9 research outputs found

    Gaussian Message Passing for Overloaded Massive MIMO-NOMA

    Full text link
    This paper considers a low-complexity Gaussian Message Passing (GMP) scheme for a coded massive Multiple-Input Multiple-Output (MIMO) systems with Non-Orthogonal Multiple Access (massive MIMO-NOMA), in which a base station with NsN_s antennas serves NuN_u sources simultaneously in the same frequency. Both NuN_u and NsN_s are large numbers, and we consider the overloaded cases with Nu>NsN_u>N_s. The GMP for MIMO-NOMA is a message passing algorithm operating on a fully-connected loopy factor graph, which is well understood to fail to converge due to the correlation problem. In this paper, we utilize the large-scale property of the system to simplify the convergence analysis of the GMP under the overloaded condition. First, we prove that the \emph{variances} of the GMP definitely converge to the mean square error (MSE) of Linear Minimum Mean Square Error (LMMSE) multi-user detection. Secondly, the \emph{means} of the traditional GMP will fail to converge when Nu/Ns<(21)25.83 N_u/N_s< (\sqrt{2}-1)^{-2}\approx5.83. Therefore, we propose and derive a new convergent GMP called scale-and-add GMP (SA-GMP), which always converges to the LMMSE multi-user detection performance for any Nu/Ns>1N_u/N_s>1, and show that it has a faster convergence speed than the traditional GMP with the same complexity. Finally, numerical results are provided to verify the validity and accuracy of the theoretical results presented.Comment: Accepted by IEEE TWC, 16 pages, 11 figure

    What is the Benefit of Code-domain NOMA in Massive MIMO?

    Full text link
    In overloaded Massive MIMO systems, wherein the number K of user equipments (UEs) exceeds the number of base station antennas M, it has recently been shown that non-orthogonal multiple access (NOMA) can increase performance. This paper aims at identifying cases of the classical operating regime K < M, where code-domain NOMA can also improve the spectral efficiency of Massive MIMO. Particular attention is given to use cases in which poor favorable propagation conditions are experienced. Numerical results show that Massive MIMO with planar antenna arrays can benefit from NOMA in practical scenarios where the UEs are spatially close to each other.Comment: To appear at the 2019 IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (IEEE PIMRC 2019), 5 pages, 5 figure

    Network-coded MIMO-NOMA systems with FEC codes in two-way relay networks

    Get PDF
    This paper assumes two users and a two‐way relay network with the combination of 2×2 multi‐input multi‐output (MIMO) and nonorthogonal multiple access (NOMA). To achieve network reliability without sacrificing network throughput, network‐coded MIMO‐NOMA schemes with convolutional, Reed‐Solomon (RS), and turbo codes are applied. Messages from two users at the relay node are network‐coded and combined in NOMA scheme. Interleaved differential encoding with redundancy (R‐RIDE) scheme is proposed together with MIMO‐NOMA system. Quadrature phase‐shift keying (QPSK) modulation technique is used. Bit error rate (BER) versus signal‐to‐noise ratio (SNR) (dB) and average mutual information (AMI) (bps/Hz) versus SNR (dB) in NOMA and MIMO‐NOMA schemes are evaluated and presented. From the simulated results, the combination of MIMO‐NOMA system with the proposed R‐RIDE‐Turbo network‐coded scheme in two‐way relay networks has better BER and higher AMI performance than conventional coded NOMA system. Furthermore, R‐RIDE‐Turbo scheme in MIMO‐NOMA system outperforms the other coded schemes in both MIMO‐NOMA and NOMA systems

    General Framework and Novel Transceiver Architecture based on Hybrid Beamforming for NOMA in Massive MIMO Channels

    Full text link
    Massive MIMO and non-orthogonal multiple access (NOMA) are crucial methods for future wireless systems as they provide many advantages over conventional systems. Power domain NOMA methods are investigated in massive MIMO systems, whereas there is little work on integration of code domain NOMA and massive MIMO which is the subject of this study. We propose a general framework employing user-grouping based hybrid beamforming architecture for mm-wave massive MIMO systems where NOMA is considered as an intra-group process. It is shown that classical receivers of sparse code multiple access (SCMA) and multi-user shared access (MUSA) can be directly adapted. Additionally, a novel receiver architecture which is an improvement over classical one is proposed for uplink MUSA. This receiver makes MUSA preferable over SCMA for uplink transmission with lower complexity. We provide a lower bound on achievable information rate (AIR) as a performance measure. We show that code domain NOMA schemes outperform conventional methods with very limited number of radio frequency (RF) chains where users are spatially close to each other. Furthermore, we provide an analysis in terms of bit-error rate and AIR under different code length and overloading scenarios for uplink transmission where flexible structure of MUSA is exploited.Comment: Partially presented at IEEE ICC 2020 Workshop on NOMA for 5G and Beyond and to be submitted to IEEE Transactions on Communication

    Signal Processing Techniques for 6G

    Get PDF
    corecore