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1   Introduction 

Statistical models for portfolios in finance and insurance have been helpful in 

understanding the uncertainty underlying variability in claim sizes and price fluctuations of 

financial assets, in measuring the risk of financial/insurance portfolios, and in taking 

actions/decisions based on risk preferences. Pricing of financial/insurance contracts 

requires a previous evaluation of a measure(s) of the risk based on the fitted statistical 

model to the observed data of financial losses or insurance losses. New complex products 
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in finance and insurance give rise to portfolios with complex dependence structures. Wrong 

dependence structure may lead to severe underestimation of the portfolio risk. Value at 

Risk (VaR) estimated under multivariate normality may lead to underestimation of the 

portfolio VaR. On the other hand, joint survivals of husband/wife pairs have been noted by 

the actuaries that tend to exhibit nonlinear behavior with strong tail dependence and are 

poorly suited for models based on normality. Many microeconometric modeling situations 

use discrete or limited dependent variables which cannot be easily combined into joint 

distributions. Financial scenarios are often multidimensional and hence require the joint 

modeling of several random variables. Traditionally, the pairwise dependence between 

variables has been described by using classical families of bivariate distributions. The main 

limitation of this approach is that the individual behavior of the two variables (or 

transformation thereof) must then be characterized by the same parametric family of 

univariate distributions. The knowledge of the marginal distributions and the dependence 

structure is usually the only information available to construct the portfolio model, the 

multivariate distribution. Furthermore, there are few, if any, parametric joint distributions 

based on marginals from different families.  

The copula approach provides a general and straightforward framework for constructing 

joint distributions based on marginals from different families. Since linear correlation is not 

a satisfactory dependence measure to capture the observed advanced dependence structures, 

particularly in the tails of the joint distributions, modeling based on a copula parameterized 

by nonnormal marginals is an attractive alternative for estimating the portfolio VaR or any 

other univariate or multivariate measure of the portfolio risk. The main advantage that the 

copula approach provides is that the selection of an appropriate model for the dependence 

between variables, represented by the copula, can then proceed independently from the 

choice of the marginal distribution. 

The basic idea of a copula is to separate the dependence and the continuous marginal 

distribution functions in a multivariate distribution (portfolio model), i.e., to couple the 

continuous marginal distribution functions to a joint distribution function. This is of great 

importance for practical work, especially in economics and finance where one always tries 

to find dependencies among different random variables. 
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Figure 1: Data sampled from two bivariate distributions with different marginals but linked via the 

same copula. Left-hand panel: 200 data drawn from each of the two bivariate joint 

distributions: 1H (cross points) and 2H (circle points) obtained via the same copula C with non-

uniform marginals. Right-hand panel: 200 data drawn from copula C with uniform marginals. 

 

To illustrate these ideas let consider the following bivariate example. Let ( )11 ,YX  and 

( )22 ,YX  be two bivariate random vectors with continuous joint distribution functions, 1H  

and 2H , respectively, and such that 

( ) ( ) ( )( )1111111 ,, yGxFCyxH =  and ( ) ( ) ( )( )1212112 ,, yGxFCyxH = , 

where C  denotes a mixture of two copulas with mixing probability α , 

Cu1 ,u2  = αCCu1 ,u2  + 1 − αCG−Hu1 ,u2 ,  

CC  denotes a copula from the Clayton family with parameter 1θ  and HGC −  denotes a 

copula from the Gumbel-Hougaard family with parameter 2θ   
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CCu1 ,u2  = u1
−θ1 + u2

−θ1 − 1
1
θ1 ,

CG−Hu1 ,u2  = exp −− logu1 θ2 + − logu2 θ2 
1
θ2 .

 

In our simulation study we have selected 3,2 21 == θθ  and 7.0=α . In Figure 1, we 

present the biplots obtained by sampling from the bivariate joint distributions 1H  and 2H   

linked via the same copula C , under two different scenarios of the corresponding marginal 

distributions, i.e., 1F  and 1G  for the bivariate joint distribution 1H   and 2F  and 2G  for the 

bivariate joint distribution 2H . More precisely, we have first drawn 200 samples from 

copula C with uniform marginals, ( )21,uu  (see right-panel of Figure 1). Then, in a second 

step we have obtained the corresponding 200 samples given by ( ) ( )( )2

1

11

1

1 , uGuF −−  and the 

corresponding 200 samples given by ( ) ( )( )2

1

21

1

2 , uGuF −− , i.e. drawn from the bivariate 

distributions 1H  and 2H , respectively. The results of the first step in which we have drawn 

200 samples from copula C with uniform marginals are plotted in the right-hand panel of 

Figure 1. The left-hand panel of Figure 1 shows the results of the second step, i.e. a biplot 

of 400 samples: 200 of them (cross points) drawn from the joint distribution function 1H , 

with marginals given by 1F , a standard normal distribution and 1G , a Student t-distribution, 

and the other 200 (circle points) drawn from the joint distribution function 2H , with 

marginals given by 2F , a beta distribution and 2G , a gamma distribution. Note that, albeit 

we have used the same copula function, i.e., the same dependence structure, since the 

marginals of 1H  and 2H  are different, the two-step copula-approach for constructing 

bivariate distributions leads to two quite different bivariate distributions, 1H  and 2H . 

 

As a brief historical background of copulas we start with Hoeffding's studies from 1940's 

regarding some properties of multivariate distributions. The word copula appears for the 

first time in Sklar (1959) written in French; a similar article written in English followed in 

1973 (Sklar, 1973). Academic literature on how to use copulas in risk management started 

in the later 1990's. From 2004 some financial institutions and insurance companies have 

started to use copulas as a risk management tool. Following Paul Embrechts's 

recommendations (see Embrechts, 2009), the first and second must-read papers on copulas 
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are Genest and Nelehová (2007), and Genest and Favre (2007). Nevertheless, we also 

recommend as a primer the personal view of Embrechts (2009). Two interesting references 

in copulas: Patton (2006b) reviews the use of copulas in econometric modeling and Genest 

et al. (2008) provides an interesting bibliometric overview. Standard monographs are Joe 

(1997) and Nelsen (2006). 

In this paper we give an overview of the basics and most recent advances on copula 

functions and provide the reader with an extensive bibliography of the most recent 

applications based on copula functions. As it will be clearer along the paper, copula 

functions will be useful when dealing with multivariate applications, for modeling 

dependence and for quantifying and analyzing the behavior at the tail of a multidimensional 

distribution. We expect that this overview helps those interested in financial and actuarial 

applications use the copula approach in their daily activity. 

The rest of the paper is organized as follows. In Section 2, we present a more formal 

introduction to the concept of copula function; we collect different copula-based measures 

of dependence, refer to different interesting applications on modeling dynamic dependence, 

extreme values and measuring financial and actuarial risks and conclude with a subsection 

devoted to sampling mechanisms, mainly for the well-known Archimedean copula family. 

Section 3 is devoted to some interesting hot topics on copula-based applications, some of 

them more general and others more specific in finance and insurance, such as model 

selection and goodness-of-fit testing, new copula families and copula approximations, and 

copula-based modeling of competing risks survival times. We end this overview with a 

final section where we collect some personal thoughts regarding the copula approach and 

the controversial and critical point of view of Mikosch (2006). 

 

2   Measuring Dependence with Copulas 

Copulas provide a natural way to model dependence between random variables. After a 

brief and general introduction to copulas, we present different copula-based measures of 

dependence and some interesting applications and related issues in finance and insurance. 

 

2.1   Introduction to Copulas 



 6 

During the last decades, copula functions have been used in different fields such as 

mathematical finance, statistics (survival analysis, clinical trials), extreme value theory 

(hydrology), risk management (risk measure or pricing), resource management, fuzzy set 

theory (preference modeling and similarities), etc. Due to regulatory requirements set in 

Basel II for banks and Solvency 2 for insurance business, copula functions have become a 

standard tool for modeling dependence in risk management. 

 

Copulas are functions that join or couple multivariate distribution functions to their one-

dimensional marginals. Besides, they are multivariate distribution functions with uniform 

marginals. Below, we rewrite the easy version of Sklar's theorem that relates a multivariate 

distribution function with a copula and vice versa. 

Theorem 1 Suppose dXXX ,,2,1 K  are random variables with continuous distribution 

functions, ,,,, 21 dFFF K and joint distribution function ,F  then there exists a 

unique −d dimensional copulaC  such that  dx ℜ∈∀ : 

Fx 1 ,… ,x d  = CF1x 1,… ,Fdx d.  

Conversely, if C  is a −d dimensional copula and ,,,, 21 dFFF K  are continuous univariate 

distribution functions, then F  is a multivariate distribution function with margins, 

.,,, 21 dFFF K  

Based on Sklar's theorem, copula functions allow the construction of a joint distribution 

function, ,F in two steps. First, the marginals need to be fixed and secondly they are 

coupled through a copula function with a certain interdependence structure. The other way 

around, from any joint distribution with marginals ,,,, 21 dFFF K  one can construct a copula 

function. The reader should be aware of the problems arising when the assumption of 

continuity is vanished (see McNeil et al., 2005, for more details). 

An interesting result that goes back to Fréchet (1951) and Hoeffding (1940), is that any 

bivariate distribution  F  with marginals 21 ,FF  satisfies the relationship  

FLx 1 ,x 2 ≤ Fx 1 ,x 2 ≤ FUx 1 ,x 2,  

where  
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FLx 1 ,x 2 = maxF1x 1 + F2x 2 − 1,0  

and  

FUx 1 ,x 2 = minF1x 1,F2x 2  

are both bivariate distribution functions with marginals 21 ,FF . In the statistical literature, 

the corresponding copulas,  

CLu1 ,u2 = maxu1 + u2 − 1,0

CUu1 ,u2 = minu1 ,u2   

are referred to as the Fréchet-Hoeffding bounds. From Sklar's theorem, it follows that every  

2-dimensional copula yields between these bounds, ( )21 ,uuCL  and  ( )21 ,uuCU . An n-

dimensional version of the Fréchet-Hoeffding inequality can be found in Nelsen (2006). 

Several methods for constructing copulas have been described in the literature. The 

Archimedean copula family (Nelsen, 2006), for instance, is an important class of 

dependence functions that can be used to generate multivariate joint distributions with 

specified marginals. This family of copulas arose in the context of associative functions and 

probabilistic metric spaces (for more details, the reader may refer to Schweizer and Sklar, 

1983 and Alsina et al., 2006). In fact, multivariate exchangeable Archimedean copulas are 

one of the most popular copula families widely used in applications due to their simple 

structure and nice properties, specially, in actuarial science and finance for modeling risk 

dependencies and quantifying tail dependencies, and in hydrology for modeling 

multivariate extremes. Archimedean copulas are relatively easy to implement and quite 

flexible in fitting a real dataset due to their ability to cover many distributional shapes. 

Given ϕ , a single-valued function mapping from [0,1] to [0,1], strictly decreasing, convex 

and such that  ( ) 01 =ϕ , the copula C  below is a member of the Archimedean family,  

Cu1 ,… ,ud = ϕ−1ϕu1  + ⋯ + ϕud ,  

whereϕ  is referred to as the generator of the copula and 1−ϕ denotes the inverse of ϕ  and it 

is a completely monotone function (see Nelsen, 2006, for a definition of "completely 

monotonic"). 

Some of the methods introduced in the literature for the construction of copulas make use 
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of purely geometric information on the copula, such as a description of the support or the 

shape of the graphs of horizontal, vertical and diagonal sections. In the framework of 

triangular norms (t-norms), constructions of this type have been considered several times. 

Other approaches are based on copula mixing. The convex sum method is indeed a 

particular mixing approach which requires the specification of an entire family of copulas 

from which the desired copula function is finally obtained. 

 

2.2   Measures of Dependence 

Different measures of dependence have been introduced in the literature to quantify the 

dependence between two random variables, such as the linear correlation coefficient, and 

measures of association such as the Kendall's tau or the Spearman's rho. Since the copula of 

a multivariate distribution function describes its dependence structure, the most appropriate 

measures of dependence should be copula-based measures and therefore invariant under 

strictly increasing transformations. The linear correlation coefficient, however, does not 

satisfy this condition since it can not be expressed in terms of the underlying copula alone, 

as opposed to the Kendall's tau and the Spearman's rho. The invariance property has 

practical value since the majority of financial data are non-stationary time series and 

require some variance-stabilizing transformation such as the log transformation. We can be 

assured that the dependence structure is preserved because the transformation has not 

changed the copula. Given the importance of copula-based measures, we collect in the 

following the definition of the main copula-based measures used in the literature. 

The Kendall's tau and the Spearman's rho both measure a form of dependence known as 

concordance. A pair of random variables are said to be concordant if large (small) values of 

one tend to be associated with large (small) values of the other. More formally, two 

observations, ( )2111 , xx  and ( )2212 , xx , from a vector ( )21 , XX  are concordant (discordant) if  

( )( ) 022211211 >−− xxxx  ( 0< ). On one hand, the population Kendall's tau is defined as the 

difference between the probabilities of concordance and discordance of ( )21 , XX  and  

Y1 ,Y2  ,  
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τ = PX1 − Y1 X2 − Y2  > 0 − PX1 − Y1 X2 − Y2  < 0

= 4 ∫ ∫
I 2

C2u1 ,u2 dC1u1 ,u2  − 1,
 

where ( )21 , XX  and ),( 21 YY  are independent vectors of continuous random variables with 

joint distributions, ( ) ( ) ( )( )22111211 ,, xFxFCxxH =  and ( ) ( ) ( )( ),,, 22112212 yFyFCyyH =  

respectively. On the other hand, the Spearman's rho is defined to be proportional to the 

probability of concordance minus the probability of discordance of  ( )21 , XX   and  

),,( 21 ZY  

ρ = PX1 − Y1 X2 − Z2  > 0 − PX1 − Y1 X2 − Z2  < 0

= 12 ∫ ∫
I2

Cu1 ,u2 du1du2 − 3,
 

where ),,( 21 XX ),( 21 YY  and ),( 21 ZZ are three independent vectors of continuous random 

variables with a common joint distribution function,  

Hx 1 ,x 2  = CF1x 1 ,F2x 2 .  

Other measures of association have been defined in the literature, based on a distance 

between the copula of a pair of random variables ( )YX ,  and the independence copula  

( ) 2121, uuuu =Π  or based on a distance between the copula and the Fréchet bounds, LF   and  

UF  , introduced above. 

Other interesting measures of dependence are the quadrant and tail dependencies. Two 

random variables, X  and Y , with joint distribution function ( ) ( ) ( )( )yFxFCyxH 21 ,, =  are 

said to be positively quadrant dependent (PQD) if for all  ( ) 2, ℜ∈yx , it is satisfied that 

Hx,y = PX ≤ x,Y ≤ y ≥ PX ≤ xPY ≤ y = F1xF2y  

or equivalently, 

PX > x,Y > y ≥ PX > xPY > y.
 

Analogously, we say that X and Y are negatively quadrant dependent (NQD) if for all 

( ) 2, ℜ∈yx , it is satisfied that 

Hx,y = PX ≤ x,Y ≤ y ≤ PX ≤ xPY ≤ y = F1xF2y  
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or equivalently, 

PX > x,Y > y ≤ PX > xPY > y.
 

Summarized in a few words, X and Y are PQD (NQD) if the probability that they are 

simultaneously small/simultaneously large is at least (at the most) as great as it would be if 

they were independent. Note that the condition  

( ) ( ) ( ) ( ) 2

21 ,,, ℜ∈∀≥ yxyFxFyxH  

can be rewritten in terms of the copula C  as follows  

Cu1 ,u2  ≥ u1u2 ,∀u1 ,u2  ∈ I2 ,  

which means that PQ and NP dependence are based-copula properties and consequently 

invariant under strictly increasing transformations of the random variables.  

Taking into account that an alternative formulation of the Spearman's rho is given by  

ρ = 12 ∫ ∫
I 2
Cu1 ,u2  − u1u2 du1du2 ,
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ρ
  can be interpreted as the average quadrant dependence (both positive and negative) for 

random variables whose copula is C . Tail dependence is another concept that measures the 

dependence between variables in the upper-right and lower-left quadrants of 2
I . 

Specifically, the lower and upper tail dependence coefficients are defined, respectively by 

λL = lim
t0 +

PY ≤ F2
−1t|X ≤ F1

−1t,

λU = lim
t1 −

PY > F2
−1t|X > F1

−1t.
 

There exist alternative expressions for Lλ  and Uλ  that only depend on the copula function, 

λL = lim
t0 +

Ct, t
t

,

λU = 2 − lim
t1 −

1 − Ct, t
1 − t

.
 

For the well-known Archimedean copula, these coefficients can be expressed in terms of 

the generator and its inverse. In Table 1, we collect some of the most popular copula 

families with their associated Kendall's tau, Spearman's rho and lower and upper tail 

dependence coefficients. 

So far, we have considered only the bivariate case of measuring dependence between two 



 11 

random variates. Although understanding dependence in the multivariate case is more 

complex and difficult, there exist natural extensions to the multivariate case of many of the 

concepts introduced for measuring dependence between two random variates (see Nelsen, 

2006, for more details). 

Depending on each application, it is important to select a copula family that covers or 

appropriately describes the type of dependence observed in our data. Although a great 

number of copula families have been proposed with different dependence structures, how to 

select the family is still an open problem in real applications. See Section 3.1 for more 

details regarding model selection and goodness-of-fit testing. 

 

2.3   Measuring Financial/Actuarial Risk 

For an extensive treatment on modeling dependence with copulas and applications to Risk 

Management we refer the reader to Embrechts et al. (2003). In this section we focus on the 

most recent trends that have appeared in the literature concerning this issue. 

Real-life financial and actuarial data often turn out to be highly non-Gaussian. Returns 

(increments of log-prices over successive periods of time, say daily) have heavy-tailed 

distributions, are dependent through time and may be non-stationary. Because there is not a 

simple alternative in the non-Gaussian world, one needs multivariate models for portfolios 

with different marginal distributions (including different tail behavior) and a dependence 

structure which is determined not only by covariances. Therefore, copulas seem to be the 

right tools to overcome these difficulties. 

The goal of an integrated risk management in a financial institution is to both measure and 

manage risk and capital across a diverse range of activities in the banking, securities and 

insurance sectors. It requires an approach for aggregating different risk distributions, a 

problem found in many applications in finance including risk management and portfolio 

choice. Regardless of the sector in which a financial institution participates, all of them are 

subject to three types of risk: market, credit and operational risk. The distributional shape of 

each risk varies notably; market risk typically generates portfolio value distributions nearly 

symmetric whereas credit and specially operational risk generate more skewed distributions 

because of occasional extreme losses. These losses might be due to large lending exposures 

in the case of credit risk, or large catastrophes such as 9/11 in the case of operational risk. 
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Market risk is more easily characterized and measured than others, such as operational risk, 

but much less is known about the relations among the three risks. In Rosenberg and 

Schuermann (2006), a practical copula-based approach for integrated risk management with 

skewed, fat-tailed risks is presented. 

Copulas offer financial risk managers a powerful tool to model the dependence between the 

different elements of a portfolio and are preferable to the traditional, correlation-based 

approach. In Koedijk et al. (2007) the importance of selecting an accurate copula for risk 

management is analyzed and an extension of the standard goodness-of-fit tests to copulas is 

presented. Contrary to existing, indirect tests, these tests can be applied to any copula of 

any dimension and are based on empirical analysis. The authors show that for a portfolio 

consisting of stocks, bonds and real estate, these tests provide clear evidence in favour of 

the Student's t copula, and reject both the correlation-based Gaussian copula and the 

extreme value-based Gumbel copula. In comparison with the Student's t copula, they find 

that the Gaussian copula underestimates the probability of joint extreme downward 

movements, while the Gumbel copula overestimates this risk. Similarly they establish that 

the Gaussian copula is too optimistic on diversification benefit, while the Gumbel copula is 

too pessimistic. 

 

2.4   Dynamic Dependence Modeling using Copulas 

Copulas are powerful tools in statistical modeling because the modeling problem can be 

split into two stages: the first stage deals with the identification of the marginal distribution 

and the second stage involves defining the suitable copula for the dependence structure. 

Although this two-stage principle may provide estimates with limited efficiency, it is noted 

that methods based on this two-stage approach simplify computational difficulties (see Joe, 

1997 and 2005). They allow modeling and inference for multivariate models by exploiting 

rich parametric statistical univariate methods, besides they can be used for finding starting 

values when maximum likelihood estimation is possible, and provide a convenient 

approach for the comparison of different copulas. For instance, the two-stage estimation 

method known as inference function for margins (IFM) has been applied in estimation of 

Markov-type dependence structures (see Abegaz and Naik-Nimbalkar, 2008). Shih and 

Louis (1995) proposed a parametric version of the two-stage approach under a bivariate 
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independent and identically distributed setup whereas Chen and Fan (2006) introduce a new 

class of semiparametric copula-based multivariate dynamic (SCOMDY) models. While a 

SCOMDY model specifies the multivariate conditional mean and conditional variance 

parametrically using common specifications such as ARCH, GARCH, VAR, among others, 

a SCOMDY model, however, specifies the distribution of the standardized innovations 

semiparametrically as a parametric copula evaluated at the nonparametric univariate 

marginals. Chen and Fan show different examples of possible combinations that lead to 

SCOMDY models: GARCH(1,1) + normal copula, GARCH(1,1) + Student's t-copula, etc. 

They propose simple estimators of the parameters involved in a SCOMDY model and 

establish their large sample properties under misspecification of the copula. 

On copula-based time series modeling there are two different lines of research. The first 

one is the application to multivariate time series and it is focused on modeling the joint 

distribution of some random vector, T

dtittt XXXX ],...,...,,[ 1= , conditional on the 

information set, usually )1,(1 ≥= −− sX stt σF . This scenario requires considering the 

conditional distribution of  tX   given  1−tF .  The key idea is the "conditional copula" (see 

Patton, 2006a and 2006b) defined as a multivariate distribution of  (possibly correlated) 

variables that are each distributed as a Uniform )1,0(   conditional on 1−tF , i.e. 

( ) ( ) d

ttdtdttttdt xxFxFCxxF ℜ∈= −−−−  ,/)/(,),/(/,, 11,11,111 FFFF KK  

where titit FX ,1/ ∼−F , and  tC  is the conditional copula of tX  given 1−tF . The main 

drawback is that the information set 1−tF  must be the same for all marginal distributions and 

the copula, and this will generally imply that the function ( )11 /,, −tdt xxF FK  is not a valid 

conditional distribution function (see Patton, 2006a). The use of conditional copulas leads 

naturally to the question of whether these exhibit significant changes through time. 

Conditional correlations between financial assets returns are known to fluctuate through 

time, and so it is important to allow for time-varying conditional copulas. Variation in the 

conditional copula by allowing the parameter(s) of a given copula to vary through time in a 

manner analogous to a GARCH model for conditional variance is employed by Patton 

(2006a) and applied to an international stock market by Jondeau and Rockinger (2006). See 

also Patton (2006b) and references therein. 
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The second line of research is different from the previous one since it considers cross-

sectional dependencies between two or more time series, and uses the copula approach for 

describing the dependence between observations from a given univariate time series, i.e, for 

analyzing the joint distribution of T

sttt XXX ],...,,[ 1 ++ . If the copula is invariant through 

time and satisfies some constraint on its multivariate marginals, and the marginal 

distributions are identical and also invariant through time, then it describes a stationary 

Markov process. The main benefit of this approach is that the researcher is able to specify 

the unconditional (marginal) distribution of tX  separately from the time series dependence 

of .tX  Ibragimov (2005, 2006) present useful results to high-order Markov chains based on 

copulas and Beare (2007) studies weak dependence properties of Markov chains through 

the properties of their copulas. 

An application of the concept of conditional copula due to Patton (2006a), in order to price 

bivariate options under GARCH processes in a dynamic way, is in Zhang and Guégan 

(2008). The proposed methodology is an alternative to the Goorbergh's method (see 

Goorbergh et al., 2005) which describes the dynamics of a copula by allowing the 

dependence parameter (specifically say, Kendall's tau) to evolve according to a particular 

regression equation where the forcing variables are the conditional volatilities of the 

underlying asset. Then, the dynamic Kendall's tau is computed and used to decide the 

parameters of several one-parameter copulas. Note that with this methodology the 

dynamics are only reflected in the rolling-window and time series regression and therefore, 

some drawbacks appear: the size of the rolling-window may influence the result for the 

option prices; the specified time series regression equation may fail to represent the 

dynamic dependence correctly; and the copula families are restricted to one-parameter 

ones. In Zhang and Guégan (2008), for the innovations obtained from GARCH filtering of 

the underlying assets, a series of the best copulas are selected for different subsamples 

divided by moving windows under AIC criterion (Akaike, 1974). Thus, the copula changes 

can be observed clearly and used for specifying the dynamics in the dependence structure 

proposed instead of transforming the joint distribution. An innovative feature of this paper 

is investigating the dynamic evolution of the copula's parameter as a time-varying function 

of some predetermined variables, which gives a tractable dynamic expression to the 

changes of the copula. Multivariate-parameter copulas are considered in the paper. 



 15 

With the appearance of ultra-high frequency data that are mainly characterized by irregular 

time intervals between two consecutive observations, many researches have pushed further 

the development of the Autoregressive Conditional Duration framework in order to 

describe limit order book activities more accurately. Usual improvements often have strong 

parameterization and involve computational burdens due to the large size of the data set and 

the recursive procedure in the estimation. A modeling of duration clusters based on 

dynamic copulas is provided by Ng, W. L. (2008), not only for the degree of dependence of 

consecutive durations, but also for the structure of (temporal) dependence of the duration 

process. 

 

2.5   Copulas and Multivariate Extreme Values Analysis 

We start this section with a couple of real situations in finance and insurance borrowed 

from Embrechts et al. (2003), in which copulas will help in modeling extreme events. 

The consideration of different lines of business for an insurance company poses the 

problem of seeking protection against simultaneous big losses in the business lines. These 

potential losses may be represented by a portfolio consisting of n  risks nXXX ,,, 21 K . One 

suitable reinsurance contract might be one which pays the possible excess losses  ,ii cX −   

for { }nIi ,,2,1 K⊂∈ , where },...2,1{ dI = is a prespecified set of business lines, and  

ii cX ≥  for all .Ii∈   In order to price this contract the reinsurer (the seller) would typically 

need to estimate ));,((( IicXfE ii ∈ , where f is a suitable payout function. If the joint 

distribution  H   of risks ( )dXXX ,...,, 21   could be accurately estimated, the expected value 

would not be difficult to evaluate (probably by using numerical methods). Due to the lack 

of reliable data it is more realistic to assume that the data available allow for estimation of 

the margins, ,,..,,  21 dFFF  and pairwise rank correlations. Thus, the probability of payout is 

given by  

H̄c1 ,c2 , . . . ,cd = C̄F̄1c1, F̄2c2, . . . , F̄dcd,  

where H , C , and  21 ,..,, dFFF denote the joint survival function, survival copula and the 

marginal survival functions of dXXX ,...,, 21 . The notion of the bivariate survival copula is 
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analyzed in detail in section 3.3. Note that if the thresholds are chosen to be quantiles of the 

risks, i.e., diFc iii ≤≤= − 1),(1 α , usually given in a reinsurance context as return periods, 

then the copula expression simplifies to ).1,...,1,1( 21 dC ααα −−−  Once a copula family is 

decided (Gaussian, Gumbel, etc), calculating the probability of payout of the expected 

value of the contract is direct. Note that the Kendall's tau estimates can typically be 

transformed into estimates of the copula parameters. Nevertheless, there is much 

uncertainty in choosing a copula family representing the dependence between potential 

losses for the d  lines of business. 

Let consider now the problem of measuring the risk of holding equity portfolio over a short 

time horizon (one day, say) without the possibility of rebalancing, i.e., we assume that the 

current value of the portfolio of d  equities is given by 

, ,

1

tii

d

i

t SV β∑
=

=  

where iβ  accounts the units of equity i  in the portfolio and tiS ,  is the current price of 

equity .i   Let consider the relative loss over time period ]1,( +tt  of equity i  given by 

1,,

1

1  +
=

+ ∑= titi

d

i

tD δγ  

where ttiiti VS /,, βγ =  is the proportion of the current portfolio value corresponding to 

equity i , and titititi SSS ,,1,1, /)( −−= ++δ  is the (negative) relative loss corresponding to 

equity i . Different distributional assumptions for T

tdt ),...,(: 1,1,1 ++= δδδ  will result in 

different effects on the aggregate risk .1+tD  Although the classical distributional paradigm 

on δ  is the multivariate normality, there is a very critical problem in this context, even 

worst than the fact of δ  has marginals which are heavier tailed than normal distributions. 

Extreme falls in equity prices are often joint extremes, in the sense that if a big fall in one 

equity price happens simultaneously, big falls in other equity prices happen too. Thus, daily 

equity return data often indicate that the underlying dependence structure has the property 

of tails dependence, a property which Gaussian copulas lack. 

Multivariate extreme value theory is studied by mathematicians (see Coles, 2001, for a 

review of the topic) but theoretical results are often hard to use in practice. Standard 
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multivariate extreme value theory analyses the vector of component-wise maxima of a 

sample of independent and identically distributed random vectors and its limit distribution 

under affine transformations. Another point of view is the theory which provides maximum 

domain of attraction conditions which justify the assignment of probabilities to multivariate 

rare events which, possibly, have not happened before. Suppose that the marginals come 

from different distributions and that, in the required normalization to obtain the limit 

distribution, one chooses the normalization from a dominating component, thus, the 

remaining components might vanish in the limit, and the limit distribution of this vector of 

component-wise maxima can be rather unpleasant. To avoid this problem it is common to 

transform the components to a standard distribution, i.e. the uniform distribution (see 

Resnick 1987 and 2004). Mikosch (2006) discusses advantages of other selections 

including Pareto, unit Fréchet distribution or Gumbel distribution, in terms that they allow 

for an interpretation of the spectral measure. More technically, he suggests that the 

distribution of the directions of multivariate extremes leads one believes that, after the 

transformation to these alternative standard marginal distributions, the vector has a 

distribution in the maximum domain of attraction of a suitable multivariate extreme value 

distribution.  

Increasing transformations of the marginals make sense in the context of multivariate 

extreme value theory; it can be advantageous if one gets simpler representations and more 

accessible formulas for certain probalilistic quantities (quantiles, VaR). Thus, in this 

multivariate extremes context, copulas have recently received particular attention and the 

selection of the copula should be clearly related to multivariate extreme value theory. 

Let review briefly extreme value copulas. An extreme value copula is derived from 

multivariate extreme value distribution by transforming its marginals to the unit cube 

.]1,0[ d  Multivariate extreme value distributions occurs as weak limits of affinely 

transformed vectors of component-wise maxima of independent and identically distributed 

random variables. The marginal distributions are necessarily one-dimensional extreme 

value distributions of Fréchet, Gumbel or Weibull family. The occurrence of events on the 

extreme tails of a marginal distribution may be related to the behavior of the maximum (or 

minimum) of this distribution. A main result is given by the fundamental Fisher-Tippet 

theorem (Fisher and Tippet, 1928). According to this result, the (nondegenerated) limit 



 18 

distribution of the approximately normalized maxima of a sequence of d  independent and 

identically distributed random variables is the standard generalized extreme value 

distribution. The corresponding location )(µ  scale )(σ   family is given by  







=−−
≠+−=

−

−
−

0 if }}exp{exp{

0 if)1(exp{
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where 0)/(1 >−+ σµξ y . The parameter ξ  is related to the shape of the distribution. If  

0=ξ , we obtain the Gumbel distribution, while if 0<ξ  or 0>ξ , we obtain the Weibull 

or the Fréchet distributions, respectively. 

The most popular extreme value copula is the Gumbel copula, 

},))log((exp{),...,,( /1

1

21

αα
i

d

i

d xxxxC −−= ∑
=

 

for some ).1,0(∈α  Alternative parametric extreme value copulas are studied by Kotz and 

Nadarajah (2000). Nevertheless, this approach assumes that the underlying data are 

generated by some extremal mechanism, partially questionable for financial or insurance 

data. The fundamentals of the alternative approach based on distributions in the maximum 

domain of attraction of an extreme value distribution are analyzed by Hult and Lindskog 

(2005). Another approach related with modeling extreme values is the copula domain of 

attraction (see McNeil et al., 2005). The relation between this approach and the concept of 

maximum domain of attraction has been pointed out by Mikosch (2006). 

 

2.6   Copulas and Latent Factor Models 

As Trivedi and Zimmer (2005) pointed out, another interesting dependence structure related 

to copulas appears in the setting of nonlinear regression models that arise in the context of 

analysis of cross section survival data, event counts, jointly dependent continuous and 

discrete variables and so forth. Latent factors have been used to model conditional 

dependence, but they can also be observed as a general approach to joint modeling. This 

approach has an interesting similarity with the copula approach in that the joint model is 

built using marginal (regression) models in which either common or correlated latent 

factors enter the models in the same way as regressors. Their simultaneous presence in 

different marginals generates dependence between variables. Such latent factor models 
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have appeared in statistics under a variety of names such as the shared frailty model in 

survival analysis, trivariate reduction model and latent factor models (see Janssen and 

Duchateau, 2007, for a recent monography on the frailty model). They are all mixture 

models and can also be interpreted as random effects models, where the differences are 

placed on the way the random effects are introduced into the model and the implicit 

restrictions that are imposed on the dependence structure. 

In the context of regression, common observable variables in regression functions usually 

account for some dependence. However, models may specify additional dependence 

through common unobserved factors, usually referred to as "frailty" in demography and 

"unobserved heterogeneity" in econometrics. Dependence induced by such factors can 

follow a variety of structures. The Maximum Simulated Likelihood (MSL) estimation of a 

latent factor model has a theoretical advantage that it can be generalized to higher 

dimensions, although at additional and nontrivial computational cost. Like the copula 

approach it is based on marginals, which is also a potential advantage. Zimmer and Trivedi 

(2006) showed that MSL produces similar results to copula models. 

 

2.7   Simulating Copulas 

According to Nelsen (2006), `one of the primary applications of copulas is in simulation 

and Monte Carlo studies'. Sampling from multivariate copulas has indeed become a crucial 

issue in applied work, for instance, in model selection or goodness of fit testing to 

approximate the statistics null distribution, and in financial applications for estimating the 

Value at Risk and other measures of tail dependence. 

Due to the simplicity and great flexibility showed by the Archimedean family of copulas, 

the reader may refer to Wu et al. (2007), where a sampling algorithm to draw values from 

this family is designed, as an extension of a bivariate sampling scheme previously 

introduced in the literature. Wu et al. (2007) consider Archimedean generators that are 

continuous and whose higher derivatives exist. The theoretical result from where the 

sampling algorithm derives is reproduced below. See Wu et al. (2007) for more details on 

the sketch of the sampling algorithm itself. 

Theorem 2 Let  ( )dUU ,,1 K   be a d-dimensional random vector with uniform marginals 
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and joint distribution function defined by the Archimedean copula 

Cu1 ,… ,ud  = ϕ−1ϕu1  + ⋯ + ϕud   

for some continuous generator ϕ  whose higher derivatives exist. Define the 1−d     

transformed random variables, ,,, 11 −dSS K  as follows  

Sk =

∑
i=1

k

ϕui

∑
i=1

k+1

ϕui

for k = 1,… ,d − 1,

 

and the random variable  T   via the copula function  C   as given below 

T = CU1 ,… ,Ud  = ϕ−1ϕU1  + ⋯ + ϕUd .  

The joint distribution function of  ( )TSS d ,,, 11 −K   is characterized by  

hs1 ,… , sd−1 , t =
∂d PrS1 ≤ s1 ,… ,Sd−1 ≤ sd−1 ,T ≤ t

∂s1⋯∂sd−1∂t

= s1
0s2
1⋯sd−1

d−2ϕ−1dtϕtd−1ϕ1t
 

where )(1 d−ϕ  denotes the d  -th derivative of 1−ϕ  . 

Using the method of Jacobian transform, Wu et al. (2007) were able to characterize the 

joint density, ( )tssh d ,,, 11 −K , of the transformed random vector, ( ),,,, 11 TSS d −K  via the 

closed expression shown in Theorem 2. Straightforwardly from that expression it becomes 

obvious the fact that 11 ,, −dSS K  and T  are independent random variates. 

It is worthy to mention here that in their article, Wu et al. (2007) include a simulation 

example regarding the problem of estimating the distribution of aggregation loss and the 

total capital required for an insurance company with multiple lines of business. In that 

simulation example, their proposed sampling algorithm is used to draw 4-dimensional 

observations from the Gumbel-Hougaard copula and the Frank copula, two popular 

members of the Archimedean copula family. With this choice of the copula, and assuming 

that every line of business is well described by a log-normal marginal, Wu et al. (2007) 

approximate the  ( ) ( ){ }psFsSVaR Sp ≥ℜ∈= |inf  , i.e. the p th percentile of the total loss, 
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ii XS ∑= =
4
1 , where 10 << p  and SF  denotes the cumulative distribution function of S  and 

iX , with ,4,,1K=i  denotes the loss derived from every line of business. They also 

approximate the conditional tail expectation at level p , i.e. ( ) ( )[ ]SVaRSSESCTE pp >= | . 

The VaR  of the aggregate loss can be interpreted as the amount for which there is a 

probability of ( )p−1  of losing beyond that amount. On the other hand, the CTE  can be 

interpreted as the average of the top ( )p−1  losses. The VaR  and the CTE  are both useful 

tools to measure dependence in the extremes of a multivariate distribution. 

Apart from this recent sampling algorithm, we cite below three other algorithms previously 

proposed in the literature to sample data from a more specific copula. The conditional 

sampling, which is appropriate for simulating from the Clayton, Frank and Farlie-Gumbel-

Morgenstern copulas; the elliptical sampling, appropriate for the Gaussian copula; and the 

alternative algorithm proposed by Marshall and Olkin (1988) based on mixture of powers 

and appropriate for the Gumbel copula, for which the conditional sampling method is no 

longer efficient since it requires iterative solutions that make it computationally expensive. 

 

3   Recent Hot Topics in Copulas with Applications in 

Finance and Insurance 

In this section we present recent and open problems in copula modeling. We pay special 

attention to the problem of copula selection and we review recent proposals of copula 

families. We outline risk survivals, and aging characterizations that have been recently 

proposed in connection to copula modelling. After mentioning a couple of open problems, 

we finish this contribution with some brief personal rejoinders to some recently sceptical 

opinions about “the copula fashion”. 

 

3.1   Model Selection and Goodness-of-fit Tests 

In practical applications, it is very important to know how to estimate and test a copula 

function. On one hand, fitting a parametric class of copulas can be viewed as an effective 

way to reduce dimension. On the other hand, nonparametric estimation of copulas provides 
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a robust guidance for fitting a parametric class of copulas and plays an important role in 

goodness-of-fit testing for copulas. Chen et al. (2006) and Molanes et al. (2008) present 

two approaches for nonparametric estimation of copulas based on the empirical likelihood 

methodology, with and without smoothing. Shen et al. (2008) propose a new class of 

copulas, called linear B-spline copulas. They show that empirical linear B-spline copulas 

perform better than empirical copulas when estimating either perfectly or non-perfectly 

dependent copulas. The linear B-spline copula can be seen as a semiparametric approach 

for copula estimation. While it is still defined in terms of a parametric form, it shares the 

same flexibility as that exhibited by a nonparametric approach. 

In the case of fitting a parametric class of copulas, θCC ∈ , where θC  is a copula family 

indexed by a real-valued or vector-valued parameter, we need to find the θ  that best fit our 

data. The problem of estimating θ  under the assumption θCCH ∈:0  has already been 

the object of much work. In empirical applications of copulas, it is common to use several 

parametric copulas to fit the data and compare the results obtained from different models, 

however this is not a formal goodness-of-fit test for model selection. Other similar 

approaches have been introduced in the literature. Genest and Rivest (1993), for instance, 

propose a graphical method to select an Archimedean family of copulas and Vandenhende 

and Lambert (2002), in a longitudinal study, consider different parametric generators and 

select the one yielding the smallest Akaike information criterion for the fitted models. More 

recently, the issue of formally testing 0H  has started to draw attention and as Genest et al. 

(2007) point out, the different proposals can be classified in three different groups: 

• statistics developed for testing specific dependence structures such as the Normal 

copula or the Clayton family, which is also referred to as the gamma frailty model 

in survival analysis (see Duchateau and Janssen, 2008); 

• procedures developed for testing the goodness-of-fit of any class of copulas but 

whose use involves either an arbitrary parameter, or weight functions and associated 

smoothing parameters or ad hoc categorization of the data in a multiway 

contingency table to apply an analogue of the standard chi-squared test; 

• `blanket tests' which are applicable to all copula structures and do not require any 

strategic choice for their implementation. 
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In this setting, bootstrap procedures will be required to circumvent problems in the 

determination of the limiting distribution of the test statistics under composite null 

hypothesis. Genest et al. (2007) propose new blanket test statistics, and design indeed a 

double parametric bootstrap procedure to approximate the statistics null distribution. The 

reader should be aware of the fact that the implementation of a bootstrap procedure will 

entail the knowledge of how to draw data from a given copula pertaining to a parametric 

family of copulas. The sampling methods listed in Section 2.6 may be helpful for that 

purpose. 

In order to overcome the problem of arbitrary model selection, Vandenhende and Lambert 

(2006) propose a non-parametric Archimedean family of copula, defined in terms of a 

continuous piecewise log-linear combination of existing Archimedean generators. 

Vandenhende and Lambert propose as well an efficient constrained least-squares method to 

estimate the coefficients involved in the non-parametric Archimedean copula which leads 

to a data-driven model selection procedure. 

 

3.2   New Copula Families and Copula Approximations 

Sancetta and Satchell (2001, 2004) introduce a new family of d -dimensional copulas based 

on Bernstein polynomials. As they mention it is expected that their scope of application can 

reach many problems concerning the aggregation of asset returns. This new class of 

copulas, referred to as the Bernstein copula family, belongs to the family of polynomial 

copulas (see Nelsen, 2006) and can be used as an approximation to any copula. When the 

Bernstein copula family is used to approximate a known copula function, the authors refer 

to it as the Bernstein representation of the given copula. This new representation of a 

known parametric copula leads to a simplified and general estimation procedure and it is 

especially useful when the parametric copula is available but in a very complicated form. 

When the Bernstein copula family is used to approximate an unknown copula function, 

then the approximation leads to what the authors call the empirical Bernstein copula. 

The formal definition of the Bernstein copula is as follows. Let ( )
d

d

mm

ννα ,,
1

1 K  be a real-

valued constant indexed by ( )dνν ,,1 K  such that  Ν∈≤≤ jj mν0 , j∀ , 
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Pν j,m juj  =
m j

νj

uj

ν j1 − uj 
m j−ν j

 

and let BC  be defined as the following mapping from the d -dimensional unit hypercube,  

d]1,0[ , to  ]1,0[   

CBu1 ,… ,ud  = ∑
ν1=0

m 1

⋯∑
ν d=0

m d

α ν1
m1
,… ,

νd

md
Pν 1,m 1

u1 ⋯Pν d,m dud .

 

 

As Sancetta and Satchell (2004) specify, BC  turns out to be a copula function whenever 

specific conditions on ( )
d

d

mm

ννα ,,
1

1 K  are satisfied. Besides, from the definition given for the 

Bernstein copula, it follows that it is defined in terms of d -dimensional Bernstein 

polynomials. It is interesting to notice that some simple families of copulas are multivariate 

polynomials of quadratic or cubic order, and therefore their structure resemble very much 

the Bernstein copula. The bivariate Farlie-Gumbel-Morgensten copula, for instance, is a 

specific case of this fact: 

Cu1 ,u2  = u1u2 + θu1u21 − u1 1 − u2   

where 11 <<− θ  measures either positive or negative dependence. Some other families are 

identical to a Bernstein polynomial plus a known additional term. 

Related to the Bernstein copula, Sancetta and Satchell (2004) present a closed-formula for 

computing the Spearman's rho coefficient as follows 

ρS = 12∑
v1=0

m

∑
v2=0

m

γ v 1
m ,

v 2
m , 1,… , 1 ⋅ ∏

j=1,2

m

v j

Bv j + 1,m + 1 − v j,

 

where 

γ v 1
m1
,… ,

v k

mk
= α v 1

m1
,… ,

v k

mk
− v 1

m1
⋅ ⋯ ⋅ v k

mk  

and ( )baB ,  is the beta function. Provided that enough terms are included in the Bernstein 

approximation, the Spearman's rho of the Bernstein copula can yield an approximation to 

the true Spearman's rho of any copula with any degree of accuracy and with the advantage 
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of avoiding the evaluation of complicated integrals. 

In the last years, three important correlations - comonotonicity, countermonotonicity and 

independence - have played significant roles in finance and insurance (see Dhaene et al. 

2002a,b). The term `comonotonic' comes from `common monotonic' and is related with the 

extreme positive correlation between two random variables, i.e. a deterministic correlation. 

Countermonotonic case is the exact opposite of the comonotonic situation, i.e. X  and Y  

are countermonotonic if X  and Y− are monotonic. Finally, describing dependence 

structures of risks, independency is a very important case. Recently, the existence and 

uniqueness of a bivariate copula decomposition into four parts: a comonotonic, an 

independent, a countermonotonic, and a indecomposable part is investigated in Yang et al. 

(2006). Moreover, for the indecomposable part, an optimal approximation, as a convex 

combination of a comonotonic, an independent and a countermonotonic part is provided 

and analyzed in the paper, jointly with an approximation error bound. Applications in 

finance and insurance of this convex decomposition are given: in the variance's 

decomposition to find the mean-variance optimal investment portfolio in finance; in the 

stop-loss premium's decomposition when ordering risk in insurance; or in finance for 

hedging the risk by finding a suitable asset existing in the financial market. 

Durante et al. (2007) introduce a new family of bivariate copulas useful for describing 

aggregate processes and that extend the Archimedean family of copulas. This new family is 

defined in terms of two univariate functions instead of one as in the bivariate Archimedean 

family. Along their paper several examples of the new family are provided and results 

regarding the concordance order between two copulas are proved. Specifically, it is proved 

that the concordance order between two copulas pertaining to this new class, is determined 

by specific properties of their generators. From this result, it is easy to find conditions on 

the generators of the new copula family that lead to positively (or negatively) quadrant 

dependent copulas. Note that the concordance order, also known as the positive orthant 

dependence order is referred to as the quadrant dependence order when 2=d  and it is 

equivalent to the supermodular order for 2=d . A stochastic order of great interest in 

actuarial science and reliability is, for instance, the increasing convex order, and their 

multidimensional generalizations, which are focused on either studying stochastic 

comparisons between two random variables or between two random vectors, respectively. 
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We refer the reader to Belzunce et al. (2006) for more details on stochastic orders and some 

positive dependence orders that have been introduced in the literature for comparing the 

strength of positive dependence of two underlying multivariate distributions. Durante et al. 

(2007) plan to extend in a future paper, the results regarding the new family of bivariate 

copulas to the d -dimensional case with 2>d . This seems too attractive for real 

applications because stochastic orders of random sums given by 

Z i = ∑
k=1

Ni

X ik, for i = 1,… ,d,

 

where ( )dNNN ,,1 K=  is a vector of integer-valued random variables and 

{ } { } dN

kdk

N

kk XX
111 ,,1

== K  are sequences of positive random variables, have recently received 

special attention in several fields, such as reliability, economics, insurance and queuing 

theory. For example, in actuarial sciences random sums of this type model the total claim 

amount paid by an insurer for the iN  claims associated to the i -th class of business. On the 

other hand, dependencies among the claims ikX  by means of geographical or economic 

environment are typical in actuarial problems, for example, when we are interested in 

representing the effects of catastrophes, such as epidemics, hurricanes or earthquakes, that 

hit several risks simultaneously. Catastrophic events can cause indeed insurance and 

reinsurance losses of increasing frequency and severity. 

Yu and Voit (2006) extend, via the copula approach, univariate S-distributions to bivariate 

S-distributions whose marginals are S-distributions. As Yu and Voit show, they cover a 

variety of marginals and a wide range of dependences between the variates and facilitate 

the formulation of relationships between measures of dependence and model parameters. 

Yu and Voit show that the bivariate S-distributions retain the great flexibility in shape and 

the relative computational simplicity of their univariate counterparts. The resulting 

distributions cover the full range of dependence, from 1−  to 1, and different degrees of tail 

dependence (stronger dependence in the lower tail, upper tail or both). This is interesting 

because although the popular Archimedean family presents many advantages, it also bears 

some limitations, for instance, some one-parameter Archimedean families permit only a 

limited degree of dependence; other are asymmetric in the sense that they lead to different 

tails; or they are monotonic and cannot accommodate negative dependence. Bivariate S-
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distributions overcome these limitations. 

 

3.3   Modeling Competing Risks Survival Times via Copulas 

Dependence is an important characteristic in survival analysis and reliability due to its 

significantly effect on the decision people make with regard to maintenance, repair or 

replacement, warranties, price setting, and medical studies, among others. Below we refer 

to three real data applications that can be seen as three primer candidates for survival-

copula modeling. 

In pricing life insurance products, it is important to study the survival of the insured party. 

When modeling times to event data, it is common that we can distinguish more than a 

single type of event causing individual failure. The competing risks model, also known as 

the multiple-decrement model is useful for modeling the joint distribution of this type of 

survival data. The concept of competing risks comes from the interpretation that an 

individual faces different risks of leaving the state in which is now, each risk giving rise to 

its own future destination. In other words, we could say that every individual is exposed 

along his/her life to different competing causes of death (or to different causes of 

withdrawal from the study). Since most real life applications are truly multivariate, there 

are more than two dependent competing causes of decrement or failure. Kaishev et al. 

(2007) develop a copula-based methodology for dealing with scenarios of this type and 

explore its applicability with a real data set where four competing risks are acting 

simultaneously on the individual survival: heart diseases, cancer, respiratory diseases, and 

other causes of death. They explore the effect of simultaneously removing one, two or three 

of these causes of death on the overall survival, on the life expectancy at birth, at 65 years 

old, and on the value of a life annuity, which are all important issues in pricing life 

insurance products. 

When modeling survival applications, it is more intuitive to talk in terms of the joint 

survival function,  

F̄t1 ,… , td  = PT1 > t1 ,… ,Td > td ,  

rather than in terms of its equivalent, the joint distribution function, 
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Ft1 ,… , td  = PT1 ≤ t1 ,… ,Td ≤ td .  

This seems to be the right place to briefly introduce the bivariate survival copula (see 

Nelsen 2006). The dependence structure of the bivariate lifetime variable ),( 21 XX  can be 

usefully described by its survival copula defined by 

C̄u,v = F̄F̄1
−1u, F̄2

−1v, u,v ∈ 0,12 ,
 

where F , 1F  and 2F  are the corresponding joint survival function and the univariate 

marginal survival functions, respectively. Given a bivariate copula function, ( )21,uuC , its 

survival copula is defined in terms of ( )21,uuC  as follows  

( ) ( )212121 1,11, uuCuuuuC −−+−+=  

And satisfies the property of linking the univariate marginal survival functions, 

( ) ( )iiii tFtF −= 1 , 2,1=i , and the joint survival function, F , as given below, 

F̄t1 , t2  = C̄F̄1t1 , F̄2t2 .
 

In actuarial science, it has been noted that the decrements or causes of withdrawal tend to 

be dependent. Consequently, it is normal to consider that dTT ,,1 K , are stochastically 

dependent survival times and non-defective, i.e. satisfying ( ) 1=∞<iTP . Here, we denote 

by iT , the potential or latent lifetime of an individual until the i -cause of death bursts in. In 

fact, only one cause of death will finally and actually burst in on every individual. 

Therefore the observable lifetime, T , of that individual will be given by the minimum of 

the d  potential lifetimes, i.e. { }dTTT ,,min 1 K= . The overall survival function is defined 

in this setting as ( ) ( )tTPt >=F , with 0≥t , i.e. as the probability that the observed 

survival time, { }dTTT ,,min 1 K= , exceeds the time t . If the objective of interest is to know 

how the lifetime of an individual is affected with the removal of one of the d  potential 

causes of death, say the j  cause, we need to model the marginal overall survival given 

below 

( )( ) { }( ) .0for  ,,,,,min 111 ≥>= +−
− ttTTTTPt djj

j
KKF  

Through the use of a suitable survival copula, Kaishev et al. (2007) find a representation of 

this marginal survival. 
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Kaishev et al. (2007) introduce other two interesting concepts, the crude survival functions 

and the net survival functions. The crude survival function )()( jtF j  is defined as the 

survival function with respect to the j -th cause of death, when death actually occurs by that 

cause. Formally, we write 

F̄ jt j = PminT1 ,… ,Td  > t,minT1 ,… ,Td  = T j .
 

The crude survival function can be estimated from the observed mortality of a population 

because it reflects the actual or observed individual mortality. This is not the case with the 

(marginal) overall survivals. For dj ,,1K= , the net survival functions are defined as 

( ) ( )
jjjj tTPtF >= , i.e. as the marginal survival functions due to only the each cause of 

death alone. The survival copula-approach considered by Kaishev et al. (2007) is focused 

on first estimating these marginals, secondly coping with the joint survival function and 

finally evaluating the overall survival function of interest. 

On the other hand, actuaries have noted the existence of a broken heart syndrome in which 

an individual's death substantially increases the probability that the person's spouse will 

also experience death within a fixed period of time. The possibility to model accurately the 

joint survivals of husband/wife pairs is of great important for actuaries who are interested in 

annuity pricing models in which the relationship between two individuals' death is jointly 

related (Clayton, 1978). Since joint survivals of husband/wife pairs tend to exhibit 

nonlinear behavior with strong tail dependence, this is another real application where 

survival copula modeling can properly deal with. 

In the literature one can find several characterizations of aging notions by means of 

stochastic comparisons between the residual lifetimes tX   given by  

X t = X − t /X > t
 

where X  is a random variable representing a lifetime and consequently tX  can be 

considered as the survival lifetime at time t , given that the individual/device is alive at time 

.t  A description of a pair of exchangeable lifetimes whose dependence structure is 

described by an Archimedian copula is in  Pellerey (2008). This work is mainly related 

among others to recent papers by Charpentier (2006) and Oakes (2005). 
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3.4   Some Open Problems 

There are very few results in the literature relating order statistics and associated copulas 

(see Nelsen 2006 and references therein). In risk analysis, life modeling or reliability, given 

the multivariate continuous random variable ),...,( 1 nXX  one could be interested in the 

range nnn XX :1: −  or subranges nrnr XX :: 21
−  for 21 rr >  where nrX :  is the r th 

order statistic ).1( nr ≤≤   However, in order to derive explicit formulas, we need the joint 

distribution of nrX :1
 and nrX :2

 . Nelsen found the copula nC :1  of  nX :1  and nnX :  

.}]0,1)1{(max[),( /1/1

:1

nnn

n vuvvuC −+−−=  

The general case is still an open problem. Nevertheless one solution is to use Monte Carlo 

methods. Anjos et al. (2005) provide a copula representation of the joint distribution 

function of the r th and the s th order statistics corresponding to two random multivariate 

variables X  and Y , given the associated copula C . The asymptotic copula is obtained and 

the corresponding approximation is used to evaluate the joint distribution function of order 

statistics ).,( :: nsnr YX   

A review of recent developments in copula theory, namely: order statistics copula, copulas 

with given multivariate marginals, copula representation via a local dependence measure 

and applications of extreme value copulas is in Kolev et al. (2006). 

Another recent line of research relating copulas and financial applications deals with 

volatility and dependence parameters. An axiomatization of premium functionals using 

average absolute deviation or, more general, distorted probabilities can be found in Wang et 

al. (1997). In Dennenberg and Leufer (2008) the second order dual volatility parameters, 

average absolute deviation and Gini index are surveyed and new rank based dependence 

parameters are proposed. Dual is used in this context that not the outcomes of the random 

variables are transformed, but their distributions. The authors argue that the dual 

dependence parameters are better suited than the classical parameters for applications in 

finance and insurance. More technically, the authors extend the notion of copula by 

perceiving distribution functions as interval valued functions if they are not continuous, or 

by attributing the midpoint of the interval. They use methods of non-additive measure and 
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integration. Because this dual view to distorted probabilities leads to Choquet integral, then, 

comonotonicity of random variables plays a central role in both theories, for the copula and 

for the Choquet integral. For the copula increasing distribution functions dominate, whereas 

for the Choquet integral decreasing distribution functions are the natural tool, and the 

authors employ both in the paper. 

 

3.5   The Copula Fashion-The Emperor's New Clothes? 

All the world's problems related to stochastic dependence and multivariate distributions can 

be solved via copulas? Are there statistical problems in handling copulas, one of them 

being the curse of dimensionality? 

Although there are some sceptical people that have questioned the potential of the copula 

approach (see Mikosch, 2006), we still expect that over the years to come the copula 

approach can convince the most sceptical ones. In fact, in the last two years the copula 

approach has started to fill out some of the gaps pointed out by Mikosch (2006). For 

instance, one of the main statements given by this author against copulas was that they do 

not fit into the existing framework of stochastic processes and time series analysis, 

essentially because they are static models and therefore not useful for modeling dependence 

over time. However, as we have mentioned in Section 2.2, Chen and Fan (2006) introduce a 

new class of semiparametric copula-based multivariate dynamic (SCOMDY) models. 

Kallsen and Tankov (2006) define Lévy copulas and construct parametric families of them 

to characterize the dependence among components of multidimensional Lévy processes. In 

this new setting, they prove an analog of Sklar's theorem that basically states that the law of 

a general multivariate Lévy process can be obtained by combining arbitrary univariate Lévy 

processes with an arbitrary Lévy copula. This is another example of how the scope of the 

copula approach is recently reaching unexplored areas such as modeling dependence in the 

dynamic context of stochastic processes. Jointly with the paper by Chen and Fan (2006), 

mentioned above, it seems that more and more efforts start to be made to partially fill out 

one of the gaps mentioned by Mikosch (2006). 
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