191 research outputs found

    Simulation of Mixed Critical In-vehicular Networks

    Full text link
    Future automotive applications ranging from advanced driver assistance to autonomous driving will largely increase demands on in-vehicular networks. Data flows of high bandwidth or low latency requirements, but in particular many additional communication relations will introduce a new level of complexity to the in-car communication system. It is expected that future communication backbones which interconnect sensors and actuators with ECU in cars will be built on Ethernet technologies. However, signalling from different application domains demands for network services of tailored attributes, including real-time transmission protocols as defined in the TSN Ethernet extensions. These QoS constraints will increase network complexity even further. Event-based simulation is a key technology to master the challenges of an in-car network design. This chapter introduces the domain-specific aspects and simulation models for in-vehicular networks and presents an overview of the car-centric network design process. Starting from a domain specific description language, we cover the corresponding simulation models with their workflows and apply our approach to a related case study for an in-car network of a premium car

    VEGa : a high performance vehicular Ethernet gateway on hybrid FPGA

    Get PDF
    Modern vehicles employ a large amount of distributed computation and require the underlying communication scheme to provide high bandwidth and low latency. Existing communication protocols like Controller Area Network (CAN) and FlexRay do not provide the required bandwidth, paving the way for adoption of Ethernet as the next generation network backbone for in-vehicle systems. Ethernet would co-exist with safety-critical communication on legacy networks, providing a scalable platform for evolving vehicular systems. This requires a high-performance network gateway that can simultaneously handle high bandwidth, low latency, and isolation; features that are not achievable with traditional processor based gateway implementations. We present VEGa, a configurable vehicular Ethernet gateway architecture utilising a hybrid FPGA to closely couple software control on a processor with dedicated switching circuit on the reconfigurable fabric. The fabric implements isolated interface ports and an accelerated routing mechanism, which can be controlled and monitored from software. Further, reconfigurability enables the switching behaviour to be altered at run-time under software control, while the configurable architecture allows easy adaptation to different vehicular architectures using high-level parameter settings. We demonstrate the architecture on the Xilinx Zynq platform and evaluate the bandwidth, latency, and isolation using extensive tests in hardware

    The future roadmap of in-vehicle network processing: a HW-centric (R-)evolution

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The automotive industry is undergoing a deep revolution. With the race towards autonomous driving, the amount of technologies, sensors and actuators that need to be integrated in the vehicle increases exponentially. This imposes new great challenges in the vehicle electric/electronic (E/E) architecture and, especially, in the In-Vehicle Network (IVN). In this work, we analyze the evolution of IVNs, and focus on the main network processing platform integrated in them: the Gateway (GW). We derive the requirements of Network Processing Platforms that need to be fulfilled by future GW controllers focusing on two perspectives: functional requirements and structural requirements. Functional requirements refer to the functionalities that need to be delivered by these network processing platforms. Structural requirements refer to design aspects which ensure the feasibility, usability and future evolution of the design. By focusing on the Network Processing architecture, we review the available options in the state of the art, both in industry and academia. We evaluate the strengths and weaknesses of each architecture in terms of the coverage provided for the functional and structural requirements. In our analysis, we detect a gap in this area: there is currently no architecture fulfilling all the requirements of future automotive GW controllers. In light of the available network processing architectures and the current technology landscape, we identify Hardware (HW) accelerators and custom processor design as a key differentiation factor which boosts the devices performance. From our perspective, this points to a need - and a research opportunity - to explore network processing architectures with a strong HW focus, unleashing the potential of next-generation network processors and supporting the demanding requirements of future autonomous and connected vehicles.Peer ReviewedPostprint (published version

    Automotive Ethernet architecture and security: challenges and technologies

    Get PDF
    Vehicle infrastructure must address the challenges posed by today's advances toward connected and autonomous vehicles. To allow for more flexible architectures, high-bandwidth connections and scalability are needed to connect many sensors and electronic control units (ECUs). At the same time, deterministic and low latency is a critical and significant design requirement to support urgent real-time applications in autonomous vehicles. As a recent solution, the time-sensitive network (TSN) was introduced as Ethernet-based amendments in IEEE 802.1 TSN standards to meet those needs. However, it had hurdle to be overcome before it can be used effectively. This paper discusses the latest studies concerning the automotive Ethernet requirements, including transmission delay studies to improve worst-case end-to-end delay and end-to-end jitter. Also, the paper focuses on the securing Ethernet-based in-vehicle networks (IVNs) by reviewing new encryption and authentication methods and approaches

    Connected Vehicles: from CAN bus to IP-based In-Vehicle Networks

    Get PDF
    Il settore automotive, negli ultimi vent’anni, è stato oggetto di importanti sviluppi tecnologici, caratterizzati principalmente dall’evoluzione dei settori dell’elettronica e delle telecomunicazioni. Questo elaborato si pone come obiettivo lo studio delle tecnologie che hanno permesso l’introduzione di sistemi elettronici avanzati all’interno dei veicoli, e di come queste si siano evolute negli anni. Vengono quindi presentate le moderne idee di Connected Vehicle e di In-Vehicle Networks (IVN), nonché i principali protocolli di comunicazione che ne hanno caratterizzato l’evoluzione. Si procede poi analizzando il Controller Area Network (CAN bus), le reti veicolari IP-based ed infine il dispositivo che permette l’implementazione di reti eterogenee, l’Automotive Gateway

    Domänenübergreifende Anwendungskommunikation im IP-basierten Fahrzeugbordnetz

    Get PDF
    In heutigen Premiumfahrzeugen kommunizieren bis zu 80 Steuergeräte über bis zu sechs verschiedene Vernetzungstechnologien. Dabei öffnet sich die Fahrzeugkommunikation nach außen: Das Fahrzeug kommuniziert auch mit dem Smartphone des Fahrers und dem Internet. Für die Kommunikation über verschiedene Anwendungsdomänen im Fahrzeug müssen heute Gateways eingesetzt werden, die zwischen den nicht-kompatiblen Protokollen übersetzen. Deswegen geht der Trend auch in der Fahrzeugkommunikation zum Internet Protocol (IP), das für technologie- und domänenübergreifende Kommunikation entwickelt wurde. Neben dem durchgängigen Protokoll auf der Vermittlungsschicht ist für die effiziente Entwicklung eines komplexen, verteilten Systems wie einem Fahrzeug auch eine entsprechende Kommunikationsmiddleware notwendig. Die Kommunikation in einem Fahrzeug stellt spezielle Anforderungen an die Kommunikationsmiddleware. Zum einen werden in Fahrzeugen unterschiedliche Kommunikationsparadigmen genutzt, beispielsweise signalbasierte und funktionsbasierte Kommunikation. Zum anderen können sich die Kommunikationspartner in einem Fahrzeug hinsichtlich ihrer Ressourcen und ihrer Komplexität erheblich unterscheiden. Keine existierende IP-basierte Kommunikationsmiddleware erfüllt die in der vorliegenden Arbeit identifizierten Anforderungen für den Einsatz im Fahrzeug. Ziel dieser Arbeit ist es daher, eine Kommunikationsmiddleware zu konzipieren, die für den Einsatz im Fahrzeug geeignet ist. Die vorgestellte Lösung sieht mehrere interoperable Ausprägungen der Middleware vor, die den Konflikt zwischen unterschiedlichen funktionalen Anforderungen einerseits und den sehr heterogenen Kommunikationspartnern andererseits auflösen. Ein weiterer elementarer Teil der Lösung ist die Umsetzung der im Fahrzeug erforderlichen Kommunikationsparadigmen. Das funktionsbasierte Paradigma wird durch einfache Remote Procedure Calls implementiert. Das signalbasierte Paradigma wird durch ein darauf aufbauendes Notification-Konzept implementiert. Somit wird eine stärker am aktuellen Informationsbedarf orientierte Umsetzung ermöglicht, als dies im heutigen Fahrzeugbordnetz durch das einfache Verteilen von Daten der Fall ist. Es wird gezeigt, dass sich prinzipiell beide Kommunikationsparadigmen durch einen einzigen Mechanismus abbilden lassen, der abhängig von den beteiligten Ausprägungen mit dynamischen oder nur statischen Daten operiert. Ein skalierbares Marshalling berücksichtigt darüber hinaus die unterschiedlichen Anforderungen der Anwendungen und die unterschiedliche Leistungsfähigkeit der beteiligten Steuergeräte. Hiermit wird die Kommunikation zwischen allen Anwendungen im IP-basierten Fahrzeugbordnetz durchgängig ermöglicht. Auf dieser Basis wird die Lösung um wichtige Systemdienste erweitert. Diese Dienste implementieren Funktionen, die nur in der Kooperation mehrerer Komponenten erbracht werden können oder kapseln allgemeine Kommunikationsfunktionalität zur einfachen Wiederverwendung. Zwei für die Anwendung im Fahrzeug wichtige Systemdienste werden prototypisch dargestellt: Ein Service-Management ermöglicht die Verwaltung von Diensten in unterschiedlichen Zuständen, ein Security-Management bildet Security-Ziele auf die bestmögliche Kombination von implementierten Security-Protokollen der beteiligten Kommunikationspartner ab. Diese Systemdienste sind selbst skalierbar und lassen sich damit an das Konzept unterschiedlicher Ausprägungen der Kommunikationsmiddleware anpassen. Durch Leistungsmessungen an den im Rahmen dieser Arbeit entstandenen Prototypen wird gezeigt, dass die konzipierte Kommunikationsmiddleware für den Einsatz auf eingebetteten Systemen im Fahrzeug geeignet ist. Der Versuchsaufbau orientiert sich an typischen Anwendungsfällen für die Fahrzeugkommunikation und verwendet Automotive-qualifizierte, eingebettete Rechenplattformen. Insbesondere wird nachgewiesen, dass mit dem beschriebenen Konzept auch leistungsschwache Steuergeräte ins System eingebunden werden können. Die IP-basierte Kommunikationsmiddleware ist damit auf allen relevanten Steuergeräten im Fahrzeug durchgängig einsetzbar.In today's premium cars, up to 80 electronic control units communicate over up to six networking technologies. Additionally, vehicle communication opens to off-board: the car connects to the driver's smartphone and the Internet. The communication between different application domains within the vehicle builds on additional hardware components as application layer gateways to translate between the incompatible protocols. Thus, also for in-car communication, the trend goes towards networking over the Internet Protocol (IP) that has been developed for being independent of technologies and application domains. Besides the universal protocol at the network layer, an efficient development of a complex distributed system requires communication middleware. In-car communication makes special demands on the communication middleware. On the one hand, a variety of communication paradigms are used for in-car communication, such as signal-based and function-based communication. On the other hand, the communication partners differ considerably in terms of computing resources and complexity of the hosted applications. No existing IP-based middleware fulfils the identified requirements for in-car communication. The objective of this research is to design a middleware that is suitable for IP-based in-car communication. The presented solution provides multiple interoperable specifications of the middleware which resolves the conflict between different functional requirements on the one hand and the very heterogeneous communication partners on the other hand. Another fundamental part of the solution is the implementation of required communication paradigms. The function-based paradigm is implemented by simple remote procedure calls. The signal-based paradigm is implemented by a notification concept that allows for a more demand-oriented communication compared to today's practice. It is shown, how both communication paradigms can be implemented through a single mechanism that operates on dynamic or static data -- depending on the involved middleware specifications. A scalable marshalling considers the different requirements and performance levels of the participating electronic control units. Scalable specifications of the communication middleware enable seamless operations on restricted embedded and more powerful platforms. On this basis, the solution is enhanced with important system services. Such services implement functionality that can only be provided in cooperation of multiple components or that encapsulate general communication functionality for easy reuse. Two essential services are prototyped: a service management allows the management of services in different operational states. A security management matches security objectives in the best possible combination of implemented security protocols that two given communication partners have in common. These system services are designed to be scalable and can therefore be adapted to the concept of different specifications of the communication middleware. Performance measurements using the implemented prototypes show that the designed communication middleware is suitable for the application on embedded systems in the vehicle. The experimental set-up is based on typical use cases for in-car communication and uses automotive-qualified, embedded computing platforms. In particular, the set-up practically demonstrates that the concept also incorporates low-performance electronic control units into the system. The IP-based communication middleware enables communication between all applications in the IP-based in-car communication system
    corecore