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Abstract

A general methodology for time series modelling is developed which works down from distribu-
tional properties to implied structural models including the standard regression relationship. This
general to specific approach is important since it can avoid spurious assumptions such as linearity
in the form of the dynamic relationship between variables. It is based on splitting the multivariate
distribution of a time series into two parts: (i) the marginal unconditional distribution, (ii) the
serial dependence encompassed in a general function , the copula. General properties of the class of
copula functions that fulfill the necessary requirements for Markov chain construction are exposed.
Special cases for the gaussian copula with AR(p) dependence structure and for archimedean copulae
are presented. We also develop copula based dynamic dependency measures — auto-concordance
in place of autocorrelation. Finally, we provide empirical applications using financial returns and
transactions based forex data. Our model encompasses the AR(p) model and allows non-linearity.
Moreover, we introduce non-linear time dependence functions that generalize the autocorrelation
function.
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1 Introduction

The problem of assessing the temporal dependence of financial returns has been an important issue in

empirical finance for at least the last three decades, see for instanceC!"#$%&& !'( S)*&&%+[1988],F!"!

!'( F+%',)[1989] and A'- !'( B%.!%+/[2001]. Much of this work has concentrated on linear pre-

dictability through linear autocorrelation analysis although much more general dynamic dependency

patterns could exist. Copulae provide a general approach to modelling dependence between random

variables since they link univariate margins to their full distribution function and in this paper we

seek to develop this approach to examining general dynamic dependence and make applications to

examine the question of financia lreturn predictability. For an overview of the application of copulae to

finance, see E"$+%,)/0, M,N%*& and S/+!1"!'' [1999], B2134 and S!&"2' [2000] and B2134,

D1++&%"!', N*,.%-)$!&*, R*$21&%/ and R2',!&&* [2000].

A time series can be viewed as a single drawing from a multivariate distribution. The goal of this

paper is to split this distribution into two components: the margins and the dependence structure

given by the Copula. This framework allows to specify any univariate distribution for the margins

and enables us to consider general non-linear relationships for the time series. The question of the

departure from linearity is an important issue quite generally; see T%+506*+/!, T7Ø0/)%*" and

G+!'-%+ [1994], and copulae provide a powerful tool to explore this question. P!//2' [2001] has also

recently explored the use of copulae in time series by studying the dependence between the Deutsche

mark - U.S. dollar and Yen - U.S. dollar exchange rate returns. He finds that the dependence pattern

is time-varying and asymmetric; a structure that would be di!cult to isolate using linear techniques.

In the next section, the concept of a copula is briefly introduced and we demonstrate how a

stationary time series - and more generally a stationary Markov chain - can be constructed from

a copula function. The multivariate case is briefly discussed and the expression for the transition

density function is given. In the third section, we focus on autoregressive (AR) models based on the

multivariate gaussian copula to construct stationary Markov processes of p"th-order. The dependence

structure of a p"th-order Markov processes can be captured in an intrinsic copula of dimension (p+1)

and the dimension of this intrinsic copula provides the minimal representation. So while higher

order copulae will capture the same structure non-parsimoniously the intrinsic copula has the lowest

dimension required to fully capture the time dependence. Empirically it is frequently di!cult to

identify the correct dynamic order of a multivariate dynamic system even in the linear case. However

in the linear case that order of the intrinsic copula will be directly related the McMillan Degree of
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the System or the minimal state space representation. The extension to the nonlinear case that we

could potentially consider through the use of non-gaussian copulae is as far as we know a completely

undeveloped area of research. An alternative class of copulae - archimedean - is then used to construct

markov models and some of its properties are given. In the fourth section, we consider the maximum

likelihood estimation of time series with a given copula based serial dependence assumption and

some discussion of model mispecification is provided. In the fifth section, we apply our model to

financial examples and consider auto-concordance measures based on Kendall’s Tau and Spearman’s

rho. Finally we o"er some conclusions.

2 Copulas and serial dependence

There are two issues when modelling a one-dimension time series: (i) the choice of the univariate

margin and (ii) the time dependence. J2% [1996] proposes a very general way of obtaining stationary

time series models with the margins in the convolution-closed infinitely divisible class. He introduces an

operatorA(.;!) such that forX ! F!, A(X) ! F"! with F! such that "("1, "2) # R
!2
+ , F!1$F!2 = F!1+!2

with $ the convolution product. He then constructs a time series as follows: Xt = At(Xt#1) + #t with

#t ! IIDF(1#")! where the autocorrelation ! # (0, 1). Our interest in the current paper will focus on

simpler structures such as

Xt = g(Xt#1, . . . ,Xt#p, $t)

which are implied by the copula that describes the joint density of the data. Models for the conditional

higher order moments of the random variables , corresponding to ARCH processes will also be implied

by the assumed copula and we take up that question elsewhere1.

Let us start by defining what we mean by a Copula and some of their properties.

2.1 Definitions

Definition 1 (Nelsen (1998), page 39) A N-dimensional copula is a function C with the following

properties:

1. DomC = [0, 1]N ;

2. C is grounded and N-increasing.

1For additional results on the dependence for stationary Markov chains, we refer the reader to F!'-, H1 and J2%
[1994] , H1 and J2% [1995]
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3. Ck (u) = u, " u # [0, 1] , " k = 1, . . . , N with Ck (u) = C (1, . . . , 1, u, 1, . . . , 1) the k-th margin

of the copula

Theorem 1 (Sklar’s theorem) Let F be an N-dimensional distribution function with continuous

margins F1, . . . , FN . Then F has a unique copula representation:

F (x1, . . . , xN) = C (F1 (x1) , . . . , FN (xN )) (1)

Let f be the N-dimensional density function of F.defined as follows:

f (x1, . . . , xN) =
% F (x1, . . . , xN)

% x1 · · ·% xN
(2)

Then we have

f (x1, . . . , xN ) =
%C (F1 (x1) , . . . , FN (xN ))

% x1 · · ·% xN

With the notation un = Fn (xn) for n = 1, . . . ,N , we obtain

f (x1, . . . , xN) =
%C (u1, . . . , uN)

% u1 · · ·% uN

N!

n=1

fn (xn)

with fn the density corresponding to Fn. The term
#C(u1,... ,uN )
# u1···# uN

is called the copula density of C

and is noted c (u1, . . . , uN). Obviously,

c (F1 (x1) , . . . , FN (xN)) =
f (x1, . . . , xN)

N!

n=1

fn (xn)

(3)

2.2 Some properties

Our aim initially is simply to construct a model for the conditional expectation of the time series

where the serial dependence is implied by the associated copula. However, not all copulae are eligible

and some structure must be put on the joint density and hence copula to ensure stationarity. Let

assume {Xt}t=1...p+1 be a stationary time series generated by a p-order Markov process i.e.

Xt = g(Xt#1, . . . ,Xt#p, $t)

for some real-valued function g and $t ,the innovation which is independent of {Xt#1, . . . , Xt#p}. Let

F = C(F, . . . , F ) be a (p+1)-variate cumulative density function (cdf) with F absolutely continuous.

The copula C has to satisfy certain conditions in order to construct a stationary Markov chain and

these have been summarised by Joe in the following proposition.
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Proposition 2 (Joe (1997), page 245) A stationary Markov chain of order p can be constructed

from a (p+ 1)-dimensional copula C that satisfies the following conditions:

1. the bivariate margins Ci,j(ui, uj) are such that Ci,i+l(ui, ui+l) = C1,1+l(u1, u1+l) for l = 1, . . . , p%

1 and i = 2, . . . , p+ 1% l

2. the higher dimensional margins Ci1,... ,in(u1, . . . , un) are such that Ci1,... ,in = C1,i2#i1+1,... ,in#i1+1

for 1 & i1 < . . . < in & K and 3 & n & p

3. C is di!erentiable in its first p arguments

The two first conditions2 ensure stability in the dependence structure. Indeed, for a sample

{xt}t=1...T the serial dependence has to be the same, for example, between (Xt,Xt+1, Xt+5) for

t = 1, . . . , T % 5. The third condition is essentially a technical condition that allows us to com-

pute the density of the process. In short, we see that a time series model with p lags can be deduced

from a (p+ 1)-dimensional copula.

2.3 Some properties

The conditional (transition) cdf is:

F(xt|xt#1, . . . , xt#p) =
d1(F (xt#p), . . . , F (xt))

d2(F (xt#p), . . . , F (xt#1))
(4)

with

d1(u1, . . . , up+1) =
%pC

%u1 . . .%up
(u1, . . . , up+1) (5)

and

d2(u1, . . . , up) =
%pC1,... ,p
%u1 . . .%up

(u1, . . . , up) (6)

where C1,... ,p is a p dimensional margin of C i.e C1,... ,p = C(u1, . . . , up, 1).

2For a 5-dimensional copula, conditions 1 and 2 become
"
#

$

C12 = C23 = C34 = C45
C13 = C24 = C35
C14 = C25

and
"
%%#

%%$

C123 = C234 = C345
C124 = C235
C134 = C245
C1234 = C2345
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Definition 2 For a sample {xt}t=1...T with copula C(u1, . . . , uT ) drawn from a p"th-order stationary

Markov process , the intrinsic copula is theminimal representation copula with dimension (p+1)

that encompasses all the dependence structure.

While this minimal order is unique the representation of the model explaining any moment may

not be as is well known from linear time series analysis where, for instance a given V ARMA model

may be expressed alternatively in a state space form and there are a range of exchangable models,

see L* !'( T0!3 [1998] and T*!2 !'( T0!3[1989]. It is clear that in the linear context there is a

direct relationship between the McMillan degree of the dynamic system and the order of the intrinsic

copula. In practice however, since higher order models will non-parsimoniously capture the same

dynamic information it is an empirical issue of how to determine the minimal order. While this may

be relatively easily achieved in the linear case it is not in the nonlinear dynamic case and the only

corresponding work on identifying minimal dynamic orders in nonlinear or chaotic systems we know

of is through the correlation dimension of G+!00$%+-%+ !'( P+2,!,,*! [1983]. In fact it may be

that the copula approach to this issue is the simplest route to follow in the general case. From Bayes

theorem, the conditional density is a function of the copula density

f(xt|xt#1, . . . , xt#p) = f(xt)
c(F (xt#p), . . . , F (xt))

c(F (xt#p), . . . , F (xt#1))
(7)

The two following properties show that Bayes’ theorem provides an elegant way to obtain the copula

with the lowest dimension which then captures the general structure of serial dependence within the

time series.

Property 1 For a first-order stationary Markov process , the following relations hold :

c(u1, . . . , uT ) =
T!

t=2

c
!(ut#1, ut)

and

c(u1, . . . , uT ) =

T"k
k"1!

t=0

c(utk#t+1, u(t+1)k#t) for k ' 2 and

&
T % 1

k % 1

'
# N (8)

where c! is the intrinsic copula density

Proof

Note that f(x1, . . . , xT ) = f(x1)
T(
t=2
f(xt | xt#1) and use equation (7).
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For the second property, write c(utk#t+1, u(t+1)k#t) in terms of the intrinsic copula c
! :

c(utk#t+1, u(t+1)k#t) =
k#1!

i=1

c
!(ut(k#1)+i, ut(k#1)+i+1)

Property 2 For a p-order Markov process, the following relations hold :

c(u1, . . . , uT ) =

T(
t=p+1

c
!(ut#p, . . . , ut)

T(
t=p+2

c(ut#p, . . . , ut#1)

(9)

with c! the intrinsic copula density

Proof

Note that f(x1, . . . , xT ) = f(x1, . . . , xp)
T(

t=p+1
f(xt | xt#1, . . . , xt#p) and use equation (7).

Notice that in the case of a pth order Markov processes there will still be relationships between

copulae with order greater than the order of the intrinsic copula. Given the intractable form of a

general formula, we prefer to give three examples for p = 2 that indicate the main intuition. The

following shortcut notational is adopted: c(u1, u2, . . . , uk) = c12...k.

Example 1 Too much information about serial dependence. We know about copulae with

dimension strictly greater than three such as c12345 . Then as

c12345 =
c
!
123c

!
234c

!
345

c23c34

and c1234 =
c!
123
c!
234

c23
and c2345 =

c!
234
c!
345

c34
, the following relationship arises :

c
!
234 =

c1234c2345

c12345

The dependence structure does not have a minimal representation with a four dimensional copula.

However, all the information about serial dependence is available and the three dimensional intrinsic

copula can be found.

Example 2 Partial information about serial dependence. We have a knowledge about copulas

with dimension strictly lower than three. We have

c1234 =
c
!
123c

!
234

c23

and extensions of this formul for future periods. All the information about serial dependence is not

available and the minimal three dimensional intrinsic copula can not be deduced.
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Example 3 Full and minimal information about serial dependence. We have a knowledge

about copula with dimension three. This is the intrinsic copula and all the information about serial

dependence is available.

3 Gaussian Copula and autoregressive models

In this section, we provide the intuition behind copula functions for linear autoregressive processes.

The gaussian AR(1) and AR(p) are explored and their dependence structure is characterized using cop-

ulae.Notice that any continuous univariate distribution (not gaussian) will be a candidate to construct

a nonlinear time series model based on the gaussian copula.

3.1 AR(1) model

Consider the simple AR(1) model:

)
xt = c+ &xt#1 + #t
#t ! IIDN (0,'2)

(10)

The conditional and unconditional pdfs are well known to be :

)
xt|xt#1 ! N (&xt#1,'2)
xt ! N (

c
1#$ ,'

2/(1% &2))
(11)

A time series sample {xt}t=1...T can be viewed as single draw from x !N(µ,!) with density

f(x;µ,!) = (2()#
T
2

**!#1
** 12 exp

)
%
1

2
(x%µ)$!#1(x%µ)

+
(12)

where

µ = E(x) =
c

1% &
(13)

! = E(x%µ)(x%µ)$ ='2V =
'2

1% &2
! (14)

with

V =
1

1% &2

,

-----.

1 & &2 · · · &T#1

& 1 & · · · &T#2

&2 & 1 · · · &T#3

...
...

...
. . .

...

&T#1 &T#2 &T#3 1

/

000001
(15)
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Proposition 3 The copula density function corresponding to time series {xt}t=1...T from an AR(1)

process is

c (u1, . . . , ut, . . . , uT ;!) = (1% &
2)

1"T
2 exp

&
%
1

2
"$
2
!#1 % I

3
"

'
(16)

with "t = "
#1 (ut).

Proof

We have
T!

t=1

ft (xt) = (2()
#T
2 '#T (1%&2)

T
2 exp

4
%1
2"
$"
5
with "t = "

#1 (ut). From (3), the copula

density is obtained. As V#1 = L$L with L a lower triangular matrix with diagonal product
6
1% &2,

**V#1
** = 1% &2. Then note that (1% &2)!#1 = V#1.

Figure 1: Contour plot of the bivariate gaussian copula with di"erent values for the serial dependence
parameter ) = %0.9,%0.6,%0.1, 0.5, 0.9, 0.99.

3.2 AR(p) model

The previous results can be extended to the linear AR(p) case:

)
xt = c+ &1xt#1 + &2xt#2 + . . .+ &pxt#p + #t
#t ! IIDN (0,'2)

(17)
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Figure 2: Contour slices of the 3%dimensional gaussian copula with an AR(1) correlation structure
with ) = 0.1

Figure 3: Contour slices of the 3%dimensional gaussian copula with an AR(1) correlation structure
with ) = 0.5
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Figure 4: Contour slices of the 3%dimensional gaussian copula with an AR(1) correlation structure
with ) = 0.9

A time series sample {xt}t=1...T can be viewed as single draw from x ! N (µ,!) with

! =
'2

1%
7p
j=1 )j&j

,

-----.

1 )1 )2 · · · )T
)1 1 )1 · · · )T#1
)2 )1 1 · · · )T#2
...

...
...

. . .
...

)T )T#1 )T#2 1

/

000001
(18)

with )j the autocorrelations
3 that fulfill the Yule-Walker equations:

)
)0 = 1
)j = &1)j#1 + &2)j#2 + . . .+ &p)j#p for j = 1, 2, . . .

(19)

Property 3 The AR(p) gaussian intrinsic copula density function is given by

c
! (ut#p, . . . , ut;!

!) =
1

|!!|
1

2

exp

&
%
1

2
"$
2
!!#1 % I

3
"

'
(20)

3The autocorrelations (!
0
, . . . , !p"1) are obtained by taking the first p elements of the first column of the matrix2

Ip2 ! C"C
3
"1
where

C =

,

-----.

"
1

"
2

· · · "p"1 "p
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

/

000001
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with !! =

,

-----.

1 )1 )2 · · · )p
)1 1 )1 · · · )p#1
)2 )1 1 · · · )p#2
...

...
...

. . .
...

)p )p#1 )p#2 1

/

000001

3.3 An alternative dependence model: the archimedean class

Another famous class of copula functions, the Archimedean class, provides an alternative to the gaus-

sian copula. This class is very useful since each member of this class can be characterised by a simple

generator function. However, its extension from the bivariate to the multivariate case often becomes

intractable. Indeed, since each correlation parameter of a gaussian copula provides information about

the dependence between each pair of random variables so for N variables, there are N(N % 1)/2 pa-

rameters. For Archimedean copulae, the dependence is characterised by only (N %1) parameters. We

shall focus on the bivariate case i.e. on first-order Markov processes. G%'%0/ and M!,K!3 [1996]

provided a definition of this family:

C (u1, . . . , uN) = *
#1 (* (u1) + . . .+ * (uN )) (21)

with * (u) a C2 function with * (1) = 0, *" (u) < 0 and *"" (u) > 0 for all 0 & u & 1. One technique

by which to construct multivariate archimedean copulae is the compound method where

C (u1, u2) = *
#1 (* (u1) + * (u2))

C (u1, u2, u3) = C (C (u1, u2) , u3)
...
C (u1, . . . , uN ) = C (C (u1, , . . . , uN#1) , uN)

(22)

The function * (u) is called the generator of the copula and essentially identifies the copula function.

G%'%0/ and R*6%0/ [1993] propose a method to identify an Archimedean copula by comparing the

true value of a function +(u) to its nonparametric estimate, where

+(u) = u% Pr {C (U1, . . . , UN) & u}

=
N8

n=1

(%1)n#1
*n (u)

n!
,n#1 (u) (23)

with
9
,0 (u) = (*( (u))

#1

,n (u) = (*
" (u))#1

:
# %n"1(u)

# u

;

12
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Copula C (u1, u2) * (u) - # dependence

C
% u1u2 % lnu

Gumbel exp

&
%

:
(% lnu1)

& + (% lnu2)
&
; 1

!

'
(% lnu)& [1,)) +

Joe 1%
2
(1% u1)

& + (1% u2)
& % (1% u1)

&(1% u2)
&
31
! % ln

:
1% (1% u)&

;
[1,)) +

Frank %1
&
ln
:
1 + (e"!u1#1)(e"!u2#1)

e"!#1

;
% ln e

"!u#1
e"!#1

R
! + and -

Table 1: Three famous bivariate archimedean copulae C (u1, u2) with the generator function * (u) and
properties

We refer to B!+$%, G%'%0/, G)21(* and R4"*&&!+( [1996] for the proof. A non parametric

estimate of +(u) is given by

+̂ (u) = u%
1

T

T8

t=1

1['i&u] (24)

with

.i =
1

T % 1

T8

t=1

1[xt1<xi1,... ,xtN<x
i
N ]

4 Maximum likelihood estimation

Let (#, $) be the vector of parameters to be estimated and (#,$) the parameter spaces where #

characterizes the margins and $ the dependence. For a sample of size T , the log-likelihood function

/t(#, $) can be constructed so that (0̂ML, -̂ML) is the Maximum Likelihood (ML) estimator given by

(#̂ML, $̂ML) = ArgMax
(# ,$)'(!,")

T8

t=1

/t(#, $) (25)

with asymptotic normality:

(#̂ML, $̂ML) %* T#
1

2N
2
(#0, $0), I

#1 (#0, $0)
3

(26)

with I (#0, $0) the Fisher information matrix.

The likelihood for a sample {xt}t=1...T of a p-order Markov process can be deduced from (7):

L(x1, . . . , xT ;#, $) = f(x1, . . . , xT ;#, $)

=
T!

t=1

f(xt;#)

T(
t=p+1

c
!(F (xt#p;#), . . . , F (xt;#); $)

T(
t=p+2

c(F (xt#p;#), . . . , F (xt#1;#); $)

(27)
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and the log-likelihood estimator is then given by

/(x1, . . . , xT ;#, $) = ln f(x1, . . . , xT ;#, $)

=
T8

t=1

ln f(xt;#) +
T8

t=p+1

ln c!(F (xt#p;#), . . . , F (xt; 0); $)

%

T8

t=p+2

ln c(F (xt#p;#), . . . , F (xt#1;#); $) (28)

In the case of the gaussian copula, we have

/ (#,!!) =
T8

t=1

ln f(xt;#)%
T % p

2
ln |!!|%

1

2

T8

t=p+1

"$t
2
!!#1 % I

3
"t %

T % p% 1

2
ln |!|%

1

2

T8

t=p+2

"$t#1
2
!#1 %

(29)

with
"
%%#

%%$

Rank(!!) = p+ 1
Rank(!) = p
"t =

2
"
#1 (F (xt#p)) , . . . ,"

#1 (F (xt))
3

"t#1 =
2
"
#1 (F (xt#p)) , . . . ,"

#1 (F (xt#1))
3

and the ML estimate of ! is

!̂!ML =
1

T

T8

t=1

"$t "t (30)

As noted in J2% and X1 [1996] and B2134, D1++&%"!', N*,.%-)$!&*, R*$21&%/ and R2',!&&*

[2000], three maximum likelihood methods are available.

1. The Exact Maximum Likelihood (EML) method: Parameters of the copula and marginals are

estimated simultaneously. The time series sample, x = {xt}t=1...T , has density

f(x;#, $) = c (F (x1;#), . . . , F (xT ;#), $)
T!

t=1

f(xt;#)

The log-likelihood of the joint distribution function for a sample of size T is

L(#, $) =
T8

t=1

log f(xt;#, $) (31)

The MLE estimates (#̂, $̂) maximize L, are obtained by solving
:
#L
## ,

#L
#$

;$
= 0.
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2. The Inference Function for Margins (IFM) method is a two-step procedure. First, parameters

of the marginals are estimated. Second, MLE is applied to estimate the dependence parameters

of the copula. The log-likelihood functions for the univariate margin Lm is considered:

Lm(#) =
T8

t=1

log f(xt;#) (32)

The estimates #̃ maximize Lm. The log-likelihood of the joint distribution function L(#̃, $)

is maximized over $ to obtain $̃. Finally, the IFM estimates (#̃, $̃) are obtained by solving
:
#Lm
## ,

#L
#$

;
= 0.

3. The Canonical Maximum Likelihood (CML) method: Only the parameters of the copula are

estimated. The empirical cdfs are obtained by mapping variables to uniforms. The margins are

mapped to uniforms:

X # RT +%* u # [0, 1]T

The parameters of the copula $ are obtained by maximizing the log-likelihood of copula cdf

Lc($) =
T8

t=1

log c(ut; $) (33)

The estimate $̄ is obtained from solving #Lc
#$
= 0.

5 Financial applications

We consider the annualized daily log-returns for five indices: Cazenove small companies (CAZSCOS),

Barings (BARINGS), S&P 500 (SP500), Nasdaq 100 (NASDAQ) and MSCI Singapore (MSSING), from

January 1983 to March 2000. The sample size is T = 4499. A number of condidate marginal distri-

butions were tested (Gaussian, Weibull, Student and Burr3), but the Burr3was found to the each of

the series best. This is shown by the Kolmogorov-Smirnov statistics (KS) in Appendix A. The Burr3

has the following distribution :

F (x;#) =

<
1%

1

1 + (x/1)"

=(
with x # R+ (34)

with the parameters # = (!,+, 1 ). The probability density function (pdf) is

f (x;#) =
!+x"(#11"

(x" + 1")(+1
(35)
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CAZSCOS BARINGS SP500 NASDAQ MSSING

GAUSSIAN
- = ) 0.383 0.206 0.034 0.089 0.188

(0.012) (0.014) (0.015) (0.015) (0.014)
LogLik -7041.3 -8983.6 -9739.8 -11541.7 -11016.7

GUMBEL
- 1.352 1.145 1.030 1.076 1.154

(0.016) (0.012) (0.009) (0.011) (0.012)
LogLik -6973.6 -8971.6 -9733.1 -11523.4 -10977.5

JOE
- 1.448 1.173 1.039 1.095 1.194

(0.023) (0.017) (0.012) (0.015) (0.018)
LogLik -7059.5 -8998.5 -9733.3 -11529.6 -10999.5

FRANK
- 2.662 1.266 0.154 0.687 1.206

(0.099) (0.093) (0.093) (0.095) (0.095)
LogLik -7022.1 -8987.1 -9740.8 -11532.0 -11015.6

INDEP
LogLik -7385.7 -9078.9 -9742.2 -11558.3 -11096.3

Table 2: IFM estimates for various copulae under the assumption of a first order Markov process.

The distribution can be split into two parts : positive and negative returns and the corresponding

parameters are superscripted + or % depending on the side of the estimated distribution. The max-

imum likelihood estimates and the Kolmogorov-Smirnov (KS) values4 for the selected distributions

are reported in Table A1 of the Appendix. We estimated the parameters using CML method for the

Gaussian AR(1) copula and the three archimedean copulae described in Table 1. The estimated values

are given in Table 2. Figures in Appendix plot the non-parametric estimator +̂ (u) with the fitted ML

values of the independent and archimedean copulae.

The Gumbel copula clearly best fits the dependence of the data for illiquid markets such as for

CAZSCOS, BARINGS andMSSING. Not surprisingly, the SP500 is the more liquid market which is also

best fit by the Gumbel5. Looking at the 95% confidence intervals, we can see that the hypothesis of

serial independence can only be rejected for CAZSCOS.

4*, **, *** mean that the null hypothesis of the Kolmogorov-Smirnov test (the true distribution equals the estimated
one) is respectively rejected at 1%, 5% and 10% level.

5Notice that a simple model selection can be based on the likelihood values themselves in this case since there is a
single parameter in each of the separate families and so comparison by the likelihood value corresponds to selection by
Akaike’s Information Criterion (AIC).

16



Investigating Dynamic Dependence using Copulae

CAZSCOS BARINGS SP500 NASDAQ MSSING

GAUSSIAN
- = ) 0.379 0.206 0.031 0.082 0.192

(0.012) (0.014) (0.015) (0.015) (0.014)
LogLik 346.2 96.9 2.2 15.0 83.5

GUMBEL
- 1.345 1.143 1.027 1.070 1.153

(0.015) (0.012) (0.008) (0.010) (0.012)
LogLik 414.7 107.9 9.7 33.3 120.2

JOE
- 1.441 1.169 1.034 1.084 1.191

(0.023) (0.017) (0.011) (0.015) (0.017)
LogLik 330.0 80.3 9.5 27.0 96.8

FRANK
- 2.604 1.259 0.142 0.654 1.211

(0.097) (0.093) (0.092) (0.092) (0.094)
LogLik 359.5 92.2 1.2 25.1 82.7

Table 3: CML estimates for various copulae under the assumption of a first order Markov process.

Figure 5: Empirical autocorrelation function under alternative hypothesis about margins : Burr3 and
Gaussian.
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One main advantage of using copulae is that all the dependence structure is captured by the copula

function itself since it is obviously not held in the marginal distributions. Measures of dependence

based on the copula have the advantage that they are also invariant to monotonic transformations of

the data. Auto-correlation analysis as an approach to measuring dynamic dependence su"ers from the

same serious limitations that restrict the use of correlation as a measure of association. In particular

the autocorrelogram is designed to detect only linear autoregressive processes. It is therefore natural

to consider extending methods of detecting potentially nonlinear dynamic structure to copula based

measures of dependence that will be applicable outside the class of elliptic distributions such as the

Gaussian. Several alternative measures of dependence immediately suggest themselves; in particular

auto-concordance measures as opposed to autocorrelation. Two measures of concordance are given by

Kendall’s Tau and Spearman’s rho which may be defined in general in terms of the parameters of the

copula. To define the auto-concordance coe!cients we treat the original variable and its lag as the

two random variables in what follows. The two concordance measures can be used: so the Kendall

p-order auto-concordance coe!cient is

1C (p)=4

> >

[0,1]2
C(ut, ut#p)dC(ut, ut#p)% 1 (36)

and the Spearman rank p-order auto-concordance coe!cient is

)C (p) = 12

> >

[0,1]2
(C(ut, ut#p)% uv)dutdut#p (37)

Spearman’s rank correlation coe!cient is essentially the ordinary correlation of )(F1(X1), F2(X2)) for

two random variables X1 ! F1(.) and X2 ! F2(.). Notice the explicit comparison with the product

copula ,uv,representing independence. Essentially these two measures of concordance measure the

degree of monotonic dependence as opposed to the Pearson Correlation which measures the degree

of linear dependence. Both achieve a value of unity for the bivariate Fréchet upper bound where one

variable is a strictly increasing transformation of the other and minus one for the Fréchet lower bound

(one variable is a strictly decreasing transform of the other).

Essentially using these auto-concordance measures should enable us to detect monotonic but non-

linear dynamic dependence in non-gaussian assets and hence would appear to be useful in financial

applications. Further measures of copula based dynamic dependence could be based on dynamic tail

area dependency measures.
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Lag tau rho acf

1 0.26 0.37 0.32
2 0.15 0.22 0.17
3 0.11 0.17 0.12
4 0.11 0.16 0.19
5 0.09 0.13 0.11
6 0.08 0.11 0.09
7 0.08 0.12 0.10
8 0.08 0.12 0.05
9 0.09 0.14 0.09
10 0.09 0.13 0.11
11 0.06 0.10 0.12
12 0.06 0.09 0.04

All entries significant

Table 4: Auto-concordance / Autocorrelation CAZSCOS

Lag tau rho acf

1 0.13418* 0.196* 0.201*
2 -0.00163 -0.003 -0.0286
3 -0.0235* -0.035* -0.0223
4 -0.0184* -0.027* 0.0109
5 0.00138 0.0024 0.0157
6 -0.0059 -0.009 -0.0019
7 -0.0131 -0.019 -0.0013
8 -0.008 -0.0127 -0.0084
9 -0.0115 -0.017 -0.0138
10 -0.0237* 0.035* 0.0340*
11 -0.006 -0.009 0.0111
12 -0.004 -0.006 0.0034

Table 5: Auto-concordance / Autocorrelation BARINGS

The following tables compare the auto-concordance and auto-correlation for the return series de-

scribed above6.

The general conclusion we can draw from these results is that within the same general pat-

tern of dependence some potentially important di"erences emerge between the auto-concordance and

auto-correlation coe!cients. The same general dependence structure is indicated by both the auto-

concordance measures. The distributions of these return series show the classic pattern of relatively

6Star’s(*) indicate values significantly di"erent from zero at a 5% level.
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Lag tau rho acf

1 0.071* 0.102* 0.0656*
2 -0.008 -0.012 -0.0178
3 -0.0019 -0.003 -0.0194
4 -0.003 -0.004 0.0004
5 0.009 0.014 0.0339*
6 -0.005 -0.0082 -0.0213
7 -0.022* -0.032* -0.0372*
8 0.0087 0.0127 -0.0016
9 0.0054 0.007 -0.0112
10 0.007 0.01 0.0096
11 -0.0018 -0.003 -0.0089
12 0.018 0.027 0.0232

Table 6: Auto-concordance / Autocorrelation NASDAQ

Lag tau rho acf

1 0.0155 0.023 0.0229
2 -0.012 -0.018 -0.0372*
3 -0.043* -0.063* -0.0459*
4 -0.0145 -0.021 -0.0295*
5 -0.0082 -0.012 0.0378*
6 -0.0173 -0.025 -0.0163
7 -0.027* -0.040* -0.0273
8 -0.0029 -0.004 -0.0162
9 -0.011 -0.016 -0.0099
10 0.0144 0.022 0.0141
11 0.0003 0.005 -0.0063
12 0.0179 0.026 0.0066

Table 7: Auto-concordance / Autocorrelation SP500

Lag tau rho acf

1 0.1266* 0.182* 0.1721*
2 0.0208* 0.030* -0.0237
3 0.004 0.005 0.0217
4 0.0032 0.005 0.0301*
5 0.008 0.011 -0.0070
6 0.003 0.005 -0.0123
7 0.005 0.0082 0.0187
8 -0.016 -0.022 -0.0096
9 0.0077 0.011 -0.0162
10 -0.0027 -0.004 -0.0032
11 0.019* 0.028 0.0274
12 0.031* 0.046* 0.0454*

Table 8: Auto-concordance / Autocorrelation MSSING
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Lag tau rho acf

1 0.171 0.252 0.259
2 0.137 0.203 0.206
3 0.120 0.179 0.322
4 0.11 0.165 0.294
5 0.096 0.144 0.171
6 0.102 0.152 0.212
7 0.106 0.158 0.338
8 0.084 0.126 0.185
9 0.086 0.129 0.165
10 0.108 0.162 0.259
11 0.090 0.135 0.273
12 0.094 0.139 0.179

Table 9: Auto-concordance / Autocorrelation DM2000-2 Transactions

small skewness but substantial excess kurtosis. The relative symmetry of these distributions may well

explain the lack of any dramatic di"erence being indicated between the auto-concordance and the auto-

correlation coe!cients. In order to investigate this further we have applied the same procedures to

two duration series drawn from a sample of all transactions from the DM2000-2 electronic order book

screen trading system for the Dollar DeutscheMark7. We consider the question of dynamic dependence

within the duration between transactions and also the order flow duration onto the DM2000-2 system

and since these must be non-negative their distributions must be asymmetric and lie entirely in the

positive quadrant. In fact they are relatively well represented by members of the Weibull distribution.

The following two tables provide the auto-concordance and auto-correlation coe!cients for these two

series of 26578 observations (order entries) and 4404 (transactions).

Unfortunately we see little discrimination between the measures in these last two tables since all

entries are significantly di"erent from zero and show essentially the same pattern. We clearly need to

find more subtle examples in order to demonstrate the value of the auto-concordance functions. How-

ever this does not imply that other dynamic dependency patterns may be discovered using Copulae.

The most obvious choice would seem to be looking at dependency and the dynamic evolution in the

tails of the distribution of returns.
7Further details of this data set and an analysis of its structure can be found in Hillman and Salmon (2000)
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Lag tau rho acf

1 0.160 0.237 0.267
2 0.157 0.223 0.277
3 0.155 0.230 0.251
4 0.148 0.220 0.234
5 0.142 0.221 0.215
6 0.137 0.203 0.205
7 0.139 0.207 0.250
8 0.137 0.203 0.234
9 0.126 0.187 0.206
10 0.133 0.198 0.212
11 0.124 0.184 0.180
12 0.127 0.190 0.188

Table 10: Auto-concordance / Autocorrelation DM2000-2 Order flow entries

6 Conclusion

We have taken the first steps in this paper to develop an empirical methodology to investigate the

dynamic dependence in non-gaussian time series and financial returns in particular using copula func-

tions. Some properties of the class of copula functions that allow us to construct p-order markov

processes have been presented and it is important to note that any density can be assumed for the

margins.We intend to extend this work to investigate the multivariate predictability issue of returns

using variables such as dividend yields, earnings and interest rates which would then enable us to deter-

mine how far the lack of independence of returns can be accounted for by nonlinear forms of dynamic

dependence. It is conceptually easy to move from considering the conditional expectation derived from

the copula to consider the implied model of conditional volatility and its dynamic strucutre. This is

again work we are following up elsewhere. A critical assumption of this paper is that the density of

the margins does not change through time. One further extension would be to look at possible regime

changes both for the marginal density and the dependence structure itself.
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A ML Estimates for margins

CAZSCOS BARINGS SP500 NASDAQ MSSING

GAUSSIAN
µ 0.088 0.093 0.142 0.219 0.068

(0.011) (0.010) (0.010) (0.009) (0.009)
' 1.727 2.031 2.616 3.768 3.614

(0.018) (0.021) (0.028) (0.041) (0.038)
LogLik -8603.2 -9515.6 -10370.1 -11865.4 -12032.2
KS-Test 0.118* 0.058* 0.078* 0.058* 0.096*

WEIBULL
a+ 1.042 1.104 1.070 1.134 0.985

(0.014) (0.017) (0.016) (0.015) (0.014)
x+ 0.992 1.488 1.795 2.797 2.237

(0.019) (0.026) (0.036) (0.049) (0.047)
a# 0.882 1.029 0.990 1.048 0.932

(0.014) (0.016) (0.015) (0.018) (0.014)
x# 1.047 1.416 1.726 2.806 2.200

(0.028) (0.030) (0.038) (0.062) (0.047)
p 0.577 0.527 0.539 0.548 0.518

(0.008) (0.007) (0.007) (0.008) (0.008)
LogLik -7475.6 -9107.8 -9770.4 -11569.1 -11159.5
KS-Test 0.021** 0.011 0.013 0.011 0.015

STUDENT
2 3.165 2.119 1.561 0.982 1.172

(0.126) (0.068) (0.043) (0.022) (0.028)
LogLik -7471.2 -9247.9 -10040.3 -12529.6 -11563.5
KS-Test 0.084* 0.076* 0.098* 0.161* 0.099*

BURR3
!+ 2.535 3.082 3.050 2.946 2.600

(0.096) (0.131) (0.139) (0.129) (0.112)
++ 0.404 0.303 0.291 0.340 0.343

(0.024) (0.019) (0.020) (0.021) (0.022)
1+ 1.267 2.263 2.845 3.945 3.275

(0.050) (0.078) (0.104) (0.143) (0.134)
!# 2.173 2.944 2.469 2.784 2.473

(0.094) (0.132) (0.112) (0.130) (0.103)
+# 0.415 0.306 0.390 0.336 0.354

(0.029) (0.021) (0.028) (0.025) (0.022)
1# 1.358 2.179 2.306 4.081 3.166

(0.073) (0.084) (0.111) (0.171) (0.134)
p 0.577 0.527 0.539 0.548 0.518

(0.008) (0.007) (0.008) (0.007) (0.008)
LogLik -7385.7 -9078.9 -9742.2 -11558.3 -11096.3
KS-Test 0.006 0.007 0.013 0.010 0.006

Table A1 - ML Estimates for margins.
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B Inverse of the Burr3 distribution

The Burr3 distribution :

G(x;#) =

<
1%

1

1 + (x/1)"

=(
= uG with x # R+

with the parameters # = (!,+, 1 ). Then it comes that its inverse G[#1] is

G[#1](uG;#) = 1

?
1

1% u
1/(
G

% 1

@1/"
with uG # [0, 1] (38)

A distribution F for positive and negative values is constructed:

F
2
x;##,#+

3
= 1% p% I{x<0} (1% p)G(|x| ;#

#) + I{x(0}pG(x;#
+) = uF

Then, the quasi-inverse is slightly modified, depending on the sign of x:

x < 0, uG =
uF
1% p

% 1

x ' 0, uG = (1% uF ) (1% p)

C Gaussian copula based simulations

We may postulate other distributions for the margins with a dependence structure summarized by

a gaussian copula with AR(p) structure correlation matrix. To illustrate this idea, we simulate two

times series of size T = 200 with an AR(1) intrinsic gaussian copula but with di"erent univariate

margins (standard normal and Student) - see Figure 6. A simulation for an AR(2) intrinsic gaussian

copula is also reported in Figure 7.

D Additional figures
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Figure 6: Simulation of two times series with the same intrinsic gaussian copula with an AR(1) matrix
where & = 0.3. The marginal distributions are di"erent: the solid line corresponds to standard normal,
the dashed line to Student with 2 = 3 degrees of freedom.

Figure 7: Simulation of two times series with the same intrinsic gaussian copula with an AR(2) matrix
where (&1,&2) = (0.6,%0.5). The marginal distributions are di"erent: the solid line corresponds to
standard normal, the dashed line to Student with 2 = 3 degrees of freedom.
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Figure 8: Left Tail of the CDF (in log-scale) for the annualized log-returns

Figure 9: Right Tail of the survival CDF (in log-scale) for the annualized log-returns

28



Investigating Dynamic Dependence using Copulae

Figure 10: Empirical and fitted functions of +(u) for CAZSCOS. The dashed lines are the 95% confi-
dence interval for the empirical +(u).

Figure 11: Empirical and fitted functions of +(u) for BARINGS. The dashed lines are the 95% confidence
interval for the empirical +(u).
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Figure 12: Empirical and fitted functions of +(u) for SP500. The dashed lines are the 95% confidence
interval for the empirical +(u).

Figure 13: Empirical and fitted functions of +(u) for NASDAQ. The dashed lines are the 95% confidence
interval for the empirical +(u).
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Figure 14: Empirical and fitted functions of +(u) forMSSING. The dashed lines are the 95% confidence
interval for the empirical +(u).
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