 0.85 0.86 0.85

FM Term Underlying �2-LOS �1-LOS
g({x1}) 0.14 0.15 0.14
g({x2})* 0.29 0.29 0.22
g({x3}) 0.43 0.43 0.43

g({x1, x2})* 0.57 0.78 0.69
g({x1, x3}) 0.71 0.71 0.71
g({x2, x3}) 0.86 0.86 0.86
† Equivalent to �2-regularization on the FM vector directly, i.e., v∗(u) =
λ‖u‖2.
† Equivalent to �1-regularization on the FM vector directly, i.e., v∗(u) =
λ‖u‖1.

underlying FM is encoded in the QP. If, however, the FM is partially known, the QP

at (3.10) should include that information. To this end, we propose the regularization

function

v∗(u) = λ‖u− g‖p, (3.13)

78



where g represents a goal of what we expect the underlying FM to look like and p

defines the norm type. The following sections describe the solution to the regularized

problem with �2- and �1-regularization.

3.4.1 �2− Goal Regularization

Including the regularization function from (3.13) in the QP with p = 2 gives4

min
u

0.5uT D̂u+ fTu+ λ‖u− g‖22, (3.14)

and the QP then also simultaneously minimizes the Euclidean distance between the

learned FM u and the goal g. Expanding the regularization term in (3.14) leads to

min
u

0.5uT
(
D̂ + λI

)
u+ (f − 2λg)T u, (3.15)

showing that the inclusion of this regularization function still results in a valid QP,

though this comes as no surprise since the regularization function in (3.13) is quadratic

in u; the minimization problem at (3.15) can be solved by any QP solver.

4Note that we square the regularization term in this case for mathematical convenience; the problem
remains convex.
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3.4.2 �1− Goal Regularization

The regularization function in (3.13) with p = 1 forces u to lie close to the goal g in

the �1-sense. Including this regularization function in the QP gives

min
u

0.5uT D̂u+ fTu+ λ‖u− g‖1, (3.16)

however, this formulation cannot simply be reduced or combined in the objective

function any further as done in the previous case of �2−regularization; the difference

within the norm will not, in general, be non-negative. To address this we move the

regularization term to the constraints through the use of Tibshirani’s iterative lasso

algorithm [84]; see Appendix B for a brief description of the method, Algorithm 3

describes the process in terms of this problem.

This algorithm solves the unregularized problem while iteratively updating its con-

straints to enforce sparsity in the difference (u− g), although the problem in (3.16)

must be reformulated as follows. Let us first lump u and g into a single long vector w

as w = [uT gT ]T ∈ R
2m+1−2. The unregularized QP in (3.9) can then be rewritten

as

min
w

0.5wT D̂ww + fTww, Cww ≤ 0, bl ≤ w ≤ br, (3.17)
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where

D̂w =

⎡
⎢⎢⎣D̂ 0

0 0

⎤
⎥⎥⎦ , fw = [fT 0T ]T , Cw = [C 0],

bl = [(0, 1)T gT ]T , br = [1 gT ]T .

(3.18)

Denote the vector of the sign of the differences at the ith iteration as

δi = sign(ui − g), (3.19)

and the matrix including all δs from iteration 0 as

Gi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δ0
T −δ0

T

δ1
T −δ1

T

...
...

δi
T −δi

T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.20)

such that multiplication of Gi
i, the ith row of Gi, with the vector w represent an

�1−summation, e.g.,

Gi
iwi = ‖ui − g‖1, (3.21)

where ui is the learned FM from the ith iteration of the algorithm. Finally, let the

regularization parameter be t ∝ 1/λ, and the vectorized version is denoted as t = t1.

The iterative lasso algorithm for this problem is given in Algorithm 3 following the
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notation presented in (3.19)—(3.21).

Algorithm 3: �1−Goal Regularization via Tibshirani’s Lasso Algorithm

Data: The QP at (3.17) and regularization parameter t.
Result: u - Lexicographically ordered fuzzy measure vector (recovered from w).
i = 0;
w0 ← solve the unregularized QP in (3.17);
δ0 ← find the sign vector of (3.19);
G0 ← add δ0 to G as shown in (3.20);
while Gi

iwi > t do
i ← i+ 1
wi ← solve the QP in (3.17) with the additional constraint Gi−1wi−1 ≤ t.
δi ← find the sign vector of (3.19).
Gi ← add δi to G as shown in (3.20).

Recover u from wi as u =
[
I 0

]
wi, where I is the identity matrix.

3.4.3 Specific Aggregation Examples with Goal Regulariza-

tion

The following sections describe specific aggregation examples using the �1− and

�2−goal regularizations presented in the previous section. The value of the regu-

larization parameter for �1−goal regularization (t) is given in each of the following

subsections, and unless explicitly stated otherwise λ = 1 for each �2−goal regulariza-

tion experiment that follows5.

5Experiments have shown that the behavior of �1−goal regularization is much more sensitive to t
than that of �2−goal regularization to λ.
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3.4.3.1 Minimum Aggregation

It is interesting to note that when g = 0, the regularization function in (3.13) reduces

to that of �p-norm regularization of the FM vector. This is precisely why the learned

FM’s untouched nodes of Example 1 “default” to lie at the lowest end of their allow-

able range as shown in Table 3.1—we are essentially forcing the untouched FM values

to be as close to zero as possible through our choice of �p-norm regularization of the

FM vector. Tying this with the aggregation operators discussed in Section 3.2.3, we

recognize that when g = 0 we are forcing the Choquet integral to aggregate like the

minimum function. For the �1− regularized example t = 3.23.

3.4.3.2 Maximum Aggregation

Defining the goal as all 1s causes the untouched nodes to default to the maximum end

of their allowable range, tuning the Choquet integral’s behavior to that of maximum

aggregation (see Section 3.2.3). Rerunning the example in Section 3.3.1 with this

goal yields the FM summarized in Table 3.1, where it is obvious that the untouched

nodes are essentially assigned the maximum possible value permitted by the mono-

tonicity constraints. Note that in this example the learned FM values for g({x1})

and g({x2, x3}) using �2−goal regularization have been pushed farther from the un-

derlying FM, though they still lie fairly close. This discrepancy is due to the choice of

83



λ, which essentially “tunes” where the error is incurred in the QP at (3.14)–a larger

value of λ will force the learned FM to look like the goal g despite perturbing the

data-driven nodes away from their underlying values. As previously mentioned, λ was

arbitrarily set to 1 in these experiments for �2−goal regularization; t = 2 for �1−goal

regularization.

3.4.3.3 Mean Aggregation

As a final example, we define the goal of the FM to be that of mean aggregation

as explained in Section 3.2.3. Doing so leads to the learned FM shown in Table

3.1. Interestingly, the learned FM at the data-driven nodes is more accurate than

that of the previous case of maximum aggregation. We attribute this to the fact

that the goal of mean aggregation is more similar to the underlying FM than the

goal of maximum aggregation. Interestingly, the results of both �1− and �2−goal

regularized experiments are almost identical, where t = 0.5 for the �1−goal regularized

experiment.
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3.5 Learning the Goal

The previous section described a strategy for learning a FM when knowledge of the

underlying FM is known and can be encoded in the QP, however, information regard-

ing the underlying FM is rarely available in real-world problems. This section presents

a method for addressing this issue by simultaneously learning the FM at data-driven

nodes and learning an appropriate goal for the remaining nodes. To restrict the num-

ber of degrees of freedom we assume the underlying FM can be approximated by a

linear order statistic (LOS), which is a special case of the Choquet integral.

3.5.1 Defining a FM from a LOS

A normalized6 LOS for a sample x = (x1, x2, . . . , xm) is

Lw(x) =
m∑
i=1

gix(i) = gTx, (3.22)

where x(1) ≥ x(2) ≥ · · · ≥ x(m), wi ≥ 0, and
∑m

i=1 gi = 1. Note the ordering of the

elements is similar to that of the Choquet integral, thus it should come as no surprise

that the normalized LOS can be represented by a Choquet integral with respect to a

6The generalized LOS is
∑m

i=1 gix(i)∑m
i=1 gi

, but we adapt the constraint of
∑m

i=1 gi = 1 in our formulation.
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symmetric FM7.

Let the vector g ∈ R
m now represent the LOS weight vector we wish to learn. We

define the matrix A ∈ R
(2m−1)×m to map the LOS weight vector g into the do-

main of the FM u. Then, for any g we can form an equivalent FM as û = Ag.

For example, consider the LOS g ∈ R
3 and the FM vector has the ordering

û = (g({x1}), g({x2}), g({x3}), g({x1, x2}), g({x1, x3}), g({x2, x3}), g({x1, x2, x3}), ).

Then A is defined as

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

1 0 0

1 0 0

0 1 0

0 1 0

0 1 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.23)

where each row sifts a LOS weight from g and assigns it to its corresponding FM

term in û.

7A FM is symmetric if ∀|A| = |B|, g(A) = g(B).
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3.5.2 �2−LOS Regularization

Define the �2−LOS regularization function as

v∗(u) = λ‖u− Ag‖22 = λ(uTu− 2gTATu+ gTATAg), (3.24)

such that the QP at (3.10) becomes

min
u,g

0.5uT D̂u+ fTu+ λ(uTu− 2gTATu+ gTATAg). (3.25)

Note that we are now seeking to learn u and g. As was done in Section 3.4.2, we

lump u and g into v as v = [uT gT ]T such that the QP can be rewritten as

min
v

0.5vT D̂vv + fTv v, Cvv ≤ 0, bvl ≤ v ≤ bvr, (3.26)

where

D̂v =

⎡
⎢⎢⎣D̂ + λI −λA

−λAT λATA

⎤
⎥⎥⎦ , fv = [fT 0T ]T , Cv =

[
C 0

]
,

bvl = [(0, 1)T 0T ]T , bvr = 1.

(3.27)

Once again, the QP at (3.26) is in “standard” form and can be solved via any QP

solver.
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3.5.3 �1−LOS Regularization

Define the �1−LOS regularization function as

v∗(u) = λ‖u− Ag‖1. (3.28)

Again, due to the absolute value operator in the �1 norm we cannot lump the regular-

ization function into the QP as compactly as in the �2 case, thus the solution to this

problem will parallel that of Section 3.4.2 closely; we will rewrite the unregularized

QP, then add constraints iteratively. First lump u and g into z = [uT gT ]T , then

rewrite the unregularized QP as

min
z

0.5zT D̂zz+ fTz z, Czz ≤ 0, bzl ≤ z ≤ bzr, (3.29)

where

D̂z =

⎡
⎢⎢⎣D̂ 0

0 0

⎤
⎥⎥⎦ , fz = [fT 0T ]T , Cz =

[
C 0

]
,

bzl = [(0, 1)T − 1T ]T , bzr = 1.

(3.30)
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Denote the vector of the sign of the differences at the ith iteration as

δi = sign(Szi), (3.31)

where

S = [I − A], (3.32)

and define the matrix Ŝi as

[Ŝi]:,j = δi ◦ [S]:,j, (3.33)

where [S]:,j is the jth column of S and ◦ denotes the Hadamard product. We can

then write the �1−sum at the ith iteration as

‖ui − Agi‖1 = 1T Ŝizi, (3.34)

Finally, we form the matrix G as

Gi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1T Ŝ0

1T Ŝ1

...

1T Ŝi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.35)

and denote its jth row as Gi
j. Using this notation, Algorithm 4 describes the process

of solving the �1−LOS regularized QP.
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Algorithm 4: �1−LOS Regularization via Tibshirani’s Lasso Algorithm

Data: The QP at (3.29) and regularization parameter t.
Result: u - Lexicographically ordered fuzzy measure vector (recovered from z).
i = 0;
z0 ← solve the unregularized QP in (3.29);
G0 ← form the matrix in (3.35);
while Gi

izi > t do
i ← i+ 1
zi ← solve the QP in (3.29) with the additional constraint Gi−1zi ≤ t.
Gi ← add 1T (δi ◦ S) to G as shown in (3.35).

Recover u from zi as u =
[
I 0

]
zi.

3.5.3.1 LOS Aggregation

Applying �1− and �2−LOS regularization (λ = t = 1) to our example in Section 3.3.1

leads to the learned FMs in Table 3.1. Similar to the previous methods, the FM of the

data-driven nodes is learned with high accuracy in both cases. What is noteworthy,

however, is how the nodes untouched by the training data are learned—the learned

FM assigned to these untouched nodes is essentially the mean of the touched nodes

at the same level in the lattice (touched nodes with the same cardinality). In other

words, g({x2}) = g({x1})+g({x3})
2

and g({x1, x2}) = g({x1,x3})+g({x2,x3})
2

. Note that for

this particular example, it is only a coincidence that the learned FM term g({x2})

exactly matches the underlying FM for �2−LOS regularization.
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3.6 Experiments

Experiments were performed using no regularization, �p−norm regularization, and the

goal-based regularization function in (3.13) with the DeFIMKL algorithm on various

datasets from the UCI Machine Learning repository as well as toy datasets generated

to purposefully exclude 80% of the training of nodes in an arbitrarily generated fuzzy

lattice (three toy datasets were generated using 3, 5, and 8 densities, respectively).

Each experiment consists of 100 trials, where in each trial a random partition of 80%

of the data is used for training and the remaining data is sequestered for testing;

the results we report comprise the mean and standard deviation of classification

accuracies. Finally, we vary the regularization parameter, λ, to explore its effect on

classification accuracy and the results with the best λs are reported; so, essentially

we are comparing the best from each algorithm.

3.6.1 Results

Table 3.2 summarizes the results of these experiments. The best algorithms for each

dataset are shown in bold font; a two-sample t-test at a 5% significance level is used

to determine the statistically best results—hence, more than one algorithm can be

considered as best. In all experiments at least one goal-based regularization function
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Table 3.2
Classification Accuracy of Various Regularization Functions*

Data Set
Regularization Sonar Derm Ecoli Glass

None 80.5 (5.63) 94.3 (2.61) 97.3 (1.90) 91.2 (4.39)

�1
78.4 (7.23) 89.6 (4.35) 91.8 (2.79) 82.7 (6.77)

λ = 0.5 λ = 0.5 λ = 5 λ = 0.5

�2 (min)
80.0 (6.72) 91.9 (3.09) 91.8 (2.79) 85.9 (5.79)

λ = 0.5 λ = 0.5 λ = 0.5 λ = 0.5

max
72.0 (7.58) 97.4 (1.88) 97.9 (1.91) 94.2 (3.97)
λ = 0.5 λ = 1.5 λ = 4.5 λ = 4.5

mean
76.6 (7.17) 97.7 (1.49) 97.1 (2.14) 95.2 (3.07)

λ = 0.5 λ = 3 λ = 1.5 λ = 1

Regularization Toy 3 Toy 5 Toy 8
None 84.7 (6.48) 95.0 (3.39) 98.4 (1.76)

�1
64.4 (7.23) 91.0 (4.87) 96.9 (2.74)
λ = 2.5 λ = 0.5 λ = 5

�2 (min)
64.2 (7.05) 92.4 (3.88) 91.4 (4.36)
λ = 2.5 λ = 0.5 λ = 5

max
88.5 (6.35) 94.3 (2.84) 98.9 (1.61)
λ = 1.5 λ = 2 λ = 2.5

mean
94.8 (4.50) 96.7 (2.30) 98.4 (1.89)

λ = 1.5 λ = 5 λ = 1

*Bold indicates best result according to a two-valued t-test at a 5% signifi-
cance level.

emerges as a top performer. We also find that the max and mean goal-based regu-

larization functions achieve superior results on the Dermatology and Glass datasets,

suggesting that the data define an underlying FM that is most similar to mean or max

aggregation. There is no clear trend in the results versus the regularization parameter

λ, and not surprisingly the best selection of λ varies based on the dataset used.
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3.7 Conclusion

This chapter first introduced a visualization technique that shows both the FM as

well as the Choquet integral’s path through the lattice. We also proposed and applied

a new regularization function to our previously developed decision-level aggregation

algorithm known as DeFIMKL. Including this new regularization function in the

DeFIMKL algorithm allows knowledge of an underlying FM to be encoded into the

algorithm’s training procedure; thus, the user can define a particular goal for the FM

before learning. We discussed the application of the new regularization function and

demonstrated its behavior using synthetic and real-world datasets.
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Chapter 4

Measures of the Shapley Index for

Learning Lower Complexity Fuzzy

Integrals

The material in this chapter is submitted for publication in Springer Granular Computing, April
2017.
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4.1 Introduction

At the heart of challenges like machine intelligence, robotics, Big Data, geospatial

intelligence, and humanitarian demining, to name a few, is the dilemma of data and

information fusion. A key element of fusion is the underlying mathematics to convert

multiple, potentially heterogeneous inputs into fewer outputs (typically one). The

general hope is that the operation either summarizes well or enhances a system’s per-

formance by exploiting interactions across the different sources. A famous scenario is

where “the whole can be worth more than the sum of its parts.” Herein, we consider

the fuzzy integral (FI), specifically Sugeno’s fuzzy Choquet integral (CI), for data and

information aggregation [85]. The CI is an aggregation operator generator as it is

parametrized by the fuzzy measure (FM) [85], aka monotone and normal capacity.

In [86], it was shown that the CI can produce numerous useful and common aggre-

gation operators based on the properties of the capacity; for example the minimum,

maximum, median, mean, soft maximum (minimum), other linear order statistics,

etc. However, the CI can also produce a wealth of other more unique and tailored

aggregation operators. The point is, the CI is a powerful non-linear function that is

used often for fusion.

It is important to note that the CI is not trivial in any respect. The capacity has 2N−2
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free parameters, for N inputs, that must be either specified or learned. This exponen-

tial number can (and often does) impact an application rather quickly. For example,

10 inputs already gives rise to 1,022 values that must be specified or learned (and

5,110 monotonicity constraints at that). The reader can refer to [85, 87, 88, 89] for re-

views of analytical methods for specifying a capacity relative to just knowledge about

the worth of the individual sources (called densities, g({xi}) for i ∈ {1, 2, ..., N}). Ex-

amples of FMs include the Sugeno λ-FM [85], S-Decomposable FMs [87, 90], Belief

(and Plausibility) and Possibility (and Necessity) FMs [90], and k-additive approaches

(which model a limited number of capacity terms up to a k-tuple number) [91].

To date, numerous methods have been proposed to learn the CI. While similar in

underlying objective, these methodologies can and often do vary greatly with respect

to factors like application domain, mathematics and how the CI is being used (e.g.,

signal and image processing, regression, decision-level fusion, etc.). In [88, 89], Gra-

bisch proposed quadratic programming (QP) to acquire the full capacity based on the

idea of minimizing the sum of squared error (SSE). In [92], Keller et al. used gradient

descent and then penalty and reward [93] to learn the densities in combination with

the Sugeno λ-FM. In [83], Beliakov used linear programming and, in [82], a genetic

algorithm was used to learn a higher-order (type-1) fuzzy set-valued capacity for the

Sugeno integral (SI). Alternatively, the works [52, 94, 95] propose different ways to

automatically acquire, and subsequently aggregate, full capacities of specificity and

agreement based on the idea of crowd sourcing when the worth of the individuals is
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not known but is instead extracted from the data. The reader can refer to [81] for a

detailed review of other existing work prior to 2008.

An underrepresented and unsolved challenge is learning the CI with respect to more

than one criteria. Herein, we focus on minimization of the SSE criteria, but do

it in conjunction with model complexity. In [96], Mendez-Vazquez and Gader are

the first that we are aware to study the inclusion of an information-theoretic index

of capacity-complexity in learning the CI. Specifically, Mendez-Vazquez and Gader

explored the task of sparsity promotion in learning the CI and provided examples

in decision (namely algorithm) level fusion. Their work has two parts, the Gibbs

sampler and the exploration of a lexicographically encoded capacity vector as the �p-

norm complexity term. The goal of their regularization term was to explicitly reduce

the number of nonzero parameters in the capacity to eliminate non-informative or

“useless” information sources. In [97], the idea of learning the CI based on the use of

a QP solver and a lexicographically encoded capacity vector was also explored. The

novelty in that work is the study of different properties of the regularization term

in an attempt to unearth what it was promoting in different scenarios (with respect

to both the capacity but also the resultant aggregation operator induced by the CI).

In the theme of information theoretic measures of capacities, but not regularization

with respect to such indices, Kojadinovic et al. [98] and Yager [99, 100] both explored

the concept of the entropy of an FM. Furthermore, in [101], Labreuche explored the

identification of an FM with an �1 entropy. Labreuche proposed a linearized entropy
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of an FM, allowing for the identification of an FM using linear programming.

For the most part, it appears that the vast majority of these works are largely un-

aware of each other. Therefore, in Section 4.2.2 we bridge this gap by analyzing and

comparing different properties of these indices. In general, there does not appear to

be a clear “winner.” That is, different indices exist and are useful for various ap-

plications and goals (contexts). Therefore, it is important to understand each index

and ultimately what context it supports. In addition, we put forth a few new indicies

based on the Shapley values. Our intent is to promote “simpler models” that have

either lower diversity in the Shapley values or fewer numbers of inputs (fewer non-

zero Shapley terms). In fields such as statistics and machine learning, such a strategy

can help with addressing challenges like preventing overfitting (aka improving the

generalizability of a learned model). It is also the case that we are often concerned

with problems having too many inputs, as more inputs are typically associated with

higher cost—e.g., greater financial cost of different sensors, more computational or

memory resources, time, or even physical cost in a health setting where an input is

something like the result of a bone marrow biopsy.

This chapter is structured as such. Section 4.2 is a review of important concepts in

FM and FI theory. Section 4.2.1 discusses the Shapley and interaction indices and

Section 4.2.2 reviews and compares existing indices for measuring different notions of

complexity of a capacity. In Section 4.2.3, the �0-norm, �1-norm and Gini-Simpson
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index of the Shapley values are proposed and Section 4.3 discusses optimization of

the CI relative to the SSE criteria based on the QP. We propose Gini-Simpson index-

based regularization of the Shapley values in Section 4.4, Section 4.5 discusses �0-

norm based regularization, and Section 4.6 contains experiments illustrating different

scenarios encountered in practice.

4.2 Fuzzy Measure and Integral

The aggregation of data/information using the FI has a rich history. Much of the

theory and several applications can be found in [86, 87, 88, 89, 102, 103, 104, 105].

There are a number of (high-level) ways to describe the FI, e.g., motivated by Cal-

culus, signal processing, pattern recognition, fuzzy set theory, etc. Herein, we set the

stage by considering a finite set of N sources of information, X = {x1, ..., xN}, and a

function h that maps X into some domain (initially [0, 1]) that represents the partial

support of a hypothesis from the standpoint of each source of information. Depend-

ing on the problem domain, X can be a set of experts, sensors, features, pattern

recognition algorithms, etc. The hypothesis is often thought of as an alternative in

a decision process or a class label in pattern recognition. Both Choquet and Sugeno

integrals take partial support for the hypothesis from the standpoint of each source

of information and fuse it with the (perhaps subjective) worth (or reliability) of each

subset of X in a non-linear fashion. This worth is encoded in an FM (aka capacity).
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Initially, the function h (integrand) and FM (g : 2X → [0, 1]) took real number values

in [0, 1]. Certainly, the output range for the support function and capacity can be

(and have been) defined more generally, e.g., �+
0 , but it is convenient to think of them

on [0, 1] for confidence fusion. We now review the capacity and FI.

Definition 1 (Fuzzy Measure [85]). The FM is a set function, g : 2X → �+
0 , such

that

P1. (Boundary condition) g(φ) = 0 (often g(X) = 1);

P2. (Monotonicity) If A,B ⊆ X and A ⊆ B, g(A) ≤ g(B).

Note, if X is an infinite set, a third condition guaranteeing continuity is required, but

this is a moot point for finite X. As already noted, the FM has 2N values; actually,

2N − 2 “free parameters” as g(φ) = 0 and g(X) = 1. Before a definition can be

given for the FI, notation must be established for the training data used to learn the

capacity.

Definition 2 (Training Data). Let a training data set, T , be

T = {(Oj, αj)|j = 1, ...,m}

where O = {O1, ..., Oj, ..., Om} is a set of “objects” and αj are their corresponding

labels (specifically, �-valued numbers). For example, Oj could be the strengths in
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some hypothesis from N different experts, signal inputs at time j, algorithm outputs

for input j, kernel inputs or kernel classifier outputs for feature vector j, etc. Sub-

sequently, αj could be the corresponding function output, class label, membership

degree, etc. Next, we provide a definition for the FI, namely the CI with respect to

T . To that end, let hj be the jth integrand, i.e., hj(xi) is the input for the ith source

with respect to object j.

Definition 3. The discrete CI, for finite X and object Oj is

∫
hj ◦ g = Cg(hj)

=
N∑
i=1

[hj(xπj(i))− hj(xπj(i+1))]g(Aπj(i)),

(4.1)

for Aπj(i) = {xπj(1), ..., xπj(i)} and permutation πj such that hj(xπj(1)) ≥ ... ≥

hj(xπj(N)), where hj(xπj(N+1)) = 0 [85].

4.2.1 Shapley and Interaction Indices

The CI is parametrized by the capacity. Specifically, the capacity encodes all of the

rich tuple-wise interactions between the different sources and the CI utilizes this infor-

mation to aggregate the inputs (the integrand, h). It is important to note that the CI

operates on a weaker (and richer) premise than a great number of other aggregation

operators that assume additivity (a stronger property than monotonicity). However,
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the capacity has a large number of values. It is not trivial to understand a capac-

ity. For example, a commonly encountered question is what is the so-called worth

of a single individual source? Information theoretic indices aid us in summarizing

information such as this in the capacity. The point is, most of our questions are not

about a single capacity value; we are interested in a complex question whose answer

is dispersed across the capacity. For example, the Shapley index has been proposed

to summarize the so-called worth of an individual source and the interaction index

summarizes interactions between different sources.

Definition 4 (Shapley Index). The Shapley values of g are

Φg(i) =
∑

K⊆X\{i}
ζX,1(K) (g(K ∪ {i})− g(K)) , (4.2a)

ζX,1(K) =
(|X| − |K| − 1)!|K|!

|X|! , (4.2b)

where X\{i} denotes all subsets from X that do not include source i. The Shapley

value of g is the vector Φg = (Φg(1), ...,Φg(N))t and
∑N

i=1 Φg(i) = 1. The Shapley

index can be interpreted as the average amount of contribution of source i across all

coalitions. Equation (4.2a) makes its decision based on the weighted sum of (positive-

valued) numeric differences between consecutive steps (layers) in the capacity.

Remark 4. It is important to note the following property. When g(A) = 0, ∀A ⊂ X,

the CI is the minimum operator. The Shapley values are Φg(1) = Φg(2) = ... =
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Φg(N). This is easily verifiable as the Shapley is a weighted sum of differences between

g(X) and g(X\xi) (one of our inputs). Thus, each Shapley value reduces to the same

calculation, ζX,1(K), where K ∈ 2X and |K| = |X| − 1.

Definition 5 (Interaction Index). The interaction index (Murofushi and Soneda

[106]) between i and j is

Ig(i, j) =
∑

K⊆X\{i,j}
ζX,2(K)(g(K ∪ {i, j})

− g(K ∪ {i})− g(K ∪ {j}) + g(K)), i = 1, ..., N, (4.3a)

ζX,2(K) =
(|X| − |K| − 2)!|K|!

(|X| − 1)!
, (4.3b)

where Ig(i, j) ∈ [−1, 1], ∀i, j. A value of 1 (respectively, −1) represents the maximum

complementarity (respective redundancy) between i and j. The reader can refer to

[107] for further details about the interaction index, its connections to game theory

and interpretations. Grabisch later extended the interaction index to the general case

of any coalition [107].
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Definition 6 (Interaction Index for coalition A). The interaction index for any coali-

tion A ⊆ X is

Ig(A) =
∑

K⊆X\A
ζX,3(K,A)

∑
C⊆A

(−1)|A\C|g(C ∪K),

i = 1, ..., N, (4.4a)

ζX,3(K,A) =
(|X| − |K| − |A|)!|K|!

(|X| − |A|+ 1)!
. (4.4b)

Equation (4.4a) is a generalization of both the Shapley value and Murofushi and

Soneda’s interaction index as Φg(i) corresponds with Ig({i}) and Ig(i, j) with

Ig({i, j}).

While the Shapley and interaction indices are extremely useful, they do not, in their

current explicit form, inform us about capacity complexity. In the next subsection,

we review additional information theoretic capacity indices and we discuss their in-

terpretations.

4.2.2 Existing Indices for Capacity Complexity

Excluding indices that are subsumed by others, the bottom line is various indices exist

for different reasons. First, some indices are simpler computationally while others are

mathematically simpler in terms of our ability to manipulate and use them for tasks

105



like optimization. Second, and arguably the most important, complexity can and

often does mean different things to different people/applications. As we discuss in

this chapter, there is no clear winner (i.e., index). Different indices are important

for different applications and knowledge of their existence and associated benefits is

what is ultimately important. In this section we review existing information theoretic

indices for complexity.

Definition 7 (�1-Norm of a Lexicographically Encoded Capacity Vector). Let u (a

vector of size (2N − 1) × 1) be u = (g1, g2, ..., g12, g13..., g12...N)
t. A relatively simple

index of the complexity of g is

v�1(g) =
2N−2∑
j=1

|uj| =
2N−2∑
j=1

uj. (4.5)

As stated in [96, 97], the intent of v�1(g) was to help reduce the number of nonzero pa-

rameters in the capacity to eliminate non-informative or useless information sources.

However, this index is not as sophisticated as desired. The index is minimized when

all uj are equal to zero, i.e., the FM g(A) = 0, ∀A ⊂ X, which is a minimum operator

for the CI [86]. We also note that this is an FM of “ignorance,” as we assert that the

answer resides in X, however we have assigned g(A) = 0 to all subsets outside X.

The index is maximized for the FM g(A) = 1, ∀A ⊆ X, which is a maximum operator

for the CI [86]. There are really two problems with this index. First, it does not take

advantage of any capacity summary mechanism like the Shapley index, interaction
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index or k-additivity. Second, it is well-known that the �1 is (geometrically) inferior

to the �0 when it comes to promoting sparsity. However, the �1-norm gives rise to

convex problems that we can more easily solve for while the later does not.

Definition 8 (Marichal’s Index). Marichal’s Shannon-based entropy of g [108, 109],

vM(g) =(−1)
N∑
j=1

(
∑

K⊆X\{j}
ζX,1 (K) (g(K ∪ {j})− g(K))

ln(g(K ∪ {j})− g(K))), (4.6a)

is motivated in terms of the following [110]. Consider the set of all maximal chains

of the Hasse diagram (2N ,⊆). A maximal chain in (2N ,⊆) is a sequence

φ, {xπ(1)}, {xπ(1), xπ(2)}, ..., {xπ(1), ..., xπ(N)},

where π is a permutation of N . On each chain, we can define a “probability distri-

bution,”

pgπ(i) : = g({xπ(i), ..., xπ(N)})− g({xπ(i+1), ..., xπ(N)}),

i = 1...N, π ∈ ΠN .

It is not entirely clear to us why this is called a probability distribution. For example,

it is confusing why this is the case for a Belief measure, a Possibility measure, etc. We

assume it is interpreted as such due to the properties of positivity and the distribution
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sums to 1. Furthermore, [110] states that “...the intuitive notion of uniformity of a

capacity g on N can then be defined as an average of the uniformity values of the

probability distributions” (distributions provided according to pgπ(i)) [110]. Regard-

less, this account of entropy is the average of the uniformity values of the underlying

probability distributions. In general, such an index can be of help with respect to the

maximum entropy principle. Furthermore, maximization of index vM(g) is non-linear

and not quadratic [101]. As stated in [101], we can obtain a quadratic problem under

linear constraints, considering a special case of Renyi entropy.

It is trivial to prove that minimum entropy for Equation (4.6a) occurs if and only if

g(K ∪ {j})− g(K) yields values in {0, 1}. Note, Equation (4.6a) is defined for

ln (g(K ∪ {j})− g(K)) = 0

by choosing 0. While many properties of this definition of entropy are discussed in

[110], a few important properties were not discussed. First, there is not a single unique

“solution” (minimum). That is, an FM of all 0s (minimum operator) and an FM of

all 1s (maximum operator) both satisfy this criteria. There are other FMs that satisfy

this criteria as, e.g., the N different order-statistics where a single input becomes the

output and all other inputs are discarded (one input has a Shapley value of 1 and all

other inputs have a Shapley value of 0). Also, there is the case of the ordered weighted

average (OWA) [111]. An OWA is a class of FMs (when paired with the CI) in which
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sets of equal size cardinality have equal measure value. The OWA weights are simply

the differences between the constant tuple values, i.e., wi = g (Ai)− g (Ai \ {i}). For

N inputs, we have N such OWAs that yield the mentioned minimum—capacities

with values of 1 for all sets A ⊆ X with |A| ≥ k and 0 otherwise, for k = 1...N .

Note, two of these N cases are the maximum and minimum aggregation operators.

On the other hand, maximum entropy occurs in the case of a “uniform distribution”

(all 1
N

values). This only occurs in the case of a capacity in which g(A) = |A|/|X|,

which is a CI-based average operator. This uniqueness of the maximization case was

one of the motivating reasons for the proposal of Marichal’s index (maximum entropy

principle).

Definition 9 (Shannon’s Entropy of the Shapley Values). In [97], a related but

different formulation of Shannon’s entropy was explored in terms of the Shapley

values,

vS(g) = (−1)
N∑
j=1

Φg (j) ln (Φg (j)) . (4.7)

Note, the Shapley index values sum to 1, i.e.,

N∑
j=1

Φg = 1.

Furthermore, Equation (4.7) is not defined for Φg(j) = 0; it is by choosing

ln (Φg (j)) = 0. When only one source is needed, a single value is 1 and the oth-

ers are 0, i.e., Equation (4.7) equals 0. There are N such unique cases. There are
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also not any such cases in which the Shapley values are all 0s or 1s (by definition).

On the other hand, the more uniformly distributed the Shapley values become, the

more inputs are required (each are important relative to solving the task at hand).

In the extreme case, as when all Shapley values are 1
N
, all sources are needed and we

obtain maximum entropy. This occurs when g causes the CI to reduce to an OWA

and there is an infinite set of such capacities/OWAs (for a �-valued FM).

In summary, there are fewer and more easily rationalized solutions for Equation (4.7)

versus Equation (4.6a) in the case of minimizing the entropy of a capacity and the

latter has fewer solutions for maximizing entropy. However, while there are more solu-

tions in the case of Equation (4.7), they can easily be rationalized (all such capacities

treat the inputs as equally important in terms of the CI). These two definitions of

entropy are similar but not equivalent.

Definition 10. Kojadinovic’s variance of g is [110]

vK(g) =
1

N

N∑
j=1

(
∑

K⊆X\{j}
ζX,1(K)

(g(K ∪ {j})− g(K)− 1

N
)2). (4.8a)

It is trivial to verify that this index equals 0 if and only if the differences between

the capacity terms equal 1
N
. This is unique in the fact that it only occurs in the case

of g(A) = |A|/|X| (i.e., a CI that reduces to the average operator). As Kojadinovic
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discusses, Equation (4.8a) is a simpler way (versus Marichal’s index which involves

logarithms) to measure the uniformity of a distribution. Also, Equation (4.8a) equates

to 0 if and only if we have the case of a “uniform distribution.” Kojadinovic’s goal,

in the theme of Marichal’s notion of entropy, is that of maximum entropy—the “least

specific” capacity compatible with the initial preferences of a decision maker. Ko-

jadinovic’s variance is maximized in the case that the difference of the two capacity

terms equals 0 or 1. This occurs in the case of a minimum operator, maximum oper-

ator, or the other (N − 2) OWAs discussed in the case of Marichal’s entropy. Thus,

Kojadinovic’s variance and Marichal’s entropy are tightly coupled, while Equation

(4.7) is once again different in its design and set of relevant solutions.

Definition 11. Labreuche’s linearized entropy of g is [101]

vL(g) =(−1)
N∑
j=1

(
∑

K⊆X\{j}
ζX,1 (K)

∣∣∣∣g(K ∪ {j})− g(K)− 1

N

∣∣∣∣). (4.9a)

The primary goal of this index is to linearize Kojadinovic’s index to assist in optimiza-

tion (apply linear programming). Labreuche’s goal was to also satisfy, with respect

to the different probability distributions, symmetry (value regardless of input per-

mutation), maximality and minimality (probability distribution of all 1
N

values and

the distribution of all zeros with a single value of one). Kojadinovic’s index does not

satisfy the last two properties. Furthermore, index vL(g) has a single minimum, the
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capacity g(A) = |A|
|X| , which results in the CI becoming the mean operator. Labreuche’s

index also has a single maximum, one for each probability distribution. In terms of

the capacity, this equates to the minimum operator, the maximum operator, and the

other (N − 2) OWAs discussed for Kojadinovic’s index.

Definition 12. The k-additive based index is [112, 113, 114]

vT (g) =
∑
A⊆X

f(|A|)|M(A)|, (4.10)

where f is a strictly increasing function defined on the cardinality of subsets of X and

M is the Mobius transform of g [89, 107]. The Mobius transform of g is used here

to highlight and exploit k-additivity, i.e., M(B) = 0, ∀B ⊆ X with |B| > k. This is

a different approach as k-additivity allows for what could be considered a “compact”

representation of g (under a set of restrictions) to combat the otherwise combinatorial

explosion of g:
∑k

i=1

(
N
i

)
terms versus 2N . In summary, vT (g) favors the restriction

that capacities have a low level of nonadditivity.

It is well-known that the sum of the Mobius terms for the capacity is equal to one

[115]. However, vT (g) considers the sum of the absolute values of the Mobius terms.

It is trivial to prove that vT (g) has a single maximum for the case of a capacity of all

ones, g(A) = 1, ∀A ⊆ X, i.e., the maximum operator. Although these values sum to

one, they can be any value in [−1, 1]. This index does not have a unique minimum.

For example, a capacity of all zeros (except g(X)) has an index value of 1, the mean
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operator, g(A) = |A|
|X| , has an index of 1, and a capacity where a single input has

a Shapley value of 1 has an index of 1. In general, the higher the k-additivity, the

greater the vT (g).

While the above indicies are all useful in their respective contexts, none truly address

the desire to favor fewer numbers of inputs. In the next subsection we explore a few

new indices to achieve this goal based on utilization of the Shapley values.

4.2.3 New Indices of Complexity Based on the Shapley Val-

ues

Definition 13 (�1-Norm of Shapley Values). Let Φg = (Φg(1) Φg(2) ... Φg(N))t, a

vector of size N × 1, be the vector of Shapley values. The so-called �1-norm of Φg is

‖Φg‖1 =
N∑
i=1

|Φg(i)| =
N∑
i=1

Φg(i) = 1. (4.11)

It is important to note that the constraint that the Shapley values sum to 1 renders

the �1 index useless for regularization (as it yields a constant). Next, we explore the

�0.

Definition 14 (�0-Norm of Shapley Values). Let Φg = (Φg(1) Φg(2) ... Φg(N))t, a
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vector of size N × 1, be the vector of Shapley values. The so-called �0-norm of Φg is

‖Φg‖0 = |{i : Φg(i) �= 0}| . (4.12)

Technically, the �0-norm is not really a norm. It’s a cardinality function that counts

the number of non-zero terms. The �0-norm has been used extensively in areas like

compressive sensing, where the goal is to typically find the sparsest solution for an

under-determined linear system. If we define Equation (4.12) on the lexicographically

encoded capacity vector, versus the Shapley values vector, then we would be back in

the same predicament of striving for a capacity of all 0s (except for g(X) = 1), viz.,

the minimum operator for the CI. It is clear that Equation (4.12) has its minimum

for the case of one Shapley value equal to 1 (thus all other Shapley values are equal

to 0). Its next smallest value is for the case of two Shapley values greater than

zero and all other Shapley values are equal to zero (and so forth). It is clear to see

that sparsity, in the sense of the fewest number of non-zero values, is preserved via

the �0-norm. Specifically, Equation (4.12) has N minima, e.g., Φg = (1, 0, ..., 0)t,

Φg = (0, 1, 0, ..., 0)t, ..., Φg = (0, 0, ..., 0, 1)t. For two non-zero values, there are
(
N
2

)
such solutions (

(
N
k

)
in general for k non-zero inputs).

As an index, the �0 with respect to the Shapley values is fantastic at helping promote

fewer number of non-zero parameters (inputs). Problem solved, correct? Not entirely.
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One (big) challenge is that the �0 results in a non-convex optimization problem that

is NP-hard. Before we consider �0 approximation, we investigate an alternative, but

theoretically inferior (the tradeoff), index that is simpler to solve for based on the

Gini-Simpson coefficient.

The Gini coefficient (aka Gini index or Gini ratio) is a summary statistic of the

Lorenz curve and it was developed by the Italian statistician Corrado Gini in 1912.

It is important to note that numerous mathematical formulations exist, from Cor-

rado’s original formula to Brown’s Gini-style index measuring inequalities in health

[116, 117]. A full review of the Gini index and its various discrete and continuous

formulations is beyond the scope of this chapter (for a recent review, see [118]). The

Gini index is used extensively in areas like biological systems (for measuring species

similarity [119]), knowledge discovery in databases (often referred to as an “impurity

function”), social sciences and economics. For example, it is often used as a measure

of income inequality within a population. On one extreme, the Gini index equates to

perfect “equality” (everyone has the same income) and, at the other extreme, to per-

fect “inequality” (one person has all the wealth and everyone else has zero income).

Herein, we use a mathematically simple, but pleasing nevertheless, instantiation of

the Gini index—at Equation (4.13)—often referred to as the Gini-Simpson index (or

in ecology as the probability of interspecific encounter) with respect to a probability

distribution (the Shapley values satisfy this criterion). However, the Gini-Simpson

function belongs to a larger family of functions parametrized by a variable q (the
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sensitivity parameter) and Z (a matrix of similarity values between elements in the

distribution) [119]. Based on q and Z, we get different diversity measures, e.g., Shan-

non’s entropy, Rao’s quadratic entropy, “species richness” index, etc.

Definition 15 (Gini-Simpson Index of Shapley Values). The Gini-Simpson index of

the Shapley values is

vG(g) =
N∑
i=1

N∑
j=1,j �=i

Φg(i)Φg(j) = 1−
N∑
i=1

Φg(i)
2. (4.13)

Note, vG(g) = 0 if and only if there is a single Shapley value equal to 1 (therefore

all other values are equal to 0). There are N such possible unique solutions to this

criteria. If Φg(i) = 1 and Φg(j) = 0, ∀j �= i, then all g subsets that contain input

i are of value 1 and 0 elsewhere. Also, the maximum of vG(g) occurs only when

all Shapley values are equal. This equates to an infinite number of particular OWA

solutions in which all inputs are “equally important.” It is obvious that Equation

(4.13) is nothing more than one minus the squared �2-norm of the Shapley values.

Next, we provide simple numeric examples (Table 4.1) to (empirically) demonstrate

some similarities and differences between the �0 and the Gini-Simpson.

Again, the �0 wants the fewest number of non-zero parameters and the Gini-Simpson

index is a measure of diversity in the Shapley values, or more specifically one minus

the squared �2-norm, that ultimately aims to promote, in the extreme case, a single
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Table 4.1
Numeric Examples, for N = 3, Illustrating �0 and Gini-Simpson

Differences.

FM Shapley Values �0 Gini-Simpson
ga Φga = (1, 0, 0) 1 0
gb Φgb = (.8, .2, 0) 2 0.320
gc Φgc = (.5, .5, 0) 2 0.500
gd Φgd = (.8, .1, .1) 3 0.340
ge Φge = (.4, .3, .3) 3 0.660
gf Φgf = (.999, .0005, .0005) 3 0.002
gg Φgg = (1

3
, 1
3
, 1
3
) 3 0.667

dominant input (one Shapley value of 1 and all other values equal to 0). They both

have lowest value for a single input (case ga) and maximum value for the case of a

uniform distribution (case gg). While their trends are often similar, e.g., both prefer

ga to gb and gb to gd and ge, they do not always obviously agree. For example, consider

gc and gd. The �0-norm prefers gc to gd as the prior has one zero term and the latter

has no zero terms. However, the Gini-Simpson index prefers gd to gc. In gc, the

Shapley values indicate that one input is not important while the other two inputs

are equally important. In gd, the Shapley values indicate that one input is important

and the other two inputs are equal and not that important at that. According to

the Gini-Simpson index, gd is closer to a single input vs gc. This behavior is further

emphasized by gf .

In addition, due to the relationship between the Gini-Simpson and the �2-norm for the

Shapley values, the underlying geometric interpretation and sparseness of solutions

for the family of �p-norms is well-known and heavily published (e.g., see [120]). In the
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following sections, we outline a way to perform regularization based on the �0-norm

and the Gini-Simpson index of the Shapley values. However, we first review QP based

solutions to capacity learning and �p-norm regularization.

4.3 Sum of Squared Error and Quadratic Pro-

gramming

Definition 16 (Sum of Squared Error of CI and T ). Let the SSE between T and the

CI be [89, 97]

E1 =
m∑
j=1

(Cg(hj))− αj)
2. (4.14)

Equation (4.14) can be expanded as follows,

E1 =
m∑
j=1

(At
Oj
u− αj)

2,

At
Oj

=
(
..., hj(xπj(1))− hj(xπj(2)), ..., 0, ..., hj(xπj(N))

)t
is of size 1×(2N−1). Note, the

function differences, hj(xπj(i))−hj(xπj(i+1)), correspond to their respective g locations
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in u. Folding Equation (4.14) out further, we find

E1 =
m∑
j=1

(utAOj
At

Oj
u− 2αjA

t
Oj
u+ α2

j )

= utDu+ f tu+
m∑
j=1

α2
j , (4.15)

where D =
∑m

j=1 AOj
At

Oj
and f =

∑m
j=1(−2αjAOj

). In total, the capacity has

(N(2N−1 − 1)) monotonicity constraints. These constraints can be represented in

a compact linear algebra (aka matrix) form. The following is the minimum num-

ber of constraints needed to represent the FM. Let Cu + b ≤ 0, where Ct =(
Ψt

1,Ψ
t
2, ...,Ψ

t
N+1, ...,Ψ

t
N(2N−1−1)

)t

, and Ψ1 is a vector representation of constraint

1, g1 − g12 ≤ 0. Specifically, Ψt
1u recovers u1 − uN+1. Thus, C is simply a matrix of

{0, 1,−1} values,

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 ... −1 0 ... ... 0

1 0 ... 0 −1 ... ... 0

...
...

...
...

...
...

...
...

0 0 ... 0 0 ... 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.16)

which is of size (N(2N−1 − 1))× (2N − 1). Also, b = 0, a vector of all zeroes. Note,

in some works, u is of size (2N − 2), as g(φ) = 0 and g(X) = 1 are explicitly encoded.

In such a case, b is a vector of 0s and the last N entries are of value -1. Herein, we

use the (2N − 1) format as it simplifies the subsequent Shapley index mathematics.
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Given T , the search for FM g reduces to a QP of the form

min
u

1

2
utD̂u+ f tu, (4.17)

subject to Cu+ b ≥ 0 and (0, 1)t ≤ u ≤ 1. The difference between Equation (4.17)

and (4.15) is D̂ = 2D and inequality in Equation (4.16) need only be multiplied by

−1.

In [96], it was pointed out that the QP approach for learning the CI is not without

flaw due to the exponential size of the input. While scalability is definitely of concern,

many techniques have and continue to be proposed for solving QPs with respect to

fairly large and sparse matrices [121]. This attention and progress is coming primarily

as a response to machine learning, statistics and signal processing. A somewhat large

and sparse matrix is not a “game stopper.” We do agree that there is mathematically

a point where the task at hand does become extremely difficult to solve and may

eventually become intractable. However, most FI applications utilize a relatively

small number of inputs, i.e., on the order of 3 to 5, versus 50, 100. The notion that

the QP has little-to-no value just because it is difficult (and may become intractable)

to solve with respect to a sparse matrix for a large number of inputs is no reason to

dismiss it. This challenge as akin to the current Big Data revolution, where previously

intractable problems are being solved on a daily basis.
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In general, the challenge of QP-based learning of the CI relative to a regularization

term for tasks like decision-level fusion is the optimization of

E2 =
m∑
j=1

(utAOj
At

Oj
u− 2αjA

t
Oj
u+ α2

j ) + λv∗(g), (4.18)

where v∗(g) is one of our indices. In order for Equation (4.18) to be suitable for the

QP, v∗ must be linear or quadratic.

Note, in certain problems one can simply fold the �1 regularization term into the

linear term of the quadratic objective. We can rewrite ‖u‖1 = 1tu, where 1 is the

vector of all ones. Adding the regularization term to the QP, we get

min
u

1

2
utD̂u+ f tu+ λ1tu = min

u

1

2
utD̂u+ (f + λ1)tu. (4.19)
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4.4 Gini-Simpson Index-Based Regularization of

the Shapley Values

We begin by considering a vectorial encoding of the Shapley index. The Shapley

value of input 1 is

Φg(1) =
∑

K⊆X\{i=1}
ΓX(K)(g(K ∪ {i = 1})− g(K)), (4.20a)

= η1g({x1}) + η2[(g({x1, x2})− g({x2}))

+ (g({x1, x3})− g({x3})) + ...] + ..., (4.20b)

= η1g({x1})− [η2g({x2}) + ...+ η2g({xN})]

+ [η2g({x1, x2}) + η2g({x1, xN})] + ..., (4.20c)

where ηi = ΓX(K), and K ∈ 2X , s.t. |K| = i− 1 (Shapley normalization constants).

What Equation (4.20a) tells us is the following. The Shapley index can be represented

in linear algebra/vectorial form,

Γi = (Γi,1,Γi,2, ...)
t , (4.21)
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where Γi is the same size as g and the Γi terms are the coefficients of Equation (4.20a).

For example, for N = 3,

Γ1 =

(
1

3
,−1

6
,−1

6
,
1

6
,
1

6
,−1

3
,
1

3

)t

.

Thus, we can formulate a compact expression of an individual Shapley value as such,

Φg(i) = Γt
iu, (4.22)

where Φg(i) ∈ [0, 1]. Therefore, the Gini-Simpson index in linear algebra form be-

comes

vG(g) = 1−
N∑
k=1

(
Γt

ku
)2
. (4.23)

Expanding Equation (4.23) exposes an attractive property:

vG(g) =1−
N∑
k=1

(
Γt

ku
)2
,

=1−
N∑
k=1

(
utΓkΓ

t
ku
)
,

=1− utZu, (4.24)

where Z = Γ1Γ
t
1 + ... + ΓNΓ

t
N . First, ΓkΓ

t
k is positive semi-definite (PSD). Hence,

Z is also PSD, as it is simply the addition of PSD matrices and addition preserves

the PSD property. We propose a Gini-Simpson index-based regularization of E1 at
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(4.14) as follows.

Definition 17 (SSE with Gini-Simpson Index Regularization). The Gini-Simpson

index regularization is

E3 = utDu+ f tu+
m∑
j=1

α2
j + λ− λ

(
utZu

)
, (4.25)

where the regularization term can be simply folded into the quadratic term in the

SSE yielding

min
u

ut (D− λZ)u+ f tu, (4.26)

subject to Cu ≥ 0 and (0, 1)t ≤ u ≤ 1.

This is of the form of Tikhonov regularization, where −λZ is the Tikhonov matrix

[122]. As one can clearly see, the Gini-Simpson index does not result in a linear

term and the constant is not part of the QP formulation. All that makes it into the

quadratic term is utZu, our scaled (squared) �2-norm.
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4.5 �0-Norm Based Regularization of the Shapley

Values

The main difficulty behind the �0-norm of the Shapley values is how do we carry out

its optimization? Our QP task with an �0-norm is a non convex problem, which makes

it difficult to understand theoretically and solve computationally (NP-hard problem).

There are numerous articles focused on approximation techniques for the �0-norm.

Herein, we take the approach of enhancing sparsity through reweighted �1 minimiza-

tion. In [123], Candes proposed a simple and computationally attractive recursively

reweighted formulation of �1-norm minimization designed to more democratically pe-

nalize nonzero coefficients. His approach finds a local minimum of a concave penalty

function that approximates the �0-norm. Specifically, the weighted �1 minimization

task can be viewed as a relaxation of a weighted �0 minimization task.

Definition 18 (SSE with Weighted �1-Norm). The SSE and weighted �1-norm of the

Shapley index based regularization is

E4 = utDu+ f tu+
m∑
j=1

α2
j − (λ1Γ1 + ...+ λNΓN)

t u. (4.27)
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Thus, our goal is

min
u

utDu+ (f − (λ1Γ1 + ...+ λNΓN))
t u, (4.28)

subject to Cu+ b ≥ 0 and (0, 1)t ≤ u ≤ 1.

Algorithm 5 is exactly the method of Candes et al. just with the Shapley values

as the parameters. For further mathematical analysis of Candes’s approximation,

see [123]. Herein, our goal is not to advance this approximation technique. Instead,

we simply apply it for learning the CI. As better approximations become available,

the reader can employ those strategies. In Algorithm 5, ε > 0 is used to provide

stability and to ensure that a zero-valued component in 1−Γt
k(t−1)u(t−1) does not

strictly prohibit a nonzero estimate at the next step (as done in [123]). Intuitively, the

update step takes the previous λk(t− 1) terms and divides them by one minus their

respective Shapley values. Thus, the “more important” (the larger) the Shapley value

the smaller the divisor (number in [0, 1]) and therefore the larger the λk(t). Different

stopping criteria exist for Algorithm 5. For example, the user can provide a maximum

allowable SSE. The user can also compare the difference between the weights from

iteration to iteration relative to a user specified threshold. Furthermore, the user can

provide a maximum number of allowable iterations.
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Algorithm 5: Weighted Iterative l1-Norm Regularization

Initialize the weights, e.g., λk(t) = 1, for 1 ≤ k ≤ N
Initialize the counter, t = 1
while NOT DONE do

Solve for u(t) by minimizing E4 given λk(t)
t = t+ 1
Update, λk(t) =

λk(t−1)

(1−Γt
k(t−1)u(t−1))+ε

4.6 Experiments

In this section, we explore both synthetic and real-world data sets. The goal of the

synthetic experiments is to investigate the general behavior of the proposed theories

under controlled settings in which we know the “answer” (the generating capacity).

The goal of the real-world experiment is to investigate classification performance on

benchmark community data sets. In Section 4.2.2 we reviewed and compared, mathe-

matically, different indices. However, we do not include all indices in our experiments

as they do not operate on the same basis. Each index more-or-less interprets com-

plexity differently and, thus, each has its own place (application) and rationale for

existence, both in terms of capacity theory and also in terms of how the CI is applied.

In this section, we restrict analysis to the study of the Gini-Simpson and the �0-norm

of the Shapley values and we compare it to the most related indices for decision-level

fusion—specifically, the �1 and �2-norm of a lexiographically encoded capacity vector

and the Mobius-based index.
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In our synthetic experiments we elected to not report a single summarized number or

statistic, e.g., classification accuracy. Instead, we show the behavior of our technique

across different possible choices of the regularization parameter λ. While somewhat

overwhelming at first, we believe it is important to give the reader a better (more

detailed) feel for how the methods behave in general. However, it is worth briefly

noting some λ selection strategies used in practice. For example, we can pick a

“winner” by trying a range of values of λ in the context of cross validation (i.e.,

a grid search). Such an experiment emphasizes learning less complex models with

respect to the idea of avoiding over fitting (one use of an information theoretic index).

We employ the same strategy in our real-world benchmark data set experiment for

kernel classification. If the reader desires, they can refer to one of many works in

statistics or machine learning for further assistance in automatically determining or

experimentally selecting λ [123].

4.6.1 Experiment 1: Important, Relevant and Irrelevant In-

puts

For this experiment, we consider the case of three inputs (N = 3). While this

experiment is easily generalized to more than three inputs, the advantage of N = 3

is that we can clearly visualize the results. It becomes difficult to view the results

for more inputs as the number of elements in the capacity grows exponentially with
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respect to N . We let the worth of the first input to be far greater than the other

inputs, g(x1) = 0.8; input two is considered relevant but has a (relatively) low worth,

g(x2) = 0.2; and the last input is, for all intents and purposes, irrelevant, g(x3) = 0.01.

Granted, only densities have been specified. However, we use an S-Decomposable

FM, specifically a possibility measure, to determine the value of the capacity terms

beyond the densities; g(A) = maxxi∈A g(xi), for A ∈ 2X\{x1, x2, ..., xN , X}. Since we

use a possibility measure, the above story with respect to the different inputs holds.

Additionally, 500 uniform (pseudo)randomly generated samples were used. That is,

500 random N -tuples were generated, each value between [0, 1], and the label was

produced using the discussed capacity.

We expect to see the following behavior. We would like for the third input to be

ignored and the second input should be driven down to zero worth (in the Shapley

sense) before the first input. Figure 4.1 shows the results of this experiment. Views

(a,b) show the FM values learned for values of λ between 0 and 50—the left side of

each bar (the black) corresponds to the learned FM values at λ = 0 and the right side

of each bar (the bright yellow) corresponds to the FM values at λ = 50. Views (c,d)

show the value of the Gini-Simpson index for the learned FM and the resulting SSE

versus each value of λ. The scale for the solid blue line—the Gini-Simpson index—is

shown on the left of each plot and the scale for the dashed red line—the SSE—is

shown on the right of each plot.
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(a) Learned FM values using Gini-
Simpson regularization
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(b) Learned FM values using �1 regular-
ization
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(c) Gini-Simpson regularization perfor-
mance plots
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(d) �1 regularization performance plots

Figure 4.1: Experiment 1 results. (a,b) Learned FM values in lexico-
graphical order for λ = 0 to 50. Bin 1 is u(1) = g(x1), bin N + 1 is
u(N + 1) = g({x1, x2}), etc. Height of bar indicates FM value; color indi-
cates λ value. (c,d) Plots showing performance of each regularization method
in terms of SSE and Gini-Simpson index of the learned FM at each regular-
ization parameter λ.

Figure 4.1 tells the following story. The black color bars in views (a,b) show that both

methods recover the desired possibility measure (the one that minimizes just the SSE

criteria) when no regularization λ = 0 is used—after all, the methods are equivalent,

i.e., no regularization, when λ = 0. View (a) shows that the Gini-Simpson index

regularization pushes the contribution of input 3 to zero very quickly—at λ ≈ 5—

and the contribution of input 2 is reduced to zero at λ ≈ 35. The contribution
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of u6 = g({x2, x3}) is also pushed to zero as λ increases. On the contrary, the

contribution of input 1 and the FM values in the lattice that include input 1—i.e., u4

and u5—are gradually increased with increasing λ. Figure 4.1(c) shows that as λ is

increased the Gini-Simpson index decreases, which is echoed in the FM values shown

in view (a). As the model becomes more simple, by increasing λ, the SSE increases

(albeit, slightly). At λ ≈ 35, the Gini-Simpson index goes to zero, indicating the

model is as simple as it can get. Increasing λ > 35 has no effect on the model because

it is already as simple as possible, with only one input (#1) being considered in the

solution. The SSE of this minimum Gini-Simpson index model is about 4.

Figures 4.1(b,d) show visualizations of the same experiment for �1 regularization. As

view (b) shows, this regularization starts decreasing all of the FM values as λ is

increased. The contribution of input 3, u3 = g(x3), is quickly pushed to zero, at

λ ≈ 2, while the values u2 = g(x2) and u6 = g({x2, x3}) go to zero at λ ≈ 10. Last,

u1 = g(x1), u4 = g({x1, x2}), and u5 = g({x1, x3}) go to zero at λ ≈ 32. At λ � 32,

the �1 regularization learns, as expected, the FM of ignorance. Figure 4.1(d) shows

that despite a lower complexity model, in terms of �1-norm, the Gini-Simpson index

increases as λ is increased; SSE also increases, as expected. The FM of ignorance

learned at λ � 32 has an SSE of about 45. Compare this to the SSE of 4 achieved

with the lowest complexity model with Gini-Simpson regularization.

In summary, this initial experiment shows that the Gini-Simpson index regularization
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and �1-regularization of a lexicographically encoded capacity vector do as advertised.

4.6.2 Experiment 2: Random AWGN Noise

In Experiment 2, we use our setup from Experiment 1; however, (pseudo)random

AWGN noise (σ = 0.2) is added to the labels. Figure 4.2 shows the results of Exper-

iment 2. As views (c,d) show, neither procedure perfectly fits the data now due to

the noise in the training labels. The Gini-Simpson procedure, shown in views (a,c),

can find a solution close to our noise-free goal at small values of λ. If regularization is

increased, λ � 45, we eventually identify a single input, which interestingly still fits

the data well (only a small increase in SSE). Again, the �1 procedure is only able to

achieve low SSE at low λ values. As λ is increased the SSE is significantly increased

(beyond that achieved by the Gini-Simpson).

4.6.3 Experiment 3: Iteratively Reweighted �1-Norm

In Experiment 3, we use our setup from Experiment 1 to demonstrate the recursively

reweighted �1 minimization procedure. The result (Figure 4.3(a,b)) for the possibility

FM with densities g(x1) = 0.8, g(x2) = 0.2, g(x3) = 0.01, is as expected. After a few

iterations we see the Shapley value increasing for input x1 and decreasing for inputs
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(a) Learned FM values using Gini-
Simpson regularization
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(b) Learned FM values using �1 regular-
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(c) Gini-Simpson regularization perfor-
mance plots
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(d) �1 regularization performance plots

Figure 4.2: Experiment 2 results. (a,b) Learned FM values in lexicograph-
ical order. Bin 1 is u(1) = g(x1), bin N + 1 is u(N + 1) = g({x1, x2}),
etc. Height of the bar indicates FM value; color indicates λ value. (c,d)
Plots showing performance of each regularization method in terms of SSE
and Gini-Simpson index values of the learned FM at each regularization
parameter λ.

x2 and x3. This is the same trend and final answer that we saw in Experiment 1 with

respect to the Gini-Simpson index and we obviously get a different final solution than

the �1 with respect to the lexographically encoded capacity vector (eventual solution

of 0s and corresponding CI minimum operator).

133



1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lexographic FM index

FM
 v

al
ue

Ite
ra

tio
n 

nu
m

be
r

5

10

15

20

25

30

(a) Learned FM values using iteratively
reweighted �1 regularization for Experi-
ment 1

0 5 10 15 20 25 30
−0.2

0

0.2

0.4

0.6

0.8

1

Iteration number

Sh
ap

le
y 

va
lu

e

Input 1
Input 2
Input 3

(b) Shapley values for (a)

Figure 4.3: Experiment 3 results. Learned FM values in lexicographical
order for Experiment 1. Bin 1 is u(1) = g(x1), bin N + 1 is u(N + 1) =
g({x1, x2}), etc. Height of the bar indicates FM value; color indicates itera-
tion number. Plot of the Shapley values of the learned FM for Experiment
1 at each iteration.

4.6.4 Experiment 4: Multiple Kernel Learning

In this final experiment we consider a problem from pattern recognition. Kernel meth-

ods for classification is a well-studied field in which data are implicitly mapped from a

lower-dimensional space to a higher-dimensional space, called the reproducing kernel

Hilbert space (RKHS), to improve classification accuracy. The ultimate challenge is

that we are not privileged to know what transform (kernel) solves a particular task at

hand—we only have an existence theorem. Multiple kernel learning (MKL) is a way

to learn the fusion of multiple known Mercer kernels (the building blocks) to identify

a superior kernel. In [1, 2, 124, 125], a genetic algorithm (GA) based �p-norm linear

convex sum of kernels called GAMKLp for feature-level fusion was proposed. In [1],
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the nonlinear fusion of kernels was also explored. Specifically, kernel classifiers were

fused at the decision-level based on the fuzzy integral, a procedure called decision-level

fuzzy integral MKL (DeFIMKL). In this experiment, we explore the use of QP learn-

ing and regularization for CI-based MKL in the context of support vector machine

(SVM) classification with respect to well-known community benchmark data sets. In

[1], the benefit of DeFIMKL and GAMKL was demonstrated versus other state-of-

the-art MKL algorithms from machine learning, e.g., MKL group lasso (MKLGL).

Herein, the goal is not to reestablish DeFIMKL but to explore the proposed indices

and their relative performances. Note, in the other experiments we knew the answer,

i.e., the “generating capacity”. However, while SVMs are supervised learners and

our data has labels, we do not know the true capacity in the case of MKL. Herein,

like often in machine learning, success is instead evaluated in terms of ones ability to

improve classification performance. The fusion of classifiers via DeFIMKL results in a

classifier and this experiment demonstrates the ability of regularization to help learn

an improved classifier that does not succumb to overfitting and generalizes better.

Each learner, i.e., input to fusion, is a kernel classifier trained on a separate kernel.

The kth (1 ≤ k ≤ N) SVM classifier decision value is

ηk(x) =
D∑
i=1

αikyiκk(xi,x)− bk,

which is the distance of x (an object from T ) from the hyperplane defined by the
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data labels, y, the kth kernel, κk(xi,x), and the learned SVM model parameters, αik

and bk. For the two-class SVM binary decision problem, the class label is typically

computed as sgn{ηk(x)}. One could use sgn{ηk(x)} as the training input to the ca-

pacity learning, however this eliminates information about which kernel produces the

largest class separation—essentially, the difference between ηk(x) for classes labeled

y = +1 and y = −1. In [1] ηk(x) is remapped onto the interval [−1,+1], creating the

inputs for learning by the sigmoid function ηk(x)√
1+η2k(x)

. For training, we use our labeled

data and cast the learning process as a SSE problem and the CI is learned using QP

and regularization (see [1] for a full mathematical description).

The well-known LIBSVM library was used to implement the classifiers [76]. The

machine learning UCI benchmark data sets used are sonar, dermatology, wine, ecoli

and glass. Each experiment consists of 100 randomly sampled trials in which 80% of

the data is used for training and the remaining 20% is sequestered for testing. Each

index was applied to the same random sample to guarantee a level playing field. Note

that in some cases multiple classes are joined together such that the classification

decision is binary. Five radial basis kernels (RBF) kernels are used in each algorithm

with respective RBF width σ linearly spaced on the interval defined in Table 4.2;

the same RBF parameters are used for each algorithm. For the �1, �2, Gini-Simpson

and k-additive indices, a dense grid search (of λ) was used and the “winner” was

picked according to the highest classification accuracy on the test data. For the

iteratively reweighted �1 approximation, we used Algorithm 5. Table 4.3 is the result
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Table 4.2
RBF Kernel Parameter Ranges and Data Set Properties

Data Set
Sonar Dermatology Wine

Parameter Ranges [-2.2, -0.2] [-2.3, 0] [-6,-3]
No. of Objects 208 366 178
No. of Features 60 33 13
Binary Classes {1} vs. {2} {1, 2, 3} vs. {4, 5, 6} {1} vs. {2, 3}

Ecoli Glass
Parameter Ranges [-3, 3] [-2, 2]
No. of Objects 336 214
No. of Features 7 9
Binary Classes {1, 2, 3, 4} vs. {5, 6, 7, 8} {1, 2, 3} vs. {4, 5, 6}

Table 4.3
Classifier Performances—Means and Standard Deviations

Sonar Dermatology Wine
No Regularization 80.43 (9.25) 94.51 (3.89) 93.00 (9.02)
Lexicographic �1 86.52 (7.55) 94.57 (3.91) 93.44 (8.52)
Lexicographic �2 86.43 (7.42) 94.57 (3.91) 94.00 (8.27)
Gini-Simpson 87.14 (6.98) 98.22 (2.15) 94.22 (7.97)

Shapley �0 Approximation 87.38 (6.98) 97.76 (2.40) 94.56 (7.65)
k = 2 additive 84.90 (7.63) 94.57 (3.91) 93.78 (8.25)
k = 3 additive 85.67 (7.49) 94.57 (3.91) 93.89 (8.26)
k = 4 additive 86.48 (7.37) 94.92 (3.81) 94.00 (8.27)
k = 5 additive 86.48 (7.37) 94.92 (3.81) 94.00 (8.27)

Ecoli Glass
No Regularization 96.71 (2.90) 94.33 (5.23)
Lexicographic �1 96.71 (2.90) 96.33 (4.73)
Lexicographic �2 96.71 (2.90) 96.00 (4.82)
Gini-Simpson 97.15 (2.63) 96.14 (4.67)

Shapley �0 Approximation 97.12 (2.71) 96.05 (4.59)
k = 2 additive 96.71 (2.90) 96.19 (4.69)
k = 3 additive 96.71 (2.90) 95.52 (4.78)
k = 4 additive 96.71 (2.90) 95.38 (4.90)
k = 5 additive 96.71 (2.90) 95.38 (4.90)

of regularization on DeFIMKL.

Table 4.3 tells the following story. First, in each instance regularization helps. In
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many instances, e.g., ecoli, glass and wine, the regularization results are extremely

close. However, in other cases, e.g., sonar and dermatology, the regularization results

vary more (both in terms of means and standard deviations). Note, we ran the k-

additive index with different levels of forced k-additivity. This was done to explore

the impact of assuming and working with subsets of the capacity. In our other

experiments we were able to analyze specific conditions and properties relating to

the fusion process. While this experiment is encouraging, i.e., better classification

performance, we are sadly unable to connect a story to the results. The regularization

results are what they are. We cannot go the next step and inform the reader why

a Gini-Simpson or k-additive index is more well-suited given our limited knowledge

about the machine learning classification task.

4.7 Conclusion and Future Work

In this chapter, we explored a new data-driven way to learn the CI in the context

of decision-level fusion relative to the joint minimization of the SSE criteria and

desire to obtain minimum model complexity. We brought together and analyzed a

number of existing indices, put forth new indices based on the Shapley values, and

explored their role in regularization-based learning of the CI. Our first proposed index

promotes sparsity (specifically, fewer number of non-zero parameters), however it is

complicated to optimize (NP-hard). Our second index is a tradeoff with respect to
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modeling accuracy relative to solution simplicity. The proposed indices and regular-

ization approach are compared theoretically. We showed that there is no “winning

index”, as these indices strive for different goals and are therefore valid in different

contexts. Synthetic and real-world data set experiments are shown that demonstrate

the benefits of the proposed indices and CI learning technique.

In future work, we will seek more efficient and scalable ways to solve the problem

investigated here as the number of inputs (N) grows—since the number of capacity

terms and subsequently associated monotonicity constraints increases at an exponen-

tial rate. We will also explore if there are other information theoretic measures that

have additional benefit towards learning lower complexity and useful CIs.
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Chapter 5

Applications to Explosive Hazard

Detection with Ground

Penetrating Radar

The material in this chapter was previously published in: Proc. SPIE, pp. 98230T, 2016; Proc.
SPIE, pp.94540B, 2015; and Proc. IEEE CISDA, pp. 1-8, 2016.
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5.1 Introduction

Buried explosive hazards are one of the greatest threats to life in modern combat,

and also pose dangers to civilian populations in former war zones. Every month,

there are over 300 casualties due to these explosive devices, on average, and they

wound an additional 800+ [126]. Ground penetrating radar (GPR) is a common

tool used to detect these hazards and comes in two flavors: forward-looking and

downward-looking. Both systems have their benefits and drawbacks. For example,

forward-looking systems have the advantage that they offer greater standoff distances

between the radar system and the targets compared to downward-looking systems.

Downward-looking GPR, on the other hand, is able to receive much more reflected

radar energy due to the engagement geometry and thus typically have higher signal-

to-noise ratios (SNR)1; the data used in this chapter are from a downward-looking

system.

This chapter begins with an exploration of various robust principal component analysis

(RPCA) techniques for preprocessing the GPR data in Part I. After showing that

RPCA can increase the signal-to-clutter ratio (SCR), Part II applies state-of-the-

art feature-level fusion algorithms to GPR data along with details of the full data-

processing pipeline. Finally, Part III applies some of the fusion algorithms introduced

1Most of the energy emitted from forward-looking systems reflects off the scene away from the radar
receivers.
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in previous chapters to another dataset derived from the same GPR system.
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Part I

A Comparison of Robust Principal

Component Analysis Techniques

for Buried Object Detection in

Downward Looking GPR Sensor

Data
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5.2 Classical Principal Component Analysis

(PCA) and Robust Principal Component

Analysis (RPCA)

Suppose we have a data matrix M that is corrupted by noise. Since data generally lie

on a low-dimensional subspace, we can model the noisy data matrix as M = L+N ,

where L is a low-rank matrix and N is a (sparse) perturbation matrix. In this

example, we seek to find the low-rank matrix L as our estimate of the underlying

data. Mathematically, the problem is

minimize
L

‖M − L‖2

subject to rank(L) ≤ k,

(5.1)

which can be solved via classical principal component analysis[127]. While this is

a very popular technique since it works well when the noise component is small, it

simply breaks down if the magnitude of the noise is too large. Figures 5.1 and 5.2

show the behavior of PCA in low and high noise applications. Figure 5.1(a) presents a

clean image, to which we add a small amount of noise as shown in Figure 5.1(b). The

low-rank and sparse components are then computed using PCA in Figures 5.1(c)—

5.1(d). In this case, the low-rank component is reasonably recovered from the noisy
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image, though there is obviously some loss in quality. Figure 5.2(b) shows the image

corrupted by ten times more noise. Note that the low-rank component computed

with classical PCA shown in Figure 5.2(c) no longer accurately estimates the original

image—it is completely lost in the noise.

The fragility of classical PCA can also be highlighted by gross contamination of a

single pixel. Consider the same original image in Figure 5.1(a). We select a random

pixel in this image and assign it an arbitrary value of 10 (the pixels in the original

image are normalized in the range of [0, 1]). In this case, the low-rank image we

recover using PCA loses essentially all of its contrast as shown in Figure 5.3(a).

The examples shown in this section demonstrate the need for a PCA method that is

robust to large noise and outliers. The following section will introduce a method that

aims to achieve this robustness by modifying the problem in (5.1).

5.2.1 Robust Principal Component Analysis (RPCA)

The groundwork for RPCA was developed by Candès et al. in their seminal paper

Robust principal component analysis? [128], where they proposed a new problem—

essentially a modification to the problem in (5.1). In their new framework, the data

matrix is the superposition of a low-rank matrix L and a sparse matrix S, or M =

L+S. Note that this assumption is equivalent to that made in classical PCA, though
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(a) Original image. (b) Noisy image, small noise.

(c) Low-rank image via PCA. (b) Sparse image via PCA.

(e) Low-rank image via RPCA. (b) Sparse image via RPCA.

Figure 5.1: An image contaminated with a small amount of noise and its
low-rank and sparse decomposition.

the sparse component is no longer referred to as noise2. To decompose the data matrix

into L and S, Candès et al. propose the new convex minimization problem,

minimize
L,S

‖L‖∗ + λ‖S‖1

subject to L+ S = M,

(5.2)

2In many cases, we are actually concerned with the sparse component.
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(a) Original image. (b) Noisy image, large noise.

(c) Low-rank image via PCA. (b) Sparse image via PCA.

(e) Low-rank image via RPCA. (b) Sparse image via RPCA.

Figure 5.2: An image contaminated with a large amount of noise and its
low-rank and sparse decomposition.

where ‖L‖∗ =
∑
i

σi(L) is the nuclear norm3 of the matrix L, i.e., the sum of the

singular values of L, and ‖S‖1 =
∑
ij

|Sij| is the �1-norm of L when seen as a long vector.

Candès et al. propose an algorithm called principal component pursuit by alternating

directions (PCP-AD) that exactly recovers the low-rank and sparse components of

M , given that weak conditions are met. Empirically, we have shown that PCP still

3The nuclear norm is the convex envelope of the rank operator [129].
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(a) Low-rank image via PCA. (b) Sparse image via PCA.

(c) Low-rank image via RPCA. (b) Sparse image via RPCA.

Figure 5.3: The low-rank and sparse decomposition of an image with only
one pixel contaminated with a large amount of noise.

tends to work well even if the conditions are not satisfied [5, 130].

The main difference between the classical PCA problem in (5.1) and the RPCA

problem in (5.2) is the promotion of sparsity in the S matrix from the �1-regularization

term in (5.2). The RPCA formulation still encourages L to be low-rank via the nuclear

norm (in the PCA problem this is instantiated as a constraint), and it forces L to lie

“close” to M (the PCA problem uses this as the cost).

The behavior of RPCA is shown in Figures 5.1–5.3. In all three cases, we see that

the RPCA decompositions of the noisy images are better than those of the classical

PCA, though in the high-noise case of Figure 5.2 the low-rank component loses some
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contrast.

The remainder of this section briefly introduces the RPCA algorithms used in this

work. Their derivations and the underlying mathematics are much too involved to

reproduce here, though we highlight the salient differences in each approach and cite

the original works where the methods were proposed.

Fast PCP [131] modifies the problem in (5.2) by swapping the nuclear norm penalty

with the constraints to obtain

minimize
L,S

‖L+ S −M‖F + λ‖S‖1

subject to rank(L) = t.

(5.3)

The minimization problem in (5.3) is then solved via the alternating minimization

Lk+1 =minimize
L

‖L+ Sk −M‖F + λ‖S‖1

subject to rank(L) = t;

(5.4a)

Sk+1 =minimize
S

‖Lk+1 + S −M‖F + λ‖S‖1, (5.4b)

which is shown to monotonically converge to the desired solution and requires low

memory allowing for real-time implementation.

Robust PCA via Outlier Pursuit (OP-RPCA)[132] assumes the data matrix
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M can be written as

M = L+ C0, (5.5)

where L is a low-rank matrix and C0 is non-zero in a fraction of the columns. This

method relies on finding a basis that spans the low-dimensional subspace in which L

lies, and the algorithm has been shown that it converges to the correct basis under

weak assumptions. Additionally, OP-RPCA has been shown to work in the noisy case

where the matrix in (5.5) is corrupted by an additional noise term.

Augmented Lagrange Multiplier (ALM)[133], like other RPCA methods, as-

sumes the data matrix has the form M = L+ S. It recovers the low rank and sparse

components using

minimize
L,S

‖L‖∗ + κ (1− λ) ‖L‖2,1 + κλ‖S‖2,1

subject to L+ S = M,

(5.6a)

where

‖X‖2,1 =
∑
j

‖Xj‖2. (5.6b)

�1-Filtering (L1F) is able to exactly solve the nuclear norm RPCA problem in

(5.2) in linear time [134]. It assumes the underlying matrix is low-rank enough to be

accurately approximated using a much smaller submatrix. Once this “seed” matrix

is defined, all other block matrices comprising the low-rank and sparse components

151



are computed using straightforward linear algebra approximations and much smaller

minimization problems.

Active Subspace RPCA (ASRPCA) solves (5.2) by factoring the large matrix M

into two smaller matrices, one of which is orthonormal, known as the active subspace

[135]. This allows the problem to be solved more efficiently, and thus opens the door

for RPCA to be applied to large matrices.

Variational Bayesian RPCA (VBRPCA) was proposed by Babacan et al.; it

parameterizes the low-rank matrix and assigns Gaussian priors to all latent variables

[136]. From this fully defined Bayesian model, they use variational Bayesian inference

to approximate the low-rank factors, sparse component, and the hyperparameters

repeatedly until convergence.

5.3 Ground Penetrating Radar

The data used in this chapter were collected by GPR sensors on an experimental hand

held demonstrator. This demonstration unit allows the GPR sensors to sweep over

the ground, covering approximately one meter per sweep, while incrementing forward

at approximately 1 meter per second down experimental test lanes. Each sensor

collects 256 samples from the radar return with a sampling rate of approximately 32
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Figure 5.4: Experimental Hand Held Demonstrator

GHz, and each radar return is labeled with a location stamp using differential GPS.

Figure 5.4 shows the hand held demonstrator during a test run.

5.3.1 Data Format and Visualization

The individual radar returns are known as an A-scan. Each A-scan is a time series of

256 samples of the returned radar intensity. A group of A-scans representing adjacent

returns are often rotated vertically, stacked next to one another, and plotted in grey-

scale or a false-color image to form what is known as a B-scan. The B-scans tend to

be particularly useful in the detection of subsurface objects because of their ability

to highlight objects with a hyperbolic signature. The plots in Figure 5.5 show an

example of each type of scan. The A-scan plotted in Figure 5.5(a) shows a large
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(a) GPR A-scan (b) GPR B-scan

Figure 5.5: Examples of typical GPR data visualization

return within the first 50 time samples corresponding to the air/ground interface

and relatively small returns thereafter. If a large target is present below the ground,

we would expect to see another large return in a group of time bins sometime after

the ground reflection, though due to large amounts of clutter and signal attenuation

the reflections from buried targets are often lost in noise. Figure 5.5(b) shows an

example B-scan representing a slice of earth in which a target is buried. Note the

faint hyperbolic signature of the target near the center of the image. Though the

hyperbolic signature in this example is apparent, often times they are hidden, again

due to large amounts of clutter, signal attenuation, and large ground reflections.

5.3.2 RPCA Decomposition of GPR Data

Section 5.2.1 showed the advantages of using RPCA as a means to decompose an

image into a low-rank component and a sparse component. Under this decomposition,
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Figure 5.6: Sparse component of GPR B-scan from Figure 5.5(b), com-
puted using RPCA

buried targets should be easily seen in the sparse component of the B-scans since the

background of the B-scan, i.e., the ground reflection and some constant clutter, will

be removed as the low-rank component. Indeed this is often the case as shown in

Figure 5.6, which shows the sparse component of the B-scan in Figure 5.5(b). The

target appears to be separated from the rest of the image by much more of a contrast

after applying RPCA, suggesting that RPCA can boost the performance of detection

algorithms.
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5.3.3 Returned Energy and Signal to Clutter Ratio

The total energy return of a particular A-scan, x[n], is computed as

E =
1

N

N∑
n=1

x2[n], (5.7)

where N is the number of samples in the A-scan. When a target is below the radar

sensor, the reflected energy increases, thus detection can be performed by monitoring

this returned energy. Additional value lies in computing the returned energy for each

A-scan comprising a B-scan; the B-scan’s energy can be plotted to represent the

amount of returned energy at each discrete location while sweeping across a lane,

making the presence of a target more apparent. Examples of these plots are shown in

Figure 5.7, where the two vertical lines indicate the target region—the region around

a target’s ground truth location. Note that the plots correspond to the same physical

B-scan location, though Figure 5.7(a) corresponds to the energy derived from the

original B-scan, and Figure 5.7(b) corresponds to the energy derived from the original

B-scan’s sparse component shown in Figure 5.6.

We have proposed CFAR detection algorithms based on returned energy in GPR data

in previous work [5, 130]. These types of detectors generally make their decisions by

comparing the energy in some region with the energy in the surrounding region, thus
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(a) Returned energy of B-scan in Figure 5.5(b)
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(b) Returned energy of B-scan in Figure 5.6

Figure 5.7: Returned energy for a single sweep across a lane, over a target.
Vertical lines indicate the region in which the target is buried.

the signal-to-clutter ratio (SCR) can be used as an indication of the performance

of the detector. For the experiments in this chapter we use the peak SCR as the

performance metric, defined as

SCR = 10 log10

(
Spk

E [C]

)
, (5.8)

where Spk is the maximum returned energy in the target region, and E [C] is the

mean of the clutter energy received outside of a 25-sample guard band on either side

of the target region. Figure 5.8 shows the quantities used to compute the SCR; the
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Figure 5.8: Example calculation of the peak SCR

guard bands are shaded, and the maximum signal return, Spk, and mean of the clutter

energy (outside of the guard bands), E [C], are indicated. In this example, the SCR

is 24.2 dB.

5.4 RPCA Experiments

The experiments in this work were designed to explore the impact of the various

RPCA algorithms on SCR, as well as the effects of any tuning parameters required

by the algorithms. B-scans of a group of 83 unique targets were formed using the

raw GPR data and the peak SCR for each B-scan was computed, giving a bench-

mark performance metric. RPCA algorithms[137] were then applied to the B-scans

and the new SCRs were computed to show how RPCA affects the SCR. The algo-

rithms were applied many times while varying the tuning parameters, and they were
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also implemented in both the spatial domain and 1-D frequency domain, i.e., the

Fourier transform of each individual A-scan, to further investigate the differences in

performance.

5.4.1 Overall Results

The average SCR over all targets in the dataset is shown in Table 5.1; the standard

deviations of the SCR values over the 83 targets are shown in parentheses. Bold

values in the table indicate the best performance according to a two-sided t-test at

the 95% confidence interval. It is clear that essentially all RPCA algorithms are

able to increase the SCR, though the improvement using VBRPCA is marginal. The

overall winner is the L1F algorithm, which achieves an SCR of 13.82 in the time

domain; its performance breaks down when implemented in the frequency domain.

PCP-AD and OP-RPCA both do well in either the time or frequency domain, though

PCP-AD is the superior algorithm in either case. Another interesting note, which is

consistent in the subsequent target type-specific results, is that OP-RPCA performs

equally well in either domain. The Fast PCP and ALM algorithms are both able

to increase SCR when implemented in either domain, though their improvement is

far inferior to the other more successful method. Finally, the ASRPCA algorithm is

able to increase the SCR considerably, though only when implemented in the time

domain—frequency domain implementation does not seem to affect the SCR.
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Table 5.1
Average SCR over all targets*

Domain Lambda
RPCA Algorithm Time Frequency

None 0.88 (1.01) — —
PCP-AD 12.48 (8.01) 13.47 (5.45) 0.2
Fast PCP 3.94 (3.96) 2.56 (3.94) 1
OP-RPCA 11.55 (5.28) 11.55 (5.28) 0.3

ALM 4.04 (3.59) 4.04 (3.59) —
L1F 13.82 (5.09) 0.57 (0.90) —

ASRPCA 9.45 (5.60) 0.88 (1.00) 0.05, 0
VBRPCA 0.89 (1.01) 1.05 (1.67) —

*Standard deviation of SCR shown in parentheses. Bold indicates
best performance according to t-test at 95% confidence interval.

5.4.2 Results Based on Target Type

Tables 5.2–5.5 show the performance of the RPCA-processed B-scans for the four

target types: wires, landmines, pressure plates, and main charges. The overall trends

in these tables are generally all similar to those in Table 5.1, though there are some

exceptions that will be discussed.

PCP-AD implemented in the time domain achieves the highest SCR for wire targets.

It is followed in close second by the L1F algorithm, with similar results shown for

PCP-AD’s implementation in the frequency domain. Once again, OP-RPCA and

ASRPCA both achieve a decent SCR increase, and VBRPCA’s effect on the SCR is

marginal in either domain.
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Table 5.2
Average SCR over all wire targets*

Domain Lambda
RPCA Algorithm Time Frequency

None 0.69 (0.87) — —
PCP-AD 11.50 (10.18) 10.55 (5.89) 0.2, 0.1
Fast PCP 1.38 (3.87) 1.38 (3.85) 1
OP-RPCA 8.34 (4.49) 8.34 (4.49) 0.3

ALM 3.91 (3.24) 3.91 (3.24) —
L1F 10.95 (4.00) 0.54 (0.83) —

ASRPCA 6.44 (5.19) 0.69 (0.87) 0.05, 0
VBRPCA 0.69 (0.88) 0.73 (0.97) —

*Standard deviation of SCR shown in parentheses. Bold indicates
best performance according to t-test at 95% confidence interval.

Table 5.3
Average SCR over all landmine targets*

Domain Lambda
RPCA Algorithm Time Frequency

None 0.78 (0.89) — —
PCP-AD 11.50 (7.92) 16.38 (6.10) 0.2, 0.15
Fast PCP 2.19 (3.77) 2.17 (3.75) 1
OP-RPCA 11.74 (5.24) 11.74 (5.24) 0.3

ALM 3.81 (3.60) 3.81 (3.60) —
L1F 13.91 (4.92) 0.47 (0.74) —

ASRPCA 9.43 (5.51) 0.78 (0.89) 0.05,0
VBRPCA 0.78 (0.89) 0.95 (1.43) —

*Standard deviation of SCR shown in parentheses. Bold indicates
best performance according to t-test at 95% confidence interval.

Over all landmine targets, PCP-AD in the frequency domain reigns as the best al-

gorithm. OP-RPCA and L1F both do significantly better with landmine targets

when compared to wire targets, though this trend is generally exhibited by the other

algorithms likely due to the increased energy return from the larger landmine targets.

Pressure plate targets generally achieve some of the highest SCRs over all targets
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Table 5.4
Average SCR over all pressure plate targets*

Domain Lambda
RPCA Algorithm Time Frequency

None 1.19 (1.68) — —
PCP-AD 17.64 (11.58) 15.02 (5.59) 0.2, 0.1
Fast PCP 5.34 (4.16) 5.31 (4.15) 1
OP-RPCA 14.09 (6.18) 14.09 (6.18) 0.3

ALM 5.31 (3.92) 5.31 (3.92) —
L1F 16.17 (6.94) 0.84 (1.57) —

ASRPCA 11.78 (6.08) 1.19 (1.68) 0.05, 0
VBRPCA 1.19 (1.68) 1.52 (3.35) —

*Standard deviation of SCR shown in parentheses. Bold indicates
best performance according to t-test at 95% confidence interval.

when using RPCA. PCP-AD achieves the highest SCR of the experiments when

implemented in the time domain for these targets. L1F implemented in the time

domain achieves the second best performance, though PCP-AD in the frequency

domain and the OP-RPCA algorithm achieve approximately similar results. Once

more to no surprise the VBRPCA algorithm achieves negligible performance increase.

Main charge targets, like pressure plates, achieve high SCR increases because they

are relatively large targets, thus the returned energy is greater. The PCP-AD algo-

rithm outperforms all others in this category, with a considerable lead on the second

place algorithm, L1F. Interestingly, the PCP-AD algorithm achieves the experiment’s

highest SCR in this category, though the same cannot be said for any of the other

algorithms.
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Table 5.5
Average SCR over all main charge targets*

Domain Lambda
RPCA Algorithm Time Frequency

None 1.29 (0.85) — —
PCP-AD 15.28 (12.84) 17.72 (7.03) 0.25, 0.15
Fast PCP 3.28 (3.85) 3.27 (3.83) 1
OP-RPCA 11.26 (4.19) 11.26 (4.19) 0.35

ALM 4.38 (3.33) 4.38 (3.33) —
L1F 13.74 (4.06) 0.86 (0.92) —

ASRPCA 9.99 (5.09) 1.29 (0.85) 0.05, 0
VBRPCA 1.30 (0.86) 1.43 (1.26) —

*Standard deviation of SCR shown in parentheses. Bold indicates
best performance according to t-test at 95% confidence interval.

5.4.3 Decomposition Time

Table 5.6 shows the results of our experiment to compare the time to compute the

sparse component of a single B-scan. Note that the times given for the algorithms

in the frequency domain include the time for the FFT and inverse FFT. Fast PCP

lives up to its name and is the fastest algorithm in this experiment. The next fastest

algorithm is ASRPCA implemented in the frequency domain because the decom-

position converged almost instantly, though its results are far inferior to the other

algorithms. The fastest implementations of ALM and VBRPCA are able to compute

the sparse component in about one second. L1F clocks in at just over a second for

the time domain implementation, and PCP-AD in the same domain takes about a

half-second longer. Finally, OP-RPCA exhibits the longest decomposition time when

implemented in the frequency domain at almost 11 seconds.

163



Table 5.6
Average RPCA decomposition time per sweep in seconds*

Domain
RPCA Algorithm Time Frequency

PCP-AD 1.876 (0.658) 3.899 (1.348)
Fast PCP 0.027 (0.010) 0.048 (0.025)
OP-RPCA 4.914 (2.457) 10.809 (5.470)

ALM 0.919 (0.447) 1.993 (0.115)
L1F 1.242 (0.073) 0.109 (0.012)

ASRPCA 5.299 (2.913) 0.054 (0.289)
VBRPCA 0.887 (1.009) 1.049 (1.675)

*Standard deviation of time shown in parentheses.

5.4.4 Effect of Parameter Selection on Select Algorithms

Not all algorithms use a tuning parameter, though of the ones that do PCP-AD

and OP-RPCA both achieve significant increases in SCR. This section presents the

effects that the tuning parameter has on the sparse component and the SCR for these

algorithms.

Figure 5.9 shows an unprocessed target B-scan to which PCP-AD and OP-RPCA are

applied. The target is visible in the unprocessed image, though it is quite subtle. The

results for the PCP-AD algorithm are summarized in Figure 5.10, which shows the

processed B-scans and their integrated energies for four different choices of λ. Note

that the PCP-AD method was applied in both the time and frequency domains as

specified in the captions of the figure.

Figure 5.10 highlights how increasing λ promotes additional sparsity. In fact, the
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Figure 5.9: Unprocessed target B-scan used in Figures 5.10 and 5.12

results from PCP-AD in the time domain are essentially worthless when λ > 0.075.

The same applies to the results from the frequency domain application, though for

slightly higher values of λ.

Figure 5.11 shows λ’s effect on the SCR more clearly. In both the time and frequency

domain implementations, we see two peaks in the SCR. The first peak occurs in

roughly the same location for both implementations—λ = 0.06. At this point, the

images are closely related to the second row in Figure 5.10 and the target is clearly

seen in either the B-scan or the energy plots. The second peaks in the SCR plot

do not align as closely, but both correspond to the same phenomena. For example,

see the B-scan in Figure 5.10(o) and its integrated energy in in Figure 5.10(p). Here

we see that many of the columns of the B-scan have shrunk to zero because of the

sparsity induced by the relatively high value of λ. The SCR is heavily influenced by

the density of the impulses in the energy plot, of which there are few that correspond

to clutter, thus inflating the SCR. It should be noted however that this second peak
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(m) Energy, time (n) λ = 0.15, time (o) λ = 0.15, freq. (p) Energy, freq.

Figure 5.10: A single B-scan processed with PCP-AD using multiple val-
ues for λ along with the integrated energies. Note that image is labeled
either time or frequency, corresponding to the domain in which the PCP-
AD algorithm was implemented. Dashed vertical lines denote the target
region.

is not reliable across multiple targets since it is heavily influenced by the magnitude

of the returns and distribution of clutter; the first peak in the SCR plot is empirically

more robust and is not affected by these target variations as much as the second peak.

The images in Figure 5.12 show the results of applying OP-RPCA to the B-scan in

Figure 5.9. Note that it is only implemented in the time domain since experiments

have shown that the results are so similar when applied in the frequency domain.
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Figure 5.11: Effect of the tuning parameter on the SCR when using PCP-
AD. Note that the frequency domain trace is clamped to zero for situations
where computing the SCR is numerically limited, i.e., in cases where 0/0 is
approached.

Again we see that as λ is increased it has a major affect on the resulting images and

their energy content. For λ ≥ 0.5, the images highlight the sparse objects perhaps

too much—hyperbolic signatures of various point scatterers can be seen throughout

the images. Visually optimal results are achieved when λ = 0.3 as shown in Figure

5.12(c).

Figure 5.13 shows the effect of λ on the SCR. Like the previous experiment with

PCP-AD, we see two peaks, though the second can be discarded for similar reasons.

The first peak shows that OP-RPCA performs almost identically to PCP-AD when

λ is tuned to its optimal setting—approximately 0.3 in this case. The SCR is also

less sensitive to changes in λ in this region when compared to that of PCP-AD.
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Figure 5.12: A single B-scan processed with OP-RPCA in the time do-
main using multiple values for λ along with the integrated energies. Dashed
vertical lines denote the target region.

5.4.5 Preprocessing Conclusions

Thus far, this chapter focused on preprocessing the GPR data with RPCA. The

results show that the �1-filtering algorithm achieves the best results overall, when
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Figure 5.13: Effect of the tuning parameter on the SCR when using OP-
RPCA.

implemented in the time domain. Further target-specific experiments also show that

the PCP-AD and OP-RPCA algorithms also tend to perform very well. The timing

results suggest that, of these approaches, the �1-filtering algorithm performs best in

terms of both SCR increase and decomposition time, though Fast PCP is clearly

superior only in terms of the time to convergence. Finally, experiments inspecting

the effect of tuning parameter λ show that while SCR is generally increased for a

wide range of λ, there is typically a clear choice for λ that maximizes the SCR.

As one of the best performing algorithms, PCP-AD is used to preprocess the GPR

data for the remainder of this chapter. Next, an approach to feature-level fusion using

the GPR system described in Section 5.3 is presented.
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Figure 5.14: Scattered plot of integrated A-scan energy for Lane A, GPR
Channel 1.

5.5 Image Formation

The GPR data comprise a discrete waveform representing the radar return (A-scan)

at each spatial sample of the lane; an example of a GPR A-scan waveform is shown

in Figure 5.5(a). The energy of each waveform at location (i, j) is calculated from

each return xi,j as

Ei,j =
1

N

N∑
n=1

xi,j[n]x
∗
i,j[n], (5.9)

where N represents the number of samples in each A-scan and x∗ is the complex

conjugate of x. These data points are then scattered onto their respective spatial

location as shown in Figure 5.14.

The discrete energy points are linearly interpolated over a common grid and the lane

171



Figure 5.15: Linear interpolation of scatter plot in Figure 5.14.

Figure 5.16: Results of applying clutter removal with m = 0.85 to Figure
5.14.

edges are masked to eliminate the interpolation artifacts that lie outside the sweep

area. An example image is shown in Figure 5.15. Note that the horizontal-vertical

axes are not to scale; the vertical axis depicts approximately 30 m and the horizontal

axis is approximately 1.5 m.
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5.5.1 Clutter Removal

The target locations in Figure 5.15 are all located in the center of the lane4, so it

is clear that a good deal of clutter exist in areas relatively far away from targets.

To remove most clutter, we compare the linearly interpolated energy image to a

threshold. All pixels in the image that are less than the threshold are set to zero and

all other pixels remain unchanged, or

I ′i,j = 0, ∀(i, j) ∈ {arg(i,j){Ii,j ≤ T}}

I ′i,j = Ii,j, otherwise,

(5.10)

where Ii,j is the original image, T is the threshold, and I ′i,j is the clutter suppressed

image.

Because images will generally have different pixel value distributions, we use a method

of generating a threshold based on the histogram of pixel values for a particular image.

The pixel threshold T is chosen to satisfy

m =

T∫
0

hI(n)dn

N∫
0

hI(n)dn

, (5.11)

where m is the selection of ”mass” proportion, hI(n) is the histogram of the image,

4See Figure 5.17 for target locations.

173



and N is the maximum pixel value in the image; m is labeled as a mass because of

the similarity of this equation with the calculation of mass given a density. Dividing

by the total mass of the image allows the mass proportion m we choose to be in the

range of 0 to 1. This allows the selection of one mass proportion to generate the pixel

threshold for each particular image. Figure 5.16 shows the results of applying a mass

proportion of 0.85 to the image in Figure 5.15.

5.5.2 Image Ensemble

Images formed with data from different sensors generally differ, especially in the

case of the EMI sensor. However, there are obviously some differences that can be

beneficial during data fusion. Figure 5.17 shows an ensemble of images of Lane A.

The first three images are from the three GPR channels and the bottom image is

from the EMI sensor data. The EMI sensor’s image exhibits very crisp definitions of

the metallic objects and virtually no extraneous hot spots; the other images from the

GPR channels are all very similar. Ground truth locations of targets are shown as

red asterisks.
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Figure 5.17: Image Ensemble for Lane A with ground truths labeled with
asterisks.

5.6 CFAR Prescreener

The prescreening detector is the first algorithm applied to the lane images to generate

a hit list of candidate detection locations. The prescreening approach used in this

chapter is very similar to that used in previous work[6, 138]; however, we give a brief

overview of the approach here.
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Images are first filtered to detect local maxima using a size-contrast filter. This

is implemented by first generating two new images from the clutter-removed image

I ′(i, j) as

Iμc(i, j) =
{I ′ ∗Hc}∑

Hc

(i, j); (5.12a)

Iμh
(i, j) =

{I ′ ∗Hh}∑
Hh

(i, j); (5.12b)

where ∗ indicates convolution and Hc and Hh are the circular convolution kernels

shown in Figure 5.18. Iμc and Iμh
are essentially the mean of the center cluster of

pixels and the mean of the surrounding halo of pixels, respectively. The difference of

these two values is the final size-contrast filtered image,5

Isc(i, j) = Iμc(i, j)− Iμh
(i, j). (5.13)

Since thresholding Isc can result in a dense cluster of detections in a small local region,

we employ a maximum order-filter to eliminate redundant hits. The maximum order-

filter image, Io, is generated using a circular kernel with radius of 0.3 meters, and

detection locations are indicated by

A = arg(i,j){Isc(i, j) = Io(i, j)}, (5.14)

5Note that this prescreener is based on the difference of means. Other prescreeners can be formulated
using other difference measures, such as the Bhattacharyya distance.[6]
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Figure 5.18: Circular convolution kernel used in prescreener.

where A is the set of cross-range and down-range detection locations. Features are

extracted at each of these detection locations as discussed in Section 5.8. For a more

complete discussion of the methods employed in this prescreener, see our previous

papers.[6, 138]

5.7 Sensor Fusion

5.7.1 Run Packing

Run packing (RP) is an algorithm proposed by Glenn et al.[139] for alarm set fusion

(ASF), also called decision- or confidence-level fusion. During training, the algorithm

compiles a joint sequence of confidence values from multiple alarm sources using a

greedy packing strategy. This sequence is then used to compute a monotonically
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non-decreasing mapping function for each individual alarm source. When using RP

blindly on new data from the same alarm source set, the confidence values from the

alarm sources get mapped according to the mapping function found during training.

These new confidence values are then used for detection. For a more detailed account

of RP, see the paper by Glenn et al.[139].

5.7.2 Composite Confidence Maps

The method of generating a composite confidence map (CCM) has been utilized in

previous work[140], however our implementation is somewhat different. The idea is

that the detections from the CFAR prescreener discussed in Section 5.6 are blurred

by some circularly symmetric blurring function, and then all the detections are ag-

gregated on a common map. In this chapter, we explore the use of a Gaussian

blurring function and the aggregation is performed using a summation method and

a maximum-retaining method.
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5.7.2.1 CCM via Summation Method

Mathematically, the generation of the CCM for A sensors using the summation

method is

Ms(i, j) =
A∑

a=1

Ia(i, j) ∗BW (i−m, j − n), (5.15)

where Ms is the CCM, Ia(i, j) is the confidence of the hit at location (i, j) (if there is

not a hit at (i, j) then Ia(i, j) = 0), and BW is a blurring influence function masked

by a 2-dimensional window defining the width of the blurring function.

5.7.2.2 CCM via Maximum Method

An alternative method for generating the CCM is retaining the value of the individual

confidence map (after blurring) whose value is largest. More concretely,

Ms(i, j) = max
A

{Ia(i, j) ∗BW (i−m, j − n)}. (5.16)
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Figure 5.19: CCM examples for Lane A using a Gaussian influence func-
tion. Asterisks indicate ground truth locations.

5.7.2.3 Blurring Functions

The definition of BW for the Gaussian case is

BW (m,n) = e
m2+n2

σ2 , (5.17)

where the standard deviation, σ, is chosen to make the Guassian influence function

an appropriate size. In this work, we use an influence function size of 0.5 meters

and σ = 0.25 meters. Figure 5.19 shows examples of a CCM for Lane A using this

Gaussian blurring influence function. Note that while we explored both CCM via

the summation method and maximum method, the summing method is consistently

superior to the maximum method. Hence, all results in this work use the summation

method.
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Table 5.7
Length of Features and Full Feature Set.

Feature Dimension

LSTAT 27

HOG 81

LBP 90

FFST 261

Full Feature Set 459

5.8 Features

At each prescreener detection, we extract a 16 pixel square sub-image centered on

the hit location. The sub-image is divided into a 3× 3 cell arrangement where each 8

pixel square cell overlaps its neighbor by 50%. The features discussed in the following

sections are then extracted from each cell for use in classification via support vector

machines (SVMs). Table 5.7 summarizes the dimension of each feature as well as the

feature set dimension.

5.8.1 Local Statistics

The local statistics (LSTAT) feature vector is calculated for each of the 9 cells in the

sub-image surrounding a candidate alarm. This vector consists of the mean, median,

and standard deviation of the pixels. Hence, each target location is described by a
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Figure 5.20: Sub-image at hit candidate location.

LSTAT feature vector of length 9 × 3 = 27. These values are normalized over all

hits by subtracting the mean and dividing by the standard deviation of the feature

vectors.

5.8.2 Histogram of Oriented Gradients

The histogram of oriented gradients (HOG) feature vector represents texture by cal-

culating the gradients in a local area and compiling the gradients in a histogram

descriptor[141, 142]. The use of this feature for explosive hazard detection is not

novel, but it has been shown to be useful in similar studies[6, 138, 143].

For each cell in the sub-image, a HOG feature vector is created. A HOG feature vector

with 9 histogram bin centers is computed for each of the 9 cells in the sub-image,
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Figure 5.21: Gradient calculation with 3× 3 cell arrangement.

resulting in a total of 9× 9 = 81 feature values describing each candidate alarm. An

example of the application of HOG on a candidate alarm location is shown in Figures

5.20—5.22. Figure 5.20 shows the 16 × 16 pixel image extracted at a candidate

location. Figure 5.21 shows the cell partitioning and gradient calculations at each

pixel, and Figure 5.22 shows a compilation of the gradients within each cell.

5.8.3 Local Binary Patterns

Local binary patterns (LBPs) are a gray-scale and rotation invariant texture classifi-

cation. They are similar to HOG in that they are based on the gradients of the pixels

within a cell, however with LBPs only the existence of gradients is recorded in the

feature vector rather than the gradient magnitude and direction.
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Figure 5.22: Cell based 9-bin HOG feature.

In this work we use a uniform, rotational-invariant LBP developed by Ojala et al.[144]

While the formulation of the LBP neighborhood can be generalized, we compute the

LBP features for each pixel in a cell by looking at its 8 neighboring pixels in a 1 pixel

radius. Using the standard notation [144], each neighborhood is used to compute

LBP8,1 =
8∑

n=1

s(tp − tc)2
p, (5.18)

where

s(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 x ≥ 0,

0 x < 0.

(5.19)
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Note that the summation in (5.18) constructs an 8-bit binary string which character-

izes the image texture in the 1-radius around the center pixel. This string achieves

rotational invariance by rolling the binary string to a standard form, then uniforming

it using a look-up table. Finally, the pixel is labeled with a unique label in the set

{0, 9}. For a more in-depth discussion of the LBP methods used in this work, see the

paper by Ojala et al. [144]

The LBP feature is extracted from each cell as a 10-bin histogram. The histogram is

computed by counting the occurrences of the labels in each cell, i.e.,

hLBP (m) =
∑

u,v∈cell
S{LBPi,1(u, v) = m},m = 0, 1, ..., 9, (5.20)

where S{B} is a Boolean function taking the value 1 when the argument B is true,

and 0 when B is false. Finally, the histogram is normalized as

h̃LBP (m) =
hLBP (m)
10∑
i=1

hLBP (i)

, (5.21)

and h̃LBP (m) is the feature extracted from the cell. Since this LBP feature is extracted

for each of the 9 cells surrounding a candidate location, the overall LBP feature length

of a candidate hit is 9× 10 = 90.
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5.8.4 Fast Finite Shearlet Transform

Shearlets were developed by Guo et al.[145] as dilations, shear transformations, and

translations to a single mother function, which are used to extract anisotropic features

from an image and perform multiresolution analysis. In this respect, they are an

extension of wavelets. The mother function, most easily represented in the frequency

domain as ψ̂(ω1, ω2) = ψ̂1(ω1)ψ̂2(
ω2

ω1
), where ψ1(·) and ψ2(·) in the time (or spatial)

domain satisfy the properties described by Guo et al.[145] and Hauser et al.[146]

Shearlet features have been utilized in explosive hazard detection previously [147];

however, the application was in the context of forward looking infrared imaging.

The implementation of the shearlet transform we use is termed the fast finite shearlet

transform (FFST)[146], based on discrete shearlets on the cone[145]. This discretizes

the support of the shearlets in the Fourier domain to bandpass regions parameterized

by scale, direction, and frequencies. For three scales, the frequency tiling is shown

in Figure 5.23. The indices in Figure 5.23 correspond to the indices shown in Figure

5.24 depicting the frequency domain magnitude of the FFST filters. Note the less

interesting low-pass filter corresponding to frequency tile 1 in Figure 5.23 is not shown

in Figure 5.24.

Recall that the FFST features are generated using the FFST implementation given by
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Figure 5.23: Frequency tiling structure for three scales.

Figure 5.24: Frequency domain magnitude of FFST filters.

Hauser et al.[146] For an m×n image, the FFST computes m×n coefficients for each

scale index. As demonstrated in Figure 5.23, the FFST over j scales results in 2j+2−3
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scale indices. Thus, if the FFST was generated for each of the 9 cells surrounding

a candidate location over 3 frequency scales, the overall FFST feature length of a

candidate hit would be 9 × 8 × 8 × 29 = 16, 704. Since this is obviously a ludicrous

feature length, we use a histogram approach similar to that proposed by Schwartz

et al.[148] known as histograms of shearlet coefficients (HSC). This method works as

follows. For each scale index j, a histogram is generated with 2j+2 − 3 bins (one bin

for each orientation). Each bin is then computed as the sum of the absolute values

of the FFST coefficients of that bin’s respective orientation. After the j histograms

are computed, they are concatenated and �2-norm normalized resulting in the HSC

feature. Extracting the HSC feature over 3 frequency scales from each of the 9 cells

surrounding a candidate alarm results in a feature length of 9× 29 = 261.

5.9 Results

5.9.1 Performance Metric: NAUC

To compare the results of different detectors and different lanes, we generate the

detector’s receiver-operating-characteristic (ROC). The ROC plot is based on the

confidences of the hit list as well as the labels of the hits. The horizontal axis, though

labeled as false alarms per unit area, is also directly proportional to a threshold
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against which the confidence of the hits is compared. As the threshold is increased,

the relation of the probability of detection and false alarm rate (FAR) is shown.

To quantify the results of a particular ROC, we find the normalized area under the

ROC (NAUC) up to a FAR of 0.1 FA/m2, then normalize the result so that a perfect

detector will have an NAUC of 1. The NAUC equation is

NAUC =
1

0.1

0.1∫
0

PD(FAR)dFAR, (5.22)

where PD(FAR) is the probability of detection at false alarm rate, FAR. Equation

(5.22) shows that the minimum value of the NAUC is zero if PD(FAR) = 0 for

FAR ∈ [0, 0.1]. It is also clear from Eq. (5.22) that an NAUC of 1 corresponds to

perfect detection at zero FAR. An example ROC plot is shown in Figure 5.25. This

ROC plot is shaded up to 0.1 FA/m2 to explicitly show how we calculate the NAUC.

As shown in the figure, the NAUC for this particular detector, lane, and channel is

0.35.

The miss-distance halo size used for these results is a 0.25 meter radius circle. In other

words, if an indicated hit is within 0.25 meters of a ground-truth target location, then

it is considered a detection. This is justified by the fact that if one were to dig and

explore a point on the ground, it is very probable that the surrounding 0.25 meters

is also explored.

189



Figure 5.25: Normalized area-under-ROC (NAUC) calculation.

5.9.2 Prescreener Results

The prescreener was run on each individual channel from each lane. The images were

generated using an exclusion threshold of 0.85, and the spatial parameters of the size-

contrast filter were set such that the center cluster of pixels had a radius of 15 cm

and the halo had a width of 12 cm. Table 5.8 summarizes the NAUCs for each sensor

on each lane, and the solid line in Figure 5.26 shows the overall ROC for each lane

where the hits from all sensors are lumped together to form one ROC. The NAUCs

for these conglomerate ROCs are given in the second column of Table 5.9.

Table 5.8 shows that Channel 1 outperforms all other sensors on half the lanes, while

no other sensor outperforms another on more than one lane. Note that the EMI
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Table 5.8
Results of CFAR Prescreener on each Channel and Lane.

Lane Channel 1 Channel 2 Channel 3 EMI

A 0.375 0.142 0.175 0.207

B 0.352 0.281 0.066 0

C 0.117 0.149 0.208 0.176

D 0.059 0.077 0 0

E 0.311 0.214 0 0

F 0.067 0.021 0.021 0.071

results cannot compare fairly to the other sensors because of the nature of the ROCs.

The EMI sensor does extremely well finding metallic targets, however all others are

missed. This explains why the EMI ROC is typically a flat line; if the EMI sensor

does detect something, it detects it very well and we see a nonzero value of the ROC

at zero FAR. Any false alarms found by the EMI sensor will have such low confidences

that they do not appear in the ROC in the range of 0 to 0.25 FAR.

5.9.2.1 Prescreener with RP

The dashed lines in Figure 5.26 show the ROCs for each lane after RP is applied to

the prescreener hit list. Since training is required with RP, five lanes are used to train

and the remaining lane is used as the test lane. Thus, each RP ROC in Figure 5.26

shows the results after testing on its respective lane and training on all others. The

NAUCs calculated from these ROCs are shown in column 3 of Table 5.9.
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Figure 5.26: Lumped ROCs for each lane; solid: prescreener, dashed: RP,
dotted: CCM, dashed/dotted: RP + CCM.

From Figure 5.26 it is apparent that the RP algorithm tends to pull the ROC up and

left. This is also highlighted by the fact that NAUC after RP is applied is greater

than that of the raw prescreener hits for every lane (see columns 2 and 3 of Table

5.9). Indeed, the application of RP doubles the NAUC when compared to results

from the raw prescreener hits.
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Table 5.9
NAUCs for the ROCs.

Lane No RP RP CCM RP + CCM

A 0.116 0.142 0.233 0.291

B 0.108 0.332 0.296 0.245

C 0.208 0.234 0.331 0.182

D 0.038 0.097 0 0.036

E 0.130 0.290 0.097 0.210

F 0.071 0.138 0.021 0.067

5.9.2.2 Prescreener with CCM

Applying CCM discussed in Section 5.7.2 to the prescreener hits gives rise to the

ROCs shown as dotted lines in Figure 5.26. The NAUCs for these ROCs are also

given in the fourth column of Table 5.9. Overall, CCM improves performance by

approximately 25% from the prescreener alone, however its results vary significantly.

For example, on Lane B the NAUC is almost raised by a factor of 4, however on Lane

D the performance is decreased to zero.

5.9.3 Prescreener with RP and CCM

Finally, the dashed-dotted lines in Figure 5.26 show the ROCs after applying both

the RP algorithm and CCM to the prescreener hits, and their respective NAUCs are
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shown in column five of Table 5.9. Similar to the results for that of CCM only, these

have a significant amount of variance and their performance depends heaviliy on the

lane. While the average performance increase is about 50%, the results are actually

inferior to the raw prescreener results on half the lanes.

5.9.4 SKSVM

The results in this section are the NAUCs using a SKSVM classifier using a RBF

kernel with C = 1 and γ = 1/D, where D is the length of the feature vector. Refer to

Table 5.7 for a summary of the feature vector lengths. The tables show the results for

each lane after training on the five remaining lanes, and the results for each individual

feature type are also given.

5.9.4.1 SKSVM using Prescreener Hits

Table 5.10 shows the results of the SKSVM classifier using the raw hits from the

prescreener. We see that the HOG feature is superior to all other features, and

most of its results are better than the best prescreener results in Table 5.8. Another

feature worth of mentioning is the FFST feature which achieves better results than

the prescreener. The local statistic feature vector is by far the worst, achieving a

NAUC of zero for four lanes. This classifier achieves the best results for Lane A and
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Table 5.10
Results of SKSVM Classifier on each Channel and Lane using Different

Features—Prescreener Hits.

Lane

Feature Type A B C D E F Avg. Std. Dev.

HOG 0.389 0.306 0.345 0.097 0.050 0.138 0.221 0.131

LBP 0.349 0.066 0.091 0 0.088 0.071 0.111 0.111

LSTAT 0.204 0 0 0 0 0.062 0.044 0.075

FFST 0.233 0.046 0.117 0.118 0.038 0.133 0.114 0.064

All Features 0.309 0.163 0.111 0.038 0.113 0.067 0.134 0.088

Lane C.

5.9.4.2 SKSVM using CCM

The application of CCM before using the SKSVM gives the NAUCs given in Table

5.11. Once again, the HOG feature outperforms the others, however a comparison

with Table 5.10 reveals the application of CCM obviously hinders performance, in

general. Interestingly, the local statistics feature is successful on more lanes, however

its average performance increase is marginal. Additionally, the results for the use of

all the features on Lane C more than doubled, while all results for Lane D dropped

to 0.
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Table 5.11
Results of SKSVM Classifier on each Channel and Lane using Different

Features—CCM Hits.

Lane

Feature Type A B C D E F Avg. Std. Dev.

HOG 0.175 0.071 0.228 0 0.210 0.092 0.129 0.081

LBP 0.058 0.153 0.182 0 0.092 0 0.081 0.070

LSTAT 0 0.046 0.105 0 0.113 0.021 0.048 0.046

FFST 0 0.143 0.143 0 0.055 0.046 0.065 0.059

All Features 0.058 0.041 0.273 0 0.04 0.02 0.072 0.092

5.9.4.3 SKSVM using RP + CCM

The final experiment with SKSVM used the RP-scaled confidence values of the pre-

screener hits to form a CCM from which new hits were generated and used for the

results in Table 5.12. While half of the average performances are an improvement

over those of Table 5.11, only the local statistics feature average result is an improve-

ment over the prescreener results in Table 5.9. The FFST feature results for two

lanes dropped to zero from the addition of RP, however its performance on Lane E

doubled. It is also worthwhile to note that using all features yields the best results

thus far on Lane D.
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Table 5.12
Results of SKSVM Classifier on each Channel and Lane using Different

Features—RP + CCM Hits.

Lane

Feature Type A B C D E F Avg. Std. Dev.

HOG 0.331 0.082 0 0 0.176 0.020 0.102 0.120

LBP 0.059 0.046 0.119 0.059 0.185 0.046 0.086 0.051

LSTAT 0 0.046 0.119 0.113 0.093 0 0.062 0.050

FFST 0 0 0 0 0.110 0.046 0.026 0.041

All Features 0.078 0.138 0.273 0.134 0.033 0 0.109 0.088

5.9.5 MKLSVM

The results in this section are the NAUCs using a MKLSVM classifier using a col-

lection of five RBF kernels. In each experiment, the five RBF parameters are set as

γi = 10i/D, i ∈ {−2,−1, 0, 1, 2}, where D is the length of the feature vector. See

Table 5.7 for a breakdown of the values of D for each feature type. The tables show

the results for each lane after training on the five remaining lanes, and the results for

each individual feature type are also given.

5.9.5.1 MKLSVM using Prescreener Hits

Table 5.13 shows the results of applying MKLSVM to the raw prescreener hits. The

local statistics feature’s average results are increased by a factor of three from the
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Table 5.13
Results of MKLSVM Classifier on each Channel and Lane using Different

Features—Prescreener Hits.

Lane

Feature Type A B C D E F Avg. Std. Dev.

HOG 0.204 0.306 0.202 0 0.017 0.189 0.153 0.081

LBP 0.381 0.071 0 0 0.055 0.041 0.091 0.132

LSTAT 0.342 0.214 0.111 0 0.092 0.067 0.138 0.111

FFST 0.233 0.046 0.228 0.136 0.038 0.133 0.136 0.077

All Features 0.084 0.260 0.026 0.176 0.076 0 0.104 0.089

SKSVM case, the average results using all the features in MKLSVM improve that

of SKSVM by approximately 30%, and the HOG feature is generally still the best

feature. This classifier is the best classifier explored in this work with respect to Lane

D and Lane E.

5.9.5.2 MKLSVM using CCM

Forming a CCM from the prescreener hits then applying a MKLSVM gives the results

in Table 5.14. This modification to the MKLSVM approach seems to severly hinder

its performance, and the HOG feature is no longer the best feature. Note that the

only results for this classifier that beat the prescreened results occur on Lane C.
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Table 5.14
Results of MKLSVM Classifier on each Channel and Lane using Different

Features—CCM Hits.

Lane

Feature Type A B C D E F Avg. Std. Dev.

HOG 0 0.179 0.080 0 0.13 0 0.065 0.071

LBP 0.025 0.087 0.299 0 0 0 0.069 0.108

LSTAT 0 0.066 0.299 0.036 0.113 0.021 0.089 0.100

FFST 0 0.092 0.085 0 0 0 0.030 0.042

All Features 0.084 0.041 0.273 0 0.097 0.021 0.086 0.090

5.9.5.3 MKLSVM using RP + CCM

Finally, Table 5.15 shows the results of the MKLSVM after forming a CCM using the

RP-normalized confidences from the prescreener. The average results of the LSTAT

feature were almost doubled from the CCM only case, and the average results of using

all features was raised by approximately 50%. The other feature results all decreased

from the CCM case, however two only dropped marginally.

5.9.5.4 Results Summary

The summary of the best test results from the experiments described above are shown

in Table 5.16. It shows that the HOG feature appears in the best method for half

of the lanes, and interestingly, the CFAR prescreener achieved superior results on
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Table 5.15
Results of MKLSVM Classifier on each Channel and Lane using Different

Features—RP + CCM Hits.

Lane

Feature Type A B C D E F Avg. Std. Dev.

HOG 0.026 0.133 0.028 0 0.185 0 0.062 0.071

LBP 0.059 0.021 0.119 0.017 0.156 0.020 0.065 0.054

LSTAT 0.208 0.103 0.273 0.118 0.110 0.066 0.146 0.071

FFST 0 0 0.091 0 0 0 0.015 0.034

All Features 0.176 0.138 0.273 0.134 0.017 0 0.123 0.093

two lanes using the data from Channel 1 only. SKSVM and MKLSVM served as the

best classifiers on two lanes each, with one instance of MKLSVM performing best

using all the extracted features. We also note that while the RP and CCM sensor

fusion algorithms do not appear in the list of the best classifiers, they are able to

boost performance with respect to the CFAR prescreener as demonstrated by the

bold numbers in Tables 5.11, 5.12, 5.14, and 5.15.

The major challenge we encountered with RP algorithm was that it results in multiple

hits on false alarm targets; hence, while the confidence on each target might be

relatively increased, the number of false alarms is also increased. In practice, this

may not be a problem as one would only dig one hole for a group of closely-arranged

hits. The CCM algorithm was designed to attack this specific deficiency, but in some

cases it took hits that were originally within the target halo and dragged them away

from targets through its fusion process.
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Table 5.16
Summary of Best Results.

Lane Best Performing Classifier NAUC

A SKSVM using HOG feature 0.389

on prescreener hits

B CFAR Prescreener on Channel 1 0.352

C SKSVM using HOG feature 0.345

on prescreener hits

D MKLSVM using all features 0.176

on prescreener hits

E CFAR Prescreener on Channel 1 0.311

F MKLSVM using HOG feature 0.189

on prescreener hits

5.10 Conclusion

In this part, we applied sensor fusion and multiple kernel learning to SVM-based clas-

sifiers on images generated from integrated energy from a downward-looking GPR.

The sensor fusion approaches we explored include run packing and composite confi-

dence mapping. We also inspected the utility of combining the two fusion techniques.

Features are extracted from both the candidate hit locations and the regions sur-

rounding them, making the features context-based. Features we used include the

well established HOG and LBP features, as well as a feature describing local statis-

tics and another based on the coefficients of the fast finite shearlet transform. RBF

kernels were applied to these features for classification with SKSVM and MKLSVM

classifiers. We presented the results for these features and classifiers using the sensor
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fusion approaches previously mentioned, and our results showed that while no best

algorithm exists, some approaches we explored deserve additional analysis.

The final part of this chapter applies the fusion algorithms discussed in Chapter 2

are to energy-based features from the RPCA-preprocessed GPR data.
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5.11 Explosive Hazard Detection Dataset

The explosive hazard dataset used in the experiments that follow is different than

that derived in Part II and is composed of a collection of 1,955 11-dimensional feature

vectors with class labels {−1,+1}, corresponding to true negatives and true positives,

respectively. These feature vectors are computed as discussed in the following section.

5.11.1 Prescreener and Feature Extraction

A simple energy-based prescreener using the RPCA sparse component was utilized

to identify queue points to be investigated using the classifiers. The energy of each

discrete radar return was found and a ground map was formed as shown in Figure

5.27. The prescreener then flags local maxima in the integrated energy ground map

as queue points, and features are then extracted from those points. The features that

were collected from the queue points for this experiment were based on energy and

localized contrast. Specifically, for each queue point location, the features include

† the energy at the detection location;

† the energy in a disk of radius 20 cm in the integrated energy ground map;

† the ratios of energy in disks of radius 10, 20, 30, and 40 cm to the energy in a
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Figure 5.27: Integrated energy ground map and an example queue point
with 10, 20, 30, and 40 cm disks.

disk of radius 50 cm in the integrated energy ground map;

† the ratios of energy in circles of radius 10, 20, and 30% of total image size to

total energy in the B-scan image6.

5.12 Experiments and Results

Here we present the results of the GAMKLp and DeFIMKL algorithms after applying

them to the GPR data set described in Section 5.11 using SVM classifiers; we use

LIBSVM to implement the classifiers [76]. Their performance is presented alongside

the results of the state-of-the-art MKLGL algorithm. Additionally, the results are

compared with those of the prescreener such that the overall improvement can be

evaluated.

Each experiment consists of 100 trials, where the results of these trials are statistically

6The B-scan image is a collection of individual radar returns surrounding the queue point location.
This image essentially represents a vertical slice of earth at the queue point location. More details
on these radar returns and B-scans can be found in [5, 130].
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compared via a two-sample t-test at a 5% significance level. Including the standard

deviation in the results highlights the sensitivity (variance) of each classifier to the

selection of training data. In each trial the data set is partitioned into five partitions,

each holding 20% of the data. The training/testing cycle is performed five times,

where four partitions are used as training data and the remaining partition is used

as the testing data; the testing results from each partition are combined to form the

overall ROC for each trial and the NAUC is extracted as the performance metric.

Fifty RBF kernels are used in each algorithm with respective RBF widths σ logarith-

mically spaced on the interval [10−2, 101.6]; the same RBF parameters are used for

each algorithm.

5.12.1 Experiment 1

The first experiment was designed to compare the results of the MKL methods dis-

cussed in this chapter with the prescreener and MKLGL algorithms. This experiment

applies the different MKL classifiers to the same data partitions such that the results

can be compared equally. Table 5.17 summarizes the average NAUCs from this ex-

periment along with their improvement over the prescreener; the standard deviations

are given in parentheses.
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Table 5.17
NAUCs and percentage improvement compared to the prescreener*.

Results
Algorithm NAUC % Improvement
Prescreener 0.204 -
MKLGL1 0.438 (0.013) 115%
MKLGL2 0.466 (0.013) 129%
GAMKL1 0.504 (0.012) 147%
GAMKL2 0.494 (0.013) 142%
DeFIMKL 0.350 (0.074) 72%
DeFIMKL1 0.461 (0.041) 126%

λ = 1
DeFIMKL2 0.486 (0.017) 138%

λ = 2
*Bold indicates the best per-
former according to a two-
valued t-test at a 5% signifi-
cance level..

The results show that the GAMKL algorithm has superior performance when com-

pared to the MKLGL algorithm and the regularized DeFIMKL algorithms’ perfor-

mance is comparable to MKLGL’s performance, however, the �2−regularized De-

FIMKL algorithm does beat MKLGL. The standard deviation of DeFIMKL2 is

marginally higher than that of MKLGL, suggesting that the DeFIMKL training is

more closely dependent on the selection of training data and thus more susceptible to

overtraining. This conclusion is further supported by the relatively large standard de-

viation exhibited by the unregularized DeFIMKL algorithm, which is to be expected

since regularization was not employed to suppress the possibility of overtraining (i.e.,

classifier variance). GAMKL, on the other hand, has essentially equivalent classifier

variance, i.e., it is just as susceptible to overtraining as MKLGL.
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Figure 5.28: DeFIMKL performance using regularization. Error bars in-
dicate ± one standard deviation.

5.12.2 Experiment 2

A second experiment was performed with the DeFIMKL algorithm to observe the

effects of the regularization parameter λ. This experiment applies the regularized

DeFIMKL algorithms to the data while varying λ over the range [0, 10]. Figure 5.28

summarizes the results of this experiment.

The trend of the plot shows the importance of including regularization with the De-

FIMKL algorithm, since both DeFIMKL1 and DeFIMKL2 benefit by using a nonzero

λ. However, the average NAUC generally decreases as λ is increased. Furthermore,

the standard deviation of the DeFIMKL2 results increases nearly consistently with

increasing λ, though the trend is opposite with the DeFIMKL1 standard deviation.
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5.13 Conclusion

The latter part of this chapter applied a feature-level fusion algorithm, GAMKLp,

and a decision-level fusion algorithm, DeFIMKL, to a dataset derived from ground

penetrating radar for explosive hazard detection. GAMKLp uses a genetic algorithm

to find the multiple kernel mixing coefficients, σ, and is generalized to allow σ to lie

in the �p-norm domain, Δp. The DeFIMKL algorithm aggregates kernels through the

use of the Choquet fuzzy integral with respect to a fuzzy measure learned by a reg-

ularized quadratic programming approach. We use MKLGL as the benchmark MKL

algorithm, and show that both GAMKLp and DeFIMKL can outperform MKLGL.
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Chapter 6

Conclusion

This dissertation presents some novel feature-level fusion and decision-level fusion

techniques, discusses many extensions of the feature-level fusion algorithm we call

DeFIMKL, and shows the various experiments on real-world and synthetic datasets

used to validate their performance. Furthermore, the preceding chapter outlines the

application of some of these algorithms to the problem of explosive hazard detection

with ground penetrating radar. Summarized below are the challenges undertaken in

this dissertation along with a brief explanation of how they were addressed.

Multiple kernel learning challenges include the determination of what kernel

combination is best, and the scalability problem—MKL generally requires a large

amount of memory when used with large datasets. The former is addressed with
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the proposal of new fusion techniques, i.e., GAMKL, DeFIMKL, DeGAMKL, and

DeLSMKL, and I apply the Nyström approximation to the multiple kernel matrices

to tame MKL’s scalability. Experiments show that some of the new fusion algorithms

can compete with state-of-the-art methods, and the Nyström approximation tends to

allow most of the kernel matrices to be discarded, therefore alleviating the demanding

memory requirements.

Learning underdetermined fuzzy measures was tackled by using various reg-

ularization functions that either generalize the DeFIMKL model, reduce model com-

plexity, or encode information about the underlying FM in the learning process. This

problem arises due to the fact that training data are essentially never diverse enough

to determine the underlying FM. Experimental results using the various regularization

functions show that they do indeed alter the behavior of the algorithm, however, the

best one is always data-dependent. This work also spawned a visualization strategy

to easily observe the behavior of the FM and fuzzy integral.

Applications to explosive hazard detection was discussed, as well as my robust

principal component analysis preprocessing investigation. I presented an example of

the full detection pipeline including data processing and feature extraction, and ap-

plied some of the novel fusion algorithms presented in earlier chapters to the problem

where I showed that the DeFIMKL algorithm outperforms a current state-of-the-art
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MKL algorithm.

6.1 Future Work

The following ideas are candidates for future research on the topics addressed in the

previous chapters.

Nonlinear aggregations of kernels. The Choquet fuzzy integral was used exten-

sively for decision aggregation in this dissertation, but can it (or a similar nonlinear

aggregation operator) be used for combining kernels for feature-level fusion? All MKL

methods used in this work assume the kernels are combined via linear combination

which is well known to result in a new valid kernel (i.e., a Mercer kernel), but would

the fusion further benefit from the power generally exhibited by a nonlinear aggre-

gation? This is a nontrivial problem since one must first prove that the nonlinear

aggregation operator used results in a Mercer kernel—itself a difficult task.

Improving the algorithms’ scalability. The previous chapters have shown that

these algorithms suffer from scalability problems. Specifically, MKL methods are gen-

erally demanding in terms of memory and computation time, and fuzzy integral-based

algorithms requires the specification or learning of a fuzzy measure that explodes very
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quickly (recall that for a panel of m decision-makers, the FM includes 2m unique val-

ues). The Nyström approximation was utilized to address the former issue, and while

its results are very promising, the speedup it provides with large datasets is only

approximately linear in the number of training data. Perhaps there is a further ex-

tension or completely new approximation method that would allow better scalability

in this sense. The fuzzy integral algorithms also suffer from a similar issue—the num-

ber of free parameters to learn and the number of constraints can quickly swamp

memory and processing resources. There are current collaborations that have started

exploring this issue, but more work is needed to develop novel methods of increasing

the utility and practicality of fuzzy integrals with many inputs.

Algorithm stability across datasets. As is always the case with classification

problems, the success of a particular algorithm is always dependent on the data at

hand. The methods proposed in this dissertation are no exception—in many cases

they tend to do very well (either on par with or beating other state-of-the-art meth-

ods), however, there are the other cases when they simply do not work so well. Thus,

more work is needed to explore methods of increasing the algorithms’ stability across

datasets. The choice of regularization function is a large part of this (many of which

were discussed in the dissertation), but perhaps there are other methods that can be

employed or developed to address this issue.
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Interactive visualizations to improve fuzzy integral intuition and educa-

tion. The fuzzy integral is not an intuitive operator and there is much to be learned

by the general practitioner about its behavior from helpful visualizations. The simple

visualizations presented in this dissertation convey a lot of information and illuminate

the integral’s behavior, however, there is much more that can be done. Specifically,

an interactive visualization would allow the user to explore the lattice deeper. I imag-

ine a visualization that allows the user to inspect individual data points (paths) and

nodes in the lattice. Not only will this provide deeper insight into the fuzzy integral’s

behavior, it can also serve as an educational platform for students or researchers

getting started in this field.
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[113] A. F. Tehrani and E. Hüllermeier, “Ordinal choquistic regression,” in EUSFLAT

conference, 2013.

[114] A. F. Tehrani, “Learning nonlinear monotone classifiers using the choquet in-

tegral,” PhD dissertation, 2013.

[115] G. Beliakov, A. Pradera, and T. Calvo, Aggregation Functions: A Guide for

Practitioners, 1st ed. Springer Publishing Company, Incorporated, 2008.

234



[116] C. Gini, “On the measure of concentration with special reference to income and

statistics,” Colorado College Publication, no. 208, pp. 73–79, 1936.

[117] M. Brown, “Using Gini-style indices to evaluate the spatial patterns of health

practitioners: theoretical considerations and an application based on Alberta

data,” Social Science Medicine, vol. 38, no. 9, pp. 1243–1256, 1994.

[118] F. A. Farris, “The gini index and measures of inequality,” The American Math-

ematical Monthly, vol. 117, 2010.

[119] T. Leinster and C. A. Cobbold, “Measuring diversity: the importance of

species similarity,” vol. 93, no. 3, Mar. 2012, pp. 477–489. [Online]. Available:

http://dx.doi.org/10.1890/10-2402.1

[120] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, “Sparsity and

smoothness via the fused lasso,” Journal of the Royal Statistical Society Series

B, pp. 91–108, 2005.

[121] V. Cevher, S. Becker, and M. Schmidt, “Convex optimization for Big Data:

scalable, randomized, and parallel algorithms for big data analytics,” IEEE

Signal Processing Magazine, vol. 31, no. 5, pp. 32–43, 2014.

[122] A. N. Tikhonov, “[on the stability of inverse problems],” Doklady Akademii

Nauk SSSR, vol. 39, no. 5, pp. 195–198, 1943.

235



[123] E. Candes, M. Wakin, and S. Boyd, “Enhancing sparsity by reweighted l1 min-

imization,” Journal of Fourier Analysis and Applications, vol. 14, pp. 877–905,

2008.

[124] L. Hu, D. T. Anderson, T. C. Havens, and J. M. Keller, “Efficient and scalable

nonlinear multiple kernel aggregation using the choquet integral,” in Informa-

tion Processing and Management of Uncertainty in Knowledge-Based Systems,

vol. 442, 2014, pp. 206–215.

[125] L. Hu, D. T. Anderson, and T. C. Havens, “Multiple kernel aggregation using

fuzzy integrals,” in IEEE International Conference on Fuzzy Systems (FUZZ-

IEEE), July 2013, pp. 1–7.

[126] JIEDDO COIC MID. (2012) Global IED monthly summary report. [Online].

Available: https://publicintelligence.net/jieddo-global-ieds-aug-2012/

[127] I. Jolliffe, Principal component analysis. Wiley Online Library, 2002.

[128] E. J. Candes, X. Li, Y. Ma, and J. Wright, “Robust principal component anal-

ysis?” Journal of the ACM, vol. 58, no. 3, May 2011.

[129] M. Fazel, H. Hindi, and S. P. Boyd, “A rank minimization heuristic with ap-

plication to minimum order system approximation,” in Proc. IEEE American

Control Conference, vol. 6. IEEE, 2001, pp. 4734–4739.

236



[130] M. P. Masarik, J. Burns, B. T. Thelen, J. Kelly, and T. C. Havens, “GPR

anomaly detection with robust principal component analysis,” in Proc. SPIE,

vol. 9454, 2015, pp. 945 414–945 414–11.

[131] P. Rodriguez and B. Wohlberg, “Fast principal component pursuit via alternat-

ing minimization,” in 20th IEEE International Conference on Image Processing

(ICIP), Sept 2013, pp. 69–73.

[132] H. Xu, C. Caramanis, and S. Sanghavi, “Robust pca via outlier pursuit,” IEEE

Transactions on Information Theory, vol. 58, no. 5, pp. 3047–3064, May 2012.

[133] G. Tang and A. Nehorai, “Robust principal component analysis based on low-

rank and block-sparse matrix decomposition,” in 45th Annual Conference on

Information Sciences and Systems (CISS). IEEE, 2011, pp. 1–5.

[134] R. Liu, Z. Lin, S. Wei, and Z. Su, “Solving principal component pursuit in linear

time via l 1 filtering,” arXiv preprint arXiv:1108.5359, 2011.

[135] G. Liu and S. Yan, “Active subspace: Toward scalable low-rank learning,”

Neural computation, vol. 24, no. 12, pp. 3371–3394, 2012.

[136] S. D. Babacan, M. Luessi, R. Molina, and A. K. Katsaggelos, “Sparse bayesian

methods for low-rank matrix estimation,” IEEE Transactions on Signal Pro-

cessing, vol. 60, no. 8, pp. 3964–3977, 2012.

237



[137] A. Sobral, T. Bouwmans, and E. hadi Zahzah, “Lrslibrary: Low-rank and sparse

tools for background modeling and subtraction in videos,” in Robust Low-Rank

and Sparse Matrix Decomposition: Applications in Image and Video Processing.

CRC Press, Taylor and Francis Group., 2015.

[138] T. C. Havens, K. Stone, D. T. Anderson, J. M. Keller, K. C. Ho, T. T. Ton,

D. C. Wong, and M. Soumekh, “Multiple kernel learning for explosive hazard

detection in forward-looking ground-penetrating radar,” vol. 8357, 2012.

[139] T. Glenn, B. Smock, J. Wilson, and P. Gader, “A run packing technique for

multiple sensor fusion,” vol. 8709, 2013.

[140] T. C. Havens, J. M. Keller, K. C. Ho, T. T. Ton, D. C. Wong, and M. Soumekh,

“Narrow-band processing and fusion approach for explosive hazard detection in

flgpr,” vol. 8017, 2011.

[141] D. Lowe, “Distinctive image features from scale invariant keypoints,” Int. Jour-

nal of Computer Vision, vol. 60, pp. 91–110, 2004.

[142] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”

vol. 1, June 2005, pp. 886–893 vol. 1.

[143] D. Anderson, K. Stone, J. Keller, and C. Spain, “Combination of anomaly al-

gorithms and image features for explosive hazard detection in forward looking

infrared imagery,” IEEE Journal of Selected Topics in Applied Earth Observa-

tions and Remote Sensing, vol. 5, no. 1, pp. 313–323, Feb 2012.

238



[144] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale and rota-

tion invariant texture classification with local binary patterns,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971–987,

Jul 2002.

[145] K. Guo, G. Kutyniok, and D. Labate, “Sparse multidimensional representa-

tions using anisotropic dilation and shear operators,” in Int. Conf. Interaction

between Wavelets and Splines, 2005, pp. 1–6.
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Appendix A

Support Vector Machines and

MKLGL

A.0.1 Linear Support Vector Machines

The linear SVM is a two-class classifier based on a class-separating hyperplane, g(x) =

wTx + w0 = 0. The hyperplane parameters (w, w0) are found via the optimization

problem,

minimize
w

J(w) =
1

2
‖w‖2,

subject to yi(w
Txi + w0) ≥ 1, i = 1, . . . , n,

(A.1)
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where yi ∈ {−1, 1} are the class labels. The optimal hyperplane is centered between

the nearest data point from each class, and it is oriented such that the margin is

maximized. This only works for linearly-separable classes, however.

This idea is extended to the soft-margin SVM for non-separable classes, which is a

similar optimization problem posed as

minimize
w,ξ

J(w, ξ) =
1

2
‖w‖2 + C

n∑
i=1

ξi,

subject to yi(w
Txi + w0) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n,

(A.2)

where ξi are slack variables. For data that complies with the constraints in (A.1), the

slack variables ξ = 0. For all other data, i.e., data inside the SVM margin and/or on

the opposite side of the hyperplane, ξ > 0. The cost function in (A.2) shows that the

optimal hyperplane parameters of the soft-margin SVM still attempt to maximize the

margin, however the additional term forces the hyperplane to minimize the number

of data points with ξ > 0, where C > 0 is a constant weight defining the influence of

the slack variable term. In essence, C determines how many errors are allowed during

training[149], and a suitable value is generally found during cross-validation.
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A.0.2 Single Kernel Support Vector Machines

The single kernel soft-margin SVM (SKSVM) is an extension of the linear soft-margin

SVM discussed in the previous section. The optimization problem is equivalent to

that in (A.2), however instead of formulating the SVM from the primal optimization

problem, the dual form is used. The dual form of the optimization problem is

maximize
α

L(α) =
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyjκ(xi,xj),

subject to 0 ≤ αi ≤ C for i = 1, . . . , n;
n∑

i=1

αiyi = 0,

(A.3)

where κ(xi,xj) ∈ R
n×n is a kernel matrix. Note that if we define the kernel matrix

to be the Euclidean dot product, κ(xi,xj) = xT
i xj, the SKSVM reduces to the linear

SVM discussed in the previous section. Other popular kernels include the polynomial

kernal, κ(xi,xj) = (xT
i xj+1)p, and the radial basis function (RBF) kernel, κ(xi,xj) =

exp(−γ‖xi − xj‖2).

We use LIBSVM to solve the SKSVM problem.[76] The classifier model generated by

LIBSVM includes the Lagrange multiplier vector α and the bias b. These are used to

classify a measured feature vector x by computing

y = sgn

[
n∑

i=1

αiyiκ(xi,x)− b

]
, (A.4)
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where sgn is the signum function.

A.0.3 Multiple Kernel Learning Support Vector Machines

Multiple kernel learning (MKL) can be applied to SVMs as a straightforward gener-

alization of the SKSVM discussed in the previous section. MKLSVM allows the use

of weighted combinations of multiple kernels, with the requirement that the resulting

kernel is positive definite, i.e., a Mercer kernel.[150] Here we assume the kernel matrix

K is a linear combination of precomputed kernel matrices, or

K =
m∑
k=1

σkKk =
m∑
k=1

σkκk(xi,x), (A.5)

where m represents the total number of kernels and σk is the weight applied to the

kth kernel, Kk. Using the composite kernel K in the SKSVM optimization given in

(A.3) and also optimizing over the weights σk gives the formulation for a MKLSVM

as the minimax problem,

minimize
σ

maximize
α

L(α) =
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyj

(
m∑
k=1

σkκk(xi,xj)

)
,

subject to 0 ≤ αi ≤ C for i = 1, . . . , n;
n∑

i=1

αiyi = 0.

(A.6)
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Note that if we define α as the vector of αi, and we also vectorize the yis as y, we

can rewrite (A.6) in a more compact form as

minimize
σ∈Δ

maximize
α

{
1Tα− 1

2
(α ◦ y)T

(
m∑
k=1

σkKk

)
(α ◦ y)

}
,

subject to 0 ≤ αi ≤ C for i = 1, . . . , n; αTy = 0,

(A.7)

where Δ is the domain of σ and ◦ denotes the Hadamard product. As mentioned

before, the MKLSVM problem is a generalization of the SKSVM problem, and it

reduces to the SKSVM problem when the weights are all assumed constant.

To solve the minimax optimization problem at (A.7), we use an alternating optimiza-

tion procedure proposed by Xu et al.[9] The procedure, termed MKL group lasso

(MKLGL), iteratively solves the inner maximization, then computes the weights to

solve the outer minimization; MKLGL repeats this process until convergence. Con-

veniently, this procedure also has a closed form solution for solving the outer mini-

mization in (A.7) given as

σk =
f
2/(1+p)
k(

m∑
k=1

f
2p/(1+p)
k

)1/p
, k = 1, ...,m; (A.8a)

fk = σ2
k(α ◦ y)TKk(α ◦ y). (A.8b)

Algorithm 6 outlines the method with which the MKLGL classifier is trained.
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Algorithm 6: MKLGL Classifier Training[9]

Data: (xi, yi) - feature vector and label pairs; Kk - kernel matrices
Result: α - MKLGL classifier solution
Initialize σk = 1/m, k = 1, ...,m - set kernel weights equal
while not converged do

Solve unbalanced SKSVM for kernel matrix K =
m∑
k=1

σkKk for the optimal

solution α
Update the kernel weights, σk using (A.8)
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Appendix B

Tibshirani’s Lasso Algorithm

Tibshirani proposed an iterative method of solving the �1−regularization problem in

his seminal lasso regression work [84]. That method is summarized here for the case

of a general objective function with �1−regularization, or

min
x

J(x) + λ‖x‖1, (B.1)

where x ∈ R
N . We start by first noting that the minimization in (B.1) can be

rewritten as

min
x

J(x), s.t. ‖x‖1 ≤ t, (B.2)
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where t ∝ 1/λ. Tibshirani noted that this problem can be equivalently stated as

min
x

J(x), s.t. Gx ≤ t, (B.3)

where G ∈ R
2N×N and the term Gx represents all possible linear combinations of x

with unit coefficients. For example, if N = 2 then

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+1 +1

+1 −1

−1 +1

−1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (B.4)

and since the number of rows of G grows as 2N , the number of constraints quickly be-

comes intractable. To address this, an iterative algorithm is applied where constraints

are added sequentially. The following section describes the use of this algorithm to

solve (B.1).

B.0.1 Summary of Algorithm

First, solve the unconstrained/unregularized problem

x̂0 = min
x

J(x), (B.5)
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let δi = sign(x̂i), and

Gi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δT
0

δT
1

...

δT
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Then solve the constrained/regularized problem

x̂i = min
x

J(x), s.t. Gi−1x̂i−1 ≤ t, (B.6)

until δT
i x̂i ≤ t.
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