2,273 research outputs found

    Gaussian Process Conditional Copulas with Applications to Financial Time Series

    Full text link
    The estimation of dependencies between multiple variables is a central problem in the analysis of financial time series. A common approach is to express these dependencies in terms of a copula function. Typically the copula function is assumed to be constant but this may be inaccurate when there are covariates that could have a large influence on the dependence structure of the data. To account for this, a Bayesian framework for the estimation of conditional copulas is proposed. In this framework the parameters of a copula are non-linearly related to some arbitrary conditioning variables. We evaluate the ability of our method to predict time-varying dependencies on several equities and currencies and observe consistent performance gains compared to static copula models and other time-varying copula methods

    Copulas and time series with long-ranged dependences

    Full text link
    We review ideas on temporal dependences and recurrences in discrete time series from several areas of natural and social sciences. We revisit existing studies and redefine the relevant observables in the language of copulas (joint laws of the ranks). We propose that copulas provide an appropriate mathematical framework to study non-linear time dependences and related concepts - like aftershocks, Omori law, recurrences, waiting times. We also critically argue using this global approach that previous phenomenological attempts involving only a long-ranged autocorrelation function lacked complexity in that they were essentially mono-scale.Comment: 11 pages, 8 figure

    Copulas in finance and insurance

    Get PDF
    Copulas provide a potential useful modeling tool to represent the dependence structure among variables and to generate joint distributions by combining given marginal distributions. Simulations play a relevant role in finance and insurance. They are used to replicate efficient frontiers or extremal values, to price options, to estimate joint risks, and so on. Using copulas, it is easy to construct and simulate from multivariate distributions based on almost any choice of marginals and any type of dependence structure. In this paper we outline recent contributions of statistical modeling using copulas in finance and insurance. We review issues related to the notion of copulas, copula families, copula-based dynamic and static dependence structure, copulas and latent factor models and simulation of copulas. Finally, we outline hot topics in copulas with a special focus on model selection and goodness-of-fit testing

    Investigating dynamic dependence using copulae

    Get PDF
    A general methodology for time series modelling is developed which works down from distributional properties to implied structural models including the standard regression relationship. This general to specific approach is important since it can avoid spurious assumptions such as linearity in the form of the dynamic relationship between variables. It is based on splitting the multivariate distribution of a time series into two parts: (i) the marginal unconditional distribution, (ii) the serial dependence encompassed in a general function , the copula. General properties of the class of copula functions that fulfill the necessary requirements for Markov chain construction are exposed. Special cases for the gaussian copula with AR(p) dependence structure and for archimedean copulae are presented. We also develop copula based dynamic dependency measures — auto-concordance in place of autocorrelation. Finally, we provide empirical applications using financial returns and transactions based forex data. Our model encompasses the AR(p) model and allows non-linearity. Moreover, we introduce non-linear time dependence functions that generalize the autocorrelation function

    An overview of the goodness-of-fit test problem for copulas

    Full text link
    We review the main "omnibus procedures" for goodness-of-fit testing for copulas: tests based on the empirical copula process, on probability integral transformations, on Kendall's dependence function, etc, and some corresponding reductions of dimension techniques. The problems of finding asymptotic distribution-free test statistics and the calculation of reliable p-values are discussed. Some particular cases, like convenient tests for time-dependent copulas, for Archimedean or extreme-value copulas, etc, are dealt with. Finally, the practical performances of the proposed approaches are briefly summarized

    Estimation of Copula-Based Semiparametric Time Series Models

    Get PDF
    This paper studies the estimation of a class of copula-based semiparametric stationary Markov models. These models are characterized by nonparametric invariant (or marginal) distributions and parametric copula functions that capture the temporal dependence of the processes; the implied transition distributions are all semiparametric. Models in this class are easy to simulate, and can be expressed as semiparametric regression transformation models. One advantage of this copula approach is to separate out the temporal dependence(such as tail dependence) from the marginal behavior (such as fat tailedness) of a time series. We present conditions under which processes generated by models in this class are β\beta -mixing; naturally, these conditions depend only on the copula specification. Simple estimators of the marginal distribution and the copula parameter are provided, and their asymptotic properties are established under easily verifiable conditions. Estimators of important features of the transition distribution such as the (nonlinear) conditional moments and conditional quantiles are easily obtained from estimators of the marginal distribution and the copula parameter; their n\sqrt{n}- consistency and asymptotic normality can be obtained using the Delta method. In addition, the semiparametric conditional quantile estimators are automatically monotonic across quantiles.Copula; Nonlinear Markov models; Semiparametric estimation;Conditional quantile
    corecore