
Secure In-Vehicle
Storage
José Sousa
Master Degree in Network and Information Systems Engineering
Computer Science Department
2022

Supervisor
Prof. Hugo Pacheco
Faculdade de Ciências da Universidade do Porto

Co-Supervisor
Fernando Alves
VORTEX-CoLab

Todas as correções determinadas

pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, / /

UNIVERSIDADE DO PORTO

MASTERS THESIS

Secure In-Vehicle Storage

Author:

José SOUSA

Supervisor:

Hugo PACHECO

Co-supervisor:

Fernando ALVES

A thesis submitted in fulfilment of the requirements

for the degree of MSc. Network and Information Systems Engineering

at the

Faculdade de Ciências da Universidade do Porto

Departamento de Ciência de Computadores

November 8, 2023

mailto:up201503443edu.fc.up.pt
mailto:hpacheco@fc.up.pt
mailto:fernando.alves@vortex-colab.com

Acknowledgements

I want to thank my supervisor, Professor Hugo Pacheco for this opportunity and all

the support given during this work.

I want to thank VORTEX-CoLab, mainly to Fernando Alves and Ali Shoker for the

opportunity to do this project for my final thesis and for having given the support, the

tools and the clarification of all the doubts for the development of the same.

I want to thank my family, specially my parents, for supporting me throughout my

academic life in every possible way and always believing in me.

I also want to thank all my friends and colleagues that support me during this step of

my life.

UNIVERSIDADE DO PORTO

Abstract

Faculdade de Ciências da Universidade do Porto

Departamento de Ciência de Computadores

MSc. Network and Information Systems Engineering

Secure In-Vehicle Storage

by José SOUSA

Vehicles nowadays are more technologically advanced than ever before due to recent

technologies that improve comfort and safety while operating the vehicle. Multiple micro-

controllers in the internal networks of the cars create a large quantity of data, mostly

diagnostic data, as a result of this expansion of the vehicle’s functions. As a result, there

is a need for systems that can support and analyze this quantity of data. The goal of

this dissertation project is to research and evaluate an actual vehicle dataset. Reverse

engineering the dataset, describing its system architecture, and identifying a thorough

description of the data that can be found in a contemporary vehicle are the goals of this

study and analysis. A solution that can store the data from this dataset in a centralized

logging platform and provide data security assurances like integrity and auditability is

intended. Thus, this paper provides a description of the system architecture, along with

an identification and in-depth description of the data that may be located in a vehicle, as

well as the identification and analysis techniques for this study of a dataset from a vehicle.

This paper also develops a system architecture and configures an immutable database that

can ensure the security guarantees of audibility and integrity of the stored data. A logging

storage solution is also offered.

mailto:up201503443edu.fc.up.pt

UNIVERSIDADE DO PORTO

Resumo

Faculdade de Ciências da Universidade do Porto

Departamento de Ciência de Computadores

Mestrado em Engenharia de Redes e Sistemas Informáticos

Armazenamento Seguro em Veı́culos

por José SOUSA

Nos dias de hoje, os veı́culos estão cada mais modernos em termos de tecnologia pois

apresentam novas funcionalidades aumentando o conforto e segurança na condução do

veiculo. Devido a esta evolução das funcionalidades no veiculo, vários micro-controladores

nas redes internas dos veı́culos produzem uma quantidade enorme de dados, principal-

mente dados de diagnostico e por isso surge a necessidade de haver sistemas capazes

de suportar e analisar esta quantidade de dados. Este projeto de dissertação tem como

o objetivo o estudo e analise de um dataset real proveniente de um veiculo. Esse estudo

e analise pretende-se fazer reverse engineering do dataset e apresentar a sua arquitetura do

sistema e identificação de uma descrição detalhada dos dados que podem ser encontrados

num veı́culo moderno. Pretende-se uma solução capaz de armazenar os dados deste da-

taset numa plataforma de logging centralizada com garantias de segurança dos dados, tais

como, integridade e auditabilidade. Assim este documento descreve os procedimentos

de identificação e analise a este estudo de um dataset proveniente de um veiculo apresen-

tando uma descrição da arquitetura do sistema, bem como, uma identificação e descrição

detalhada dos dados que podem ser encontrados num veiculo. Também, neste docu-

mento, é apresentada uma solução de armazenamento de logging desenvolvendo uma

arquitetura para o sistema, bem como a configuração de uma base de dados imutável

capaz de assegurar as garantias de segurança de integridade e audatibilidade dos dados

armazenados.

mailto:up201503443edu.fc.up.pt

Contents

Sworn Statement iii

Acknowledgements v

Abstract vii

Resumo ix

Contents xi

List of Figures xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Statement . 2
1.3 Contributions . 2
1.4 Document Structure . 2

2 Background 5
2.1 Automotive Context . 5

2.1.1 Internal Architeture . 5
2.1.2 Control Area Network (CAN) . 7
2.1.3 Local Interconnect Network (LIN) . 8
2.1.4 FlexRay . 8
2.1.5 Media Oriented Systems Transport (MOST) 9
2.1.6 Automotive Ethernet . 9

2.1.6.1 Ethernet 10BASE-T1S . 10
2.1.6.2 Ethernet 100BASE-T1 . 11

2.1.7 Eletronic Control Unit (ECU) . 11
2.1.7.1 Electronic Brake Control Module (EBCM) 12
2.1.7.2 Powertrain Control Module (PCM) 12
2.1.7.3 Body Control Module (BCM) 12

2.1.8 Mother ECU (MECU) . 13
2.1.9 Log Formats . 13

2.1.9.1 Diagnostic Log Trace (DLT) 13
2.1.9.2 DLT Message Format . 15

xi

xii SECURE IN-VEHICLE STORAGE

3 Related Work 17
3.1 Over The Air (OTA) Updates . 17

3.1.1 Uptane . 19
3.2 Automotive Intrusion Detection System . 21
3.3 Reverse Engineering . 22

4 Automotive Use Case 23
4.1 Architeture . 23

4.1.1 ECUs . 24
4.1.2 Logs . 24

4.1.2.1 DLT Logs . 26
4.2 Security Analysis . 30

4.2.1 Assumptions . 30
4.2.2 Attaker Capabilities . 30

5 Creating a Centralized In-Vehicle Data Store 33
5.1 Description . 33
5.2 Databases . 35

5.2.1 ImmuDB . 35
5.3 Implementation . 37

5.3.1 Payload Organization . 37
5.3.2 SQL Schema . 37
5.3.3 Database Configuration . 39

6 Evaluation 43
6.1 Experiments . 43

7 Conclusions and Future Work 45
7.1 Main difficulties . 46
7.2 Future Work . 46

Bibliography 49

List of Figures

2.1 The evolution of automotive architetures [4]. 5
2.2 Summary of different types of communication [17]. 11
2.3 Location of DLT protocol [22]. 14
2.4 Message format of DLT protocol[23]. 15

3.1 OTA system design [24]. 18
3.2 Uptane design [27]. 20
3.3 Anomaly-based in-vehicle IDS [30]. 21

4.1 Number of Apps/Ctxs in each ECU. 24
4.2 Number of connections on each ECU. 25
4.3 Aplication layer protocols in the dataset. 26
4.4 Number of logs per Bus channel. 28
4.5 Organization of vlans in the dataset. 29
4.6 Dataset architecture . 31

5.1 System architecture in a vehicle netowrk. 35
5.2 Payload organization process. 37
5.3 Schema of tables organization. 38

xiii

Chapter 1

Introduction

1.1 Motivation

The emphasis on software of modern vehicles has undergone a great evolution compared

to a few years ago, increasing the safety and comfort of driving. To this end, various

components in vehicles were introduced and improved over time, such as assisted driv-

ing, braking prediction in case of detecting an object or person in front of the vehicle,

autonomous parking and among others. For this to happen, several micro-controllers

and other technologies were introduced or updated in the vehicles to form an internal

network that collaborates focusing on software-centric analogy with modern computers.

However, with the increase of functionality in the vehicles, the number of micro con-

trollers in vehicles is also increasing. According to Christoph Hammerschmidt in Market

News, the number of micro controllers in vehicles is already more than one hundred and

fifty [1]. Also because of this growth of micro controllers, the amount of data generated

by these will also rise. According to Western Digital, with the autonomus driving get-

ting closer to appearing on vehicles, data generated in the vehicles can reach a size of

approximately one terabyte per year in the near future [2].

This observation is causing several problems in the automotive industry, forcing man-

ufacturers to revisit the internal architectures of the vehicles towards supporting a larger

number of micro-controllers and data size in the vehicles. This also enhances the impor-

tance of more complex software middleware to manage the growing infrastructure, and

the pertinence of security considerations inside a vehicle, especially on what concerns the

identification and appropriate handling of critical data [3].

1

2 SECURE IN-VEHICLE STORAGE

1.2 Thesis Statement

The main objective of this thesis is the detailed analysis of a real-world automotive use

case using a dataset from an actual vehicle. Following our understanding of the use case,

we will propose a tailored platform for logging the real-time data created by micro con-

trollers in similar settings. Our hope is that this platform will aid further analysis of the

vehicle’s logs, and facilitate the future reverse engineering of other automotive use cases.

Along the way, we will also discuss some details of the particular architecture of the ve-

hicle and look into the security vulnerabilities that it presents.

1.3 Contributions

In more detail, the main contributions in this thesis are:

• The reverse engineering of an automotive use case, through the analysis of a dataset

of logs;

• An analysis of the architecture of a modern vehicle, based on information extracted

from the logs. We identify important aspects such as data flow, communication,

roles, ecus, apps, etc;

• A detailed description of the kinds of data logs can be found in a modern vehicle,

including theyr types, structures and function;

• The proposal of a centralized logging platform for modern vehicles that are similar

to the one analyzed in the dataset;

• The implementation and configuration of a database, which ensures data integrity

and auditability and serves as the core component in our centralized logging plat-

form.

1.4 Document Structure

This thesis is organized in seven chapters, describing a solution for the secure storage of

data generated by micro-controllers present in today’s vehicles. This chapter introduced

some of the challenges that the increase of micro-controllers and data pose to current au-

tomotive architectures, as well as some problems that vehicles manufactures may face. To

1. INTRODUCTION 3

make this thesis self-contained, Chapter 2 provides a summary of all the concepts used

throughout this thesis, such as details of the vehicle architecture and the description of

the micro-controllers and data bound to that architecture. Chapter 3 presents some re-

lated work related to the security auditing of vehicular architectures, considering both

academic work and industrial developments by other authors. Chapter 4 provides a de-

tailed explanation of the selected real-world automotive use case. Chapter 5 presents the

design of our centralized secure storage solution. Chapter 6 discusses a preliminary anal-

ysis of the solution presented in the previous chapter. Chapter 7 concludes with some

final remaks and directions for future work.

Chapter 2

Background

2.1 Automotive Context

2.1.1 Internal Architeture

As mentioned in the introduction, at the time when the various electronic features were

being incorporated into vehicles, the internal network in a vehicle had a decentralized

architecture, that is, the various micro-controllers communicated with each other without

the need for a master micro-controller.

As we can see in architecture (A) from Figure 2.1, the vehicles presented a decen-

tralized architecture, where the various micro-controllers were scattered in a disorga-

nized way throughout the vehicle; this was mostly feasible because the amount of micro-

controllers and electronic functionalities was very reduced compared to today.

FIGURE 2.1: The evolution of automotive architetures [4].

5

6 SECURE IN-VEHICLE STORAGE

However, when other features started to appear in the vehicle, and with the increase

in the number of micro-controllers, the decentralized architectures in the vehicles started

to pose several problems, one of them being that the BUS channel was shared by all micro-

controllers. The concern was that the greater the number of micro-controllers in the ve-

hicle, the greater the number of data packets traveling through the network would be,

which could cause several congestions on the shared BUS channel. One of the solutions

would be to replace the BUS channel with one that supported a higher bandwidth and

speed than the traditional one, but the cost of manufacturing the vehicle would be more

expensive, which manufacturers try to avoid. Thus, manufacturers have introduced new

architectures in the vehicle. These architectures continued in a decentralized way but pre-

sented a better organization of the micro-controllers with the introduction of domains,

thus allowing the existence of internal sub-networks separated from each other in the

vehicle. The micro-controllers of each domain continue to use a shared communication

channel BUS but with less congestion. Some of these domains are:

• Powertrain: Manages the function of driving of a vehicle, including electric motor

control and battery management, engine control, transmission and steering control.

• Infotainment domain: Manages entertainment within the vehicle and exchanges

information between the vehicle and the outside world, including the head unit,

digital cockpit and telematics control module.

• Body domain: Manages comfort, convenience and lighting functions in the vehicle,

including the body control module, door module and headlight control module.

• Chassis Domain: Manages the brake control systems such as antilock brake system,

traction control system, and electronic stability control.

Looking at Figure 2.1 again, we can see in architecture (B) that the various micro-

controllers are organized by the different types of domains and these are connected to

each other through a gateway, like a standard router, so that the various domains can

communicate with other domains using various BUS communication channels such as

CAN, LIN, FlexRay, etc.

However, with technological developments growing more and more these days, the

amount and size of data will be increasing as there is the introduction of new features

2. BACKGROUND 7

such as self-driving, IoT, in-vehicle streaming services, etc. Thus, manufacturers are re-

developing architectures that better adapt to these new features. These new architec-

tures of the future will be centralized architectures, that is, assume the existence of a mas-

ter micro-controller called the Vehicle Computing Unit (VCU). This micro-controller will

have a higher computational power and memory capacity than normal micro-controllers

because it will not only be responsible as a gateway to the internal network but also be-

cause there are more features that require more computational calculations such as self-

driving. The VCU will be responsible for calculating these computations or heavier oper-

ations of these functionalities.

When analyzing Figure 2.1 again, architecture (C) is centralized, and organized by

several zones in the vehicle, with each zone being itself organized according to the various

micro-controllers of the different domains. These zones are linked through the VCU.

However, with the change in architectures, micro-controllers and the architetures are

not the only evolution to be noticed in the internal network of a vehicle.

2.1.2 Control Area Network (CAN)

At the beginning of the technological era in vehicles, electronic components communi-

cated with each other via CAN (Control Area Network). A CAN is a serial network tech-

nology that was originally designed by Bosch in early 80’s to support in-vehicle network-

ing for the automotive industry. The CAN is primarily used in embedded systems, like

micro-controllers and as its name implies, is a network technology that provides fast com-

munication among microcontrollers up to real-time requirements, eliminating the need

for the much more expensive and complex technology [5].

The CAN Bus is a two-wire, half duplex, high-speed network system, that is far su-

perior to conventional serial technologies such as RS232 in regards to functionality and

reliability and yet CAN Bus implementations are more cost effective [6].

While, for instance, TCP/IP is designed for the transport of large data amounts, CAN

Bus is designed for real-time requirements and with its 1 MBit/sec bandwith rate that

can easily beat a 100 MBit/sec TCP/IP connection when it comes to short reaction times.

The greatest advantage of Controller Area Network lies in the reduced amount of wiring

combined with an ingenious prevention of message collision, meaning no data will be lost

during message transmission [6].

8 SECURE IN-VEHICLE STORAGE

However, because of the bandwidth requirements of the automotive industry, the

CAN data link layer protocol needed to be improved. In 2011, Bosch started the CAN FD

development in close cooperation with vehicle makers and other CAN experts. The im-

proved protocol overcomes to CAN limits by transmiting data faster than with 1 Mbit/s

and the payload is now up to 64 byte long and not limited to 8 byte anymore [7].

2.1.3 Local Interconnect Network (LIN)

Also, another bus was developed for the automotive industy called the Local Interconnect

Network (LIN) bus. LIN was developed to create a standard for low-cost, low-end mul-

tiplexed communication in automotive networks. Though the Controller Area Network

(CAN) bus addresses the need for high-bandwidth, advanced error-handling networks,

the hardware and software costs of CAN implementation have become prohibitive for

lower performance devices such as power window and seat controllers. LIN provides

cost-efficient communication in applications where the bandwidth and versatility of CAN

are not required, thus modern automotive networks use a combination of LIN for low-cost

applications primarily in body electronics and CAN for mainstream powertrain and body

communications [8].

2.1.4 FlexRay

For automobiles to continue to improve safety, increase performance, reduce environmen-

tal impact, and enhance comfort, the speed, quantity and reliability of data communicated

between a vehicle’s electronic control units must increase. Advanced control and safety

systems combining multiple sensors, actuators and electronic control units are beginning

to require synchronization and performance past what the existing standard, Controller

Area Network (CAN), can provide. Coupled with growing bandwidth requirements with

today’s advanced vehicles utilize over five separate CAN buses, automotive engineers

are demanding a next-generation, embedded network. After years of partnership with

OEMs, tool suppliers, and end users, the FlexRay, a deterministic, fault-tolerant and high-

speed bus system standard has emerged as the in-vehicle communications bus to meet

these new challenges in the next generation of vehicles [9].

Adoption of a new networking standard in complex embedded designs like automo-

biles takes time. While FlexRay will be solving current high-end and future mainstream

2. BACKGROUND 9

in-vehicle network challenges, it will not displace the other two dominant in-vehicle stan-

dards, CAN, and LIN. In order to optimize cost and reduce transition challenges, the next

generation of automobiles will contain FlexRay for high-end applications, CAN for main-

stream powertrain communications and LIN for low-cost body electronics.

2.1.5 Media Oriented Systems Transport (MOST)

Another type of bus used in the vehicles is the media oriented systems transport (MOST)

bus. This bus was initially intended for implementation on optical fiber to support high

bit rates, but fiber and copper transport layers are currently defined and they are expen-

sive. MOST Bus provides a solution for automotive peripherals like radios, CD and DVD

players, GPS navigation systems, and infotainment ECUs [10].

MOST was optimized for the automotive sector but is also used in non-automotive

applications. It’s ideal for those that benefit from a daisy-chain or ring topology and

synchronous data communication to transport audio, video, and data signals on plastic

optical fiber [11].

2.1.6 Automotive Ethernet

One thing is common within all the newer technologies, which is their requirement for

bandwidth. Earlier there were very specific in-vehicle applications like body control,

chassis control, powertrain, which used to generate very less amount of data, just in

few kbps. But gradually, the need of higher bandwidth started realizing by the vehicle

manufacturers and OEMs, as the applications to support new age autonomous functions,

connectivity, ADAS systems, high end infotainment systems and vehicle electrification

requires high bandwidth of data [12].

The more sophisticated the system is, the higher will be the expected complexity of

the electrics/electronics systems. These high end systems generate, process and consume

large amounts of data in real-time. For example, a self-driving vehicle of level 4 and level

5 contains multiple LIDAR, RADAR and Camera modules which generate data in few

gbps and tbps. To process these huge amounts of data in real time with very low latency,

a reliable, high speed network is required and Automotive Ethernet is a right fit for this

purpose [12].

Some of the features and specifications of Automotive Ethernet are:

10 SECURE IN-VEHICLE STORAGE

• Switched Network: Automotive Ethernet is a point-to-point networking technol-

ogy, as opposed to bus technology, where one node or electronic device is connected

to another one. A switch is being implemented in the system to connect many nodes,

allowing several electronic control units to communicate with one another and rout-

ing traffic to multiple nodes within a network based on their physical addresses.

[13].

• Specific Standards: The automobile-specific ethernet standards are 100Base-T1 and

1000Base-T1, which were developed to satisfy the needs of vehicle networking. With

the use of audio video bridging, 100BASE-T1 permits the transmission of data (at

100 mbps) across unshielded single twisted-pair cable for linked vehicles, firmware/-

software, and calibration data (AVB) [13].

• Cost Efficient:Flexray and CAN, whose throughput is only 10 mbps, are not appro-

priate for automotive applications since they stream audio and video. Automotive

ethernet is significantly more cost-effective than other networking protocols, while

having a beginning base rate of 100 mbps. Compared to the conventional cabling

used for in-vehicle communication, the wiring utilized in automotive ethernet for

vehicles is far lighter and more effective. Manufacturers can save the weight and

connectivity expenses by up to 80% and 30%, respectively, by using light weight

wiring. [13].

• Networking Topology: Numerous topologies are employed in automobile tech-

nologies. One of the topologies that is frequently used in automotive networking

is point-to-point. The majority of automotive Ethernet applications use a star topol-

ogy, in which all nodes and electronic control units are connected to a single switch.

Star topology makes up the majority of the in-vehicle entertainment systems, which

are built on automotive ethernet, whereas ring topology is used in the vehicle’s

safety-critical applications. [13].

2.1.6.1 Ethernet 10BASE-T1S

IEEE defines Ethernet 10BASE-T1S with 802.3cg. Each node is connected to a single cable

using a multidrop architecture, with the S in 10BASE-T1S standing for short distance.

Switches are not necessary with multidrop topology, which results in fewer cables and

2. BACKGROUND 11

a lower overall cost. Deterministic transmission on a collision-free multidrop network is

the main objective of 10BASE-T1S. [14]

2.1.6.2 Ethernet 100BASE-T1

The 100BASE-T1 is a different variety of automobile ethernet that operates at 100 Mbps

over at least fifteen meters of communication distance using only a single unshielded

twisted-pair cable. Using the audio visual bridging (AVB) group of Ethernet protocols

over unshielded single twisted-pair cable, Ethernet 100BASE-T1 can enable the transfer

of audio, video, linked vehicle, firmware/software, and calibration data within vehicles.

The IEEE Time-Sensitive Networking Task Group established the AVB collection of stan-

dards, which have synchronized nodes, low and deterministic latency, and traffic filtering.

[15][16].

FIGURE 2.2: Summary of different types of communication [17].

2.1.7 Eletronic Control Unit (ECU)

An Eletronic Control Unit (ECU) was introduced by General Motors in the year 1978 and

is essentially an embedded system that is built on an automotive-grade microcontroller.

Along with automotive software and communication protocols, an ECU is able to control

the electrical systems and sub-systems in a vehicle like sensors and actuators. Some fea-

tures of an ECU in a vehicle are: systematic transfer of data, dependability and security,

12 SECURE IN-VEHICLE STORAGE

efficient data network, diagnostics, assistance in real-time decision making and improv-

ing quality of service [18].

The ECUs are available in 16-bit, 32-bit, and 64-bit versions, however 64-bit is now the

market category with the most rapid market growth. Markets & Markets predicts that

from 2018 to 2025, the automotive ECU market will expand at a compound yearly growth

rate of 5.77%. By 2025, the market for automotive ECUs is anticipated to reach $39.28

billion. [19]. In the next sub-sections we wil present some specific ECUs that already exist

in vehicles.

2.1.7.1 Electronic Brake Control Module (EBCM)

This electronic control unit is a smart brake module that offers the driver fully automated

control over various actuators. To determine when to apply and release the brakes, the

ECU regulates the actuators. This module can be applied to the following scenario: when

a collision appears inevitable and any potential risk of collision is detected via radar data

or any other data, the EBCM will send a signal to the brake function to automatically

apply the brakes in order to lessen the force of the collision. This lessens the likelihood of

accidents and helps the driver make quicker judgments, which can help prevent crashes

or lessen their damage [19].

2.1.7.2 Powertrain Control Module (PCM)

A PCM is crucial to a vehicle’s internal control of numerous subsystems. We must be

aware of PCM’s two primary subsystems before discussing it. The Transmission Control

Unit (TCU) and Engine Control Module are these subsystems (ECM).

By controlling the actuators on the vehicle’s internal combustion engine, the ECM

controls how well the vehicle performs. On the other hand, a TCU unit uses data from

the engine’s sensors to optimize the switching behavior of the transmission in response

to the driving situation at hand [19].

2.1.7.3 Body Control Module (BCM)

Even though each ECU operates separately, they still need to interact with one another.

BCM controls this communication, which takes place over the CAN bus. Although the

BCM is an ECU as well, it serves as a connection point for other ECUs. It is made up of a

processor that controls numerous bodily processes in a vehicle. The functionalities of the

2. BACKGROUND 13

output devices are controlled by the BCM unit based on the data it receives from various

input devices [19].

2.1.8 Mother ECU (MECU)

Another type of ECU is called a MECU. This ECU has greater resources (such as comput-

ing power, storage, RAM, etc.) than conventional ECUs. It is also referred to as a master

ECU or a domain controller in the literature. It offers interfaces to the gateway and fa-

cilitates communication between ECUs [20]. It has command over the designated bus

system. For instance, it may deactivate an ECU or permit partial bus operation in order to

conserve energy. ECUs are less trustworthy than MECUs and applications that must be

accessible during vehicle operation are consequently included into MECUs. Also, control-

ling the actions of its subordinate ECUs is another duty of this master ECU [21]. Besides

all these features, in this dissertation, we will use the advantage of having an MECU for

the implementation of a centralized database.

2.1.9 Log Formats

One of the advantages mentioned in relation to ECUs is the fact that they produce diag-

nostic data called Logs and may contain various information from the ECU itself or other

information from other ECUs. These logs can contain information such as timetamp, pay-

load, protocols, source and destination IPs, etc.

2.1.9.1 Diagnostic Log Trace (DLT)

The Diagnostic Log Trace protocol is one of the most popular in the automotive industry.

Typically, a communication channel bus cannot directly transport the data (Log Message)

sent by an application on the ECU. Prior to transmitting the message over the communi-

cation bus, the DLT module changes it into a standard message by adhering to a predeter-

mined format for message sequences that are prohibited by the DLT Protocol according to

the AUTOSAR standard. The DLT module gathers data from applications or other soft-

ware modules from the ECUs and adds metadata, as shown in Figure 2.3. The data can

then be transmitted to the communications bus [22].

The DLT protocol enables communication between external logging tools and the DLT

module so that filters can be applied to received log entries based on severity level (fatal

14 SECURE IN-VEHICLE STORAGE

FIGURE 2.3: Location of DLT protocol [22].

error, information or warning). In order to prevent having to configure DLT again, exter-

nal logging tools can instruct an application to only generate logs that match a specific

filter level at runtime, modify the communication bus on which messages are to be trans-

mitted, or keep filter level configuration in non-volatile memory [22].

2. BACKGROUND 15

2.1.9.2 DLT Message Format

FIGURE 2.4: Message format of DLT protocol[23].

Looking at Figure 2.4 in detail, the message is divided into three parts:

• Standard Header: It has the following fields in its 16-byte header: a header type that

comprises general information about the DLT message and specifies whether or not

certain standard header fields are included as well as whether the extended header

is being utilized. a message counter with an 8-bit capacity that keeps track of the

DLT messages the DLT module has received. The length, which tells how long the

message is. Additionally, it may optionally include an ECU ID to help identify the

ECU that issued the message: It may include a Session ID, which is used to pinpoint

the ECU’s transmitter of a log or trace message. Additionally, a Timestamp that is

used to add timing details about when the DLT message was created may be present

[23].

16 SECURE IN-VEHICLE STORAGE

• Extended Header: The header is 9 bytes long and has the following fields: Message

Info, which specifies whether the message is verbose or not, and type of the mes-

sage, which can be one of four different types: Log, Trace, Network, or Control. If

the message type is a log message, for example, this field will provide various log

message types, such as fatal, error, info, warning, debug, or verbose. The Number of

Arguments field, which lists the number of arguments in the DLT message’s payload,

is another one in this header. The application on the ECU that produced the DLT

message is likewise identified by an Application ID. The Context ID is a user-defined

ID that logically groups DLT messages produced by an application on the ECU [23].

• Payload:This includes control information in addition to the parameters that are

logged or tracked. Meta-data that identifies the type of information in the payload,

such as boolean, Raw, String, Variable, Fixed point, etc., will be present in verbose

mode. However, in non verbose mode, this data must be created as meta-data rather

than being broadcast with the payload.

Chapter 3

Related Work

One of the most discussed topics in this new era of automotive is computer security

present in vehicles, because with the increase of digital features to be incorporated in the

vehicle, sometimes security is one of the last features to be implemented in these systems.

With the increase, in recent years, of computer attacks to general software architectures,

the concern for vehicular safety and security is simultaneously increasing.

In this chapter, we will mention and discuss scientific work and industrial develop-

ments primarily associated with cybersecurity which are related to the automotive context

described in Chapter 2, such as how updates work in modern vehicles through the Over

The Air technology. Therefore, one of the solutions that help mitigate cyberattacks on

vehicles is the introduction of intrusion detection systems in vehicles.

3.1 Over The Air (OTA) Updates

As vehicle functionality increases, different software and firmware must be frequently

kept up to date. By updating audio capabilities, optimizing user interfaces for stream-

ing services or other apps and new features, infotainment systems become more usable.

Additionally, keeping the firmware updated is crucial for ensuring the effective and safe

operation of a vehicle. System improvements or corrections for brakes, advanced driver

assistance systems (ADAS), chassis systems, and powertrain systems are common in au-

tomotive upgrades [25]. Approximately ten years ago, automobiles had to be serviced

at a shop in order to perform these upgrades. The updates were then installed through

the OBD-II interface. However, as automotive technology has advanced, most of these

updates are now made Over The Air (OTA).

17

18 SECURE IN-VEHICLE STORAGE

FIGURE 3.1: OTA system design [24].

Updates over the internet it was announced at the same time that the 3G mobile phone

technology was, therefore it is not a brand-new invention. The wireless distribution of

new software, firmware, or other data to mobile devices is known as an Over-The-Air

(OTA) update. [25].

A variety of threats and attacks, including spoofing, tampering, repudiation, privilege

escalation, and information leakage, can affect unsecured vehicle OTA updates. Software

updates can be signed digitally after they have been encrypted, used with a signed certifi-

cate containing the public key of the entity requesting the update, and secured with TLS

public key authentication (signed by a reputable Certificate Authority). Clients can also

perform hostname verification to make sure they are connecting to a trusted server.

3. RELATED WORK 19

Only distributing updates to approved devices, tamper-proof logging of all signifi-

cant events, initializing SOTA/FOTA updates with a secure boot mechanism, and soft-

ware update systems that ”fail gracefully” in the event of a denial-of-service (DoS) attack

are other mitigation approaches. utilizing anti-malware measures including in-memory

security and whitelists. Likewise, make sure that all shared resources are free of sensi-

tive information and keys that were momentarily stored during software updates using

compliant SOTA/FOTA software update systems. [24].

Utilizing Hardware Security Modules is another approach to enhancing data security

on the ECUs (HSMs). These HSMs secure SOTA/FOTA upgrades, offer secure boot and

secure debugging options, and collaborate with additional security features like MACsec,

IPsec, and TLS embedded protocol engines to secure network traffic in automobiles. But

manufacturers don’t want to raise prices when adding new, pricey technology to auto-

mobiles because these HSMs are typically highly expensive to integrate into a vehicle.

[24].

3.1.1 Uptane

The use of Uptane, which was developed in 2016, was one of the alternatives suggested

to the manufacturers. Uptane is a framework for open and secure software updates that

safeguards OTA software provided to automotive ECUs. The system guards against hos-

tile actors who might infiltrate networks and servers used for signing and distributing

updates. Utilizing a ”defense-in-depth” strategy that relies on numerous layers of secu-

rity procedures rather than a single security device, Uptane handles automobile security

compromises. Even if hackers have stolen one or more particular software update keys,

Uptane makes it very challenging for them to implant malware on vehicles maintained

by OEMs. Attackers must compromise a certain threshold of keys in order to implant

malware since a certain minimum number of keys is needed to sign metadata [26].

Some examples of the attacks that Uptane prevents are: Arbitrary Software Attack

in which an attacker installs arbitrary software on an ECU thereby taking control of the

device; Eavesdrop Attack in which an attacker reads unencrypted software updates sent

from the repository to the vehicle; Partial Bundle Installation Attack, this is, an attacker

causes software updates to be installed on only a subset of ECUs specified for software

updates; Rollback Attack is an attack where the hacker installs old obsolete software on

ECUs instead of up-to-date software [27].

20 SECURE IN-VEHICLE STORAGE

Uptane requires the automaker to setup two repositories, a director repository and an

image repository, and splits signing responsibility between online and offline keys.

The Image Repository includes signed metadata about binary images that can be in-

stalled. To make sure that no software used by the vehicle is likely to have been modified

with as a result of key breach, the image repository metadata is signed using offline keys.

The image repository, which exposes a public API to make these images and their meta-

data available to automobiles, allows the automaker and authorized vendors to contribute

photos and the metadata that goes with them. The director repository receives the vehi-

cles ECU configuration information, checks its inventory database, and directs the vehicle

as to which images should be installed by producing signed metadata upon request [27].

FIGURE 3.2: Uptane design [27].

The Director Repository uses online keys to sign all of its metadata. An automaker

may provide both customization and security for the ECUs in their vehicles and safely and

securely update them by deploying both repositories and using both online and offline

metadata signing procedures.

The fact that the vehicle’s ECUs offer a range of computing and cryptographic ca-

pabilities is another factor taken into account by Uptane. In order to check the image

and director repository metadata, the ECUs can use one of two verification strategies:

complete verification. Prior to starting any software package installation, the ECU must

successfully complete the verification [27].

Even OTA and Uptane are technologies and frameworks that are essential for an archi-

tecture in vehicles for the management, operation and security of updates to the firmware

of the different ECUs, in this dissertation project, the information and security of the up-

dates may be present in the diagnostic logs of the vehicles.

3. RELATED WORK 21

3.2 Automotive Intrusion Detection System

Vehicle hacks are a pressing concern nowadays, thus it’s critical to identify them as soon

as possible so that appropriate defensive security measures may be taken. A method for

achieving this goal is known as an intrusion detection system (IDS), which is a system

that scans network traffic for suspicious activity and sends out notifications when such

activity is found. [28].

There are two types of IDS: a signature-based system monitors the packets that are

traversing the network, it compares these packets to the database and see if is a known

attack or virus. On other hand, the anomaly-based system can alert the user to suspicious

behavior that is unknown [29].

Manufacturers are adopting several forms of in-vehicle IDS in a variety of vehicles

nowadays, based on the architecture’s design and other characteristics. For instance, Sum-

itomo Electric Industries Ltd. is creating an in-vehicle anomaly detection system (IDS)

with three monitoring levels that are differentiated based on the components of the in-

vehicle network as shown in Figure 3.3.At higher levels, the system monitors fragmented

subjects, making it simpler to identify the attacked subject and, as a consequence, to create

specialized countermeasures. [30].

Therefore, if no other monitoring system is utilized, it is challenging for a high-level

monitoring system to monitor the complete in-vehicle network in an on-board environ-

ment, which is subject to memory capacity and CPU performance limits. The technology

FIGURE 3.3: Anomaly-based in-vehicle IDS [30].

22 SECURE IN-VEHICLE STORAGE

from Sumitomo Electric applies a low-level approach to monitor the complete in-vehicle

network by combining the three monitoring levels indicated above [30].

In this dissertation project, the implementing a centralized logging platform, where

a dedicated ECU stores the information of logs from the various information about the

ECUs and the network and analyzes the data, is another solution to the issue of ECUs

having very low computational power and thus not being able to monitor the network

and can be used like an Automotive IDS.

3.3 Reverse Engineering

Another way to promote new features and solutions to problems in the automotive is

through the use of reverse engineering which is process in which software, machines,

aircraft, architectural structures and other products are deconstructed to extract design

information from them [31].

Automotive reverse engineering it is very difficult to execute because most of the data

is proprietary to the companies and requires some additional tools to be able to obtain the

data on the architectures or on the ECUs in the vehicles. However, researchers use reverse

engineering in a vehicle to obtain information about the architecture, about how the ECUs

are organized in the network and how the communication between them works. Also an

investigator called Thomas Huybrechts has reported the use of reverse engineering and

other tecnologies such as machine learning to automatically extract data from the CAN

Bus to analyse the driver behaviour or the health of the vehicle. Acording to him, doing

reverse engineering of traffic on CAN Bus is really a time consuming task that requires a

lot knowledge of the inner workings of the vehicle and its different subsystems. Based on

this report by Thomas Huybrechts, in this dissertation project we will address something

similar, which is the use of reverse engineering through automatic scripts to extract and

analyze data from vehicle networks [32].

In this dissertation we will use reverse engineering to obtain and understand the archi-

tecture and how the ECUs are communicating with each other on the in-vehicle network

using a dataset from a vehicle and thus implement our proposed solution.

Chapter 4

Automotive Use Case

This chapter presents and discusses the use case that was used for this dissertation, based

on what we saw in the previous chapters. In this section, we will list the challenges that

we have faced along the way, as well as the insights that we have gained from this case

study, including what we have discovered about the architecture of the dataset. In another

section, we will discuss some security assumptions and security vulnerabilities that are

latent and/or relevant in the context of this architecture.

4.1 Architeture

Real data, emerging from a real automobiles, had to be analyzed in order to comprehend

how the concrete architecture and ECUs are laid down in a modern vehicle. The majority

of this data belongs to the businesses that make vehicles and ECUs, so getting accurate

data wasn’t simple. However, the company VORTEX-CoLab donated a dataset to enable

its usage as this dissertation case study.

To understand how the architecture of the vehicle’s internal network and how the

ECUs are organized in the vehicle network, we had to reverse engineer the dataset that

VORTEX-CoLab provided. For this, as the dataset was formatted in a PCAP file, we ran a

first analysis through the WireShark tool which allowed us to have an simple overview of

the structure of the logs and which information was more visible. After this first analysis,

we started by creating scripts using the Python programming language to better automate

the retrieval of data from this dataset.

23

24 SECURE IN-VEHICLE STORAGE

4.1.1 ECUs

In this dataset it was not possible to find information about the architecture and compo-

sition of the system of each ECU, but it was possible to have a perception of how many

ECUs there are in the dataset, which are in total about eleven ECUs. Of these eleven

ECUs, seven have ID and are the following: BMTR, WAVS, WAVA, WAVM, WAVG and

BMT. Unfortunately it is not possible to know what was the function in the network of

each ECU.

It was also possible to have a perception of how many applications/programs(Apps)

and application contexts/functions(Ctxs) exist in each ECU. This precept is shown in the

following Figure 4.1.

FIGURE 4.1: Number of Apps/Ctxs in each ECU.

In addition to having applications in the repetitive ECUs, in this dataset there are

communications between the different ECUs. In the following Figure 4.2 we can see that

in addition to the communications between the various ECUs identified by the DLT logs,

there are other micro-controllers that do not have identification but are present in the

network.

4.1.2 Logs

However, another logs were provided by VORTEX-CoLab that contains DLT data regard-

ing the ECU that was analyzed. This logs have information about programs and their

4. AUTOMOTIVE USE CASE 25

FIGURE 4.2: Number of connections on each ECU.

respective functions to be performed within an ECU. However, this logs were not an-

alyzed in detail because specific tools were needed, which we were not able to obtain

because the tools are owned by the manufacturing companies and they are not available

to the community. There was still an attempt to reverse engineer it using Python libraries

but without success as most of these libraries did not have updated documentation or

support for this DLT format.

Thus, in the DLT logs we can see that there are several fields that contain information

about what type of log message is being transmitted. This information can vary depend-

ing on whether the information is about an application being tested within the ECU or

whether it is information about the transport channel the log is being transported to.

Through our scripts, regarding the logs, we can observe that there is a variety of ap-

plication protocols in this dataset, as shown in the Figure 4.3 in this dataset we have DLT,

SomeIP and Atuosar Network Management application layer protocols. Also, there are

others such DHCP and DNS protocols in the aplication layer but we did not analyzed in

deep because the information on these were not so relevant. However most of the logs in

this dataset used DLT protocol and we then decided to analyze these DLT logs in more

detail as they are the logs that present the most information about the ECUs.

26 SECURE IN-VEHICLE STORAGE

FIGURE 4.3: Aplication layer protocols in the dataset.

4.1.2.1 DLT Logs

As mentioned in Chapter 2, the DLT protocol follows a specific format of the AUTOSAR

standard in relation to transmitted messages. This message is divided into three parts,

the Stander Header and the Extender Header with information regarding the ECU, appli-

cation/program, function/process that generated the log, what type of message the log

presents. These logs can be of several levels such as:

• Fatal: These logs are consired as fatal and they are a unrecoverable error. However,

it is rare to occured on systems and can mean, for example, a corrupted boot envi-

ronment, a hardware component that is vital for system startup fails or is missing or

just a critical application, service or other software component exited unexpectedly;

• Error: This errors denote conditions that will cause the system to stop working cor-

rectly but that might be recoverable. Some examples are: a missing or failing non-

vital services, applications or other software components, hardware on which an

application depends is inaccessible or a network connection that is required for cor-

rect functionality is failing;

• Warning: These types opf messages appear when something that is concerning but

not causing the operation to abort. The condition might become a problem in the

future resulting in an error, or might not. Runtime situations that are undesirable,

4. AUTOMOTIVE USE CASE 27

unexpected and potentially lead to an error or cause application oddities, but ev-

erything still under control. Automatic recovery from the situation exists and the

application can continue executing;

• Info: Should give an overview of major state changes providing high level context

for understanding any warnings or errors that also occur. It can be used on runtime

events that are normal but somehow important;

• Debug: It is has a level of detailed, diagnostically helpful, information for program-

mers, normally to use only when debugging a program. This should only be used

for development and testing and disabled for production systems;

• Verbose: Even more fine-grained information than DEBUG like information about

arrays or memory segments or information about loops and iterations.

Amount of log types
ECU ID Fatal Error Warning Info Debug Verbose
BMTR 0 347 1344 344731 1060 489175
WAVS 0 0 0 53 0 0
WAVA 0 44 175 2237 0 0
WAVM 0 0 0 0 0 0
WAVG 0 0 0 0 0 0
BMT 0 0 0 0 0 0

TABLE 4.1: Types of log messages in each ECU.

As we can see in Table 4.1, most of the Log Messages of type Info come from the

ECU called BMTR which can have a lot information depending how many and what

applications are being performed in this ECU. It is also worth mentioning that some ECUs

such as WAVM, WAVG and BMT did not produce any type of Log Message Type.

Another analysis was performed to see if there was any information about the comu-

nication bus which can be identified by the DLT NETWORK MESSAGE type in the DLT

logs. This type is not present in all DLT log messages and appear only in messages that

need to transmit some kind of network syncronization or check status of the network. As

we see in the Figure 4.4 the only bus communication used is Automotive Ethernet, which

can reveal that this vehicle is not old, in fact modern vehicles are starting using automo-

tive ethernet. It should also be noted that there are other communications that do not use

a bus channel on the network but a communication channel of the ECU itself called IPC

28 SECURE IN-VEHICLE STORAGE

FIGURE 4.4: Number of logs per Bus channel.

(Inter-Process Communication) which refers to the communications of different applica-

tions to communicate with others on the same ECU.

Through this dataset, we also hoped that it would be possible to observe updates to

the firmware of the different ECUs, but after fully analyzing this dataset of PCAP logs, it

was not possible to find any evidence of the existence of updates to firmware or specific

software for the ECUs.

However, we not only analyzed the DLT logs of this dataset but also analyzed other in-

formation present in this dataset in relation to the vehicle’s internal network. We observed

that communications between ECUs were carried out through the use of IP addresses and

more precisely the use of ports to access certain applications/programs that were running

within each ECU.

Regarding the analysis of logs with other protocols in this dataset, the SOME/IP pro-

tocol was the second protocol that noticed the most interest because in relation to the

occurrences in this dataset it was the second type of log that appeared more often. Thus,

a more detailed analysis was made about it to see if it would be possible to have more

information about the architecture of the vehicle’s network.

4. AUTOMOTIVE USE CASE 29

FIGURE 4.5: Organization of vlans in the dataset.

Therefore, at the end of the dataset analysis, it was concluded that the various ECUs

are distributed by several subnetworks independent of each other through the use of

VLANs. It was necessary to understand if these ECUs were connected to a gateway so

that ECUs from one VLAN could communicate with other ECUs from a different VLAN.

Thus, by noting this observation, we started to suppose that the architecture of this vehicle

was organized by domains in which there were several domains in which each domain

was associated with a different VLAN and all VLANs were connected to a single ECU

that would serve as a gateway for the network, as shown in the Figure 4.5.

So, concluding with all the analyzes made to the dataset through reverse engineering,

we arrived at a system architecture that can be seen in the following Figure 4.6. This

architecture shows the various communications of the ECUs, as well as their IP addresses

and respective ports. We can see that this architecture shows the various ECUs, some

with ID others without ID because the ECUs without ID were obtained by SOMEIP logs

in which the only field that identified them different from others was their IP.

30 SECURE IN-VEHICLE STORAGE

4.2 Security Analysis

4.2.1 Assumptions

Now we will move on to an analysis of the security level present in this dataset. Through

this dataset it was also possible to verify that the existence of security in terms of com-

munications, logs and ECUs was not verified. Another point that can be observed was

the lack of security in communications between ECUs, so if there is no security in terms

of communications, several attacks can occur in these systems inside the vehicle network.

This lack of security happens because the architectures and networks of the vehicles are

closed systems in which there is no interaction with other networks outside the vehicle.

However, due to the increase in the introduction of new features in vehicles, these systems

begin to relate to other networks and devices outside the vehicle.

4.2.2 Attaker Capabilities

Some attacks that can happen on the vehicle’s network based in this dataset and if there

is no security to prevent it are the following:

• Eavesdropping: In this passive form of attack, the attacker listens to the communi-

cation without the systyem being aware of it. The confidentiality of the transmitted

messages are compromised and using the collected information of the system co-

munication, the attacker can compromise the security of the vehicle;

• Denial of Service (DoS) The DoS attacks comprise a group of attacks that target

network service availability. The attackers’ primary objective lies in disrupting the

means of communication and disturbing normal services such that they are not

available. The attacker intentionally floods the control channel with a large vol-

ume of messages so that the ECUs cannot handle such a huge amount of messages,

resulting in network disturbances;

• Message Tampering Attack The attacker launches this attack to modify, delete or

alter a specific part of the message to fulfill its malicious intentions;

• Drop-Request Attack: The attacker blocks the network traffic outside or inside the

vehicle to prevent an ECU from receiving any updates;

4. AUTOMOTIVE USE CASE 31

FIGURE 4.6: Dataset architecture

32 SECURE IN-VEHICLE STORAGE

• Partial Installation Attack: The attacker my cause some ECUs to not install the

latest updates. Attackers can do this by dropping traffic of these ECUs. However,

sometimes this attack may happen accidentally, such as if updates are interrupted

due to running out of power;

• Software Attack: Attackers can cause an ECU to install software of the attacker’s

choosing. This means that the attacker can arbitrarily modify the vehicle’s perfor-

mance. They overwrite the software on an ECU with malicious software.

Thus, due to the lack of security features in this dataset there is the need to find so-

lutions that help to mitigate these attacks. One of the simplest solutions is to implement

an IDS to detect these attacks in near real time by inspecting possible malicious logs and

monitoring certain behaviors on the vehicle’s internal network. One of the motivations

of this thesis is precisely to develop an automotive logging framework, which could sim-

plify the further analysis necessary to implement IDS-like systems, and help mitigating

attacks and reinforcing security in vehicle networks.

Chapter 5

Creating a Centralized In-Vehicle

Data Store

5.1 Description

The increasing amount of ECUs and the greatly increasing data size pose many unre-

solved challenges to modern vehicles, such as cost and safety. In particular, as already

mentioned in Chapter 2, an ECU requires storage and security capabilities to keep critical

data safe, such as software/firmware, backups, configurations, logs, software dependen-

cies from other ECUs, etc. Therefore, there are two paths that the industry can choose

between at this time:

• Expensive Vehicles: As there are more and more ECUs in the vehicle, it will cost

more and reduce competitiveness in the market. So, for example, if the ECUs have

two storage modules (A/B), instead of a single module (A), this allows that if the

software or firmware that is stored in one of the modules fails to boot the ECU, the

second module will load a backup of a version of software or firmware that works

on that ECU of the second storage module the existing ECU. This solution solves

several challenges regarding data security and the ECUs themselves but will cost

more than a simple ECU with only one storage module.

• Unsafe Vehicles: As vehicle manufacturers do not want to increase prices in vehi-

cles they tend to reduce the capabilities of ECUs, and then the costs of the ECUs is

less, leading to various security threats. Therefore, if an ECU only has a single mod-

ule, and with the data size increasing, the module will reach its maximum memory

33

34 SECURE IN-VEHICLE STORAGE

capacity, leading to loss of information, such as logs, before being analyzed. An-

other problem with the existence of a single storage module is the fact that if one of

the software/firmware fails in the ECU boot sequence, it will not have the backup

module, causing problems and even the ECU not working.

Thus, as shown in Figure 5.1, the approach that is proposed and presented in this

thesis, to improve the solution to the problem mentioned at the beginning of this section,

is the creation of a Vehicle Secure Data Store (VSDS) in the vehicle, in which there is

a dedicated ECU with memory capacity and computational power greater than normal,

with the responsibility for example for storing software/firmware backups and diagnostic

logs of the remaining ECUs on the vehicles network, so that the remaining ECUs on the

network will be able to securely access this master ECU to obtain data, such as a version

of a software/firmware that has been updated and failed for some reason. This master

ECU will also have the function of storing all the Logs that were generated by the ECUs

on the network, thus allowing, if later on, the manufacturers could analyze these Logs

to fix errors or damages in the ECUs themselves or specific software, thus evolving the

characteristics of these devices. Some advantages of this system are:

• Cost Reduction: Reduces the need for the number of ECUs with two storage mod-

ules, as the low cost of these ECUs is not necessary and the security elements are

not crucial;

• Safety: Store useful data that used to be deleted, eg. old backups and logs for

analysis and diagnosis;

• Efficiency: Store system level settings in an accessible location instead of redun-

dancy on each ECU;

• Security: Leveraging VSDS security features to strengthen data security.

	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Thesis Statement
	1.3 Contributions
	1.4 Document Structure

	2 Background
	2.1 Automotive Context
	2.1.1 Internal Architeture
	2.1.2 Control Area Network (CAN)
	2.1.3 Local Interconnect Network (LIN)
	2.1.4 FlexRay
	2.1.5 Media Oriented Systems Transport (MOST)
	2.1.6 Automotive Ethernet
	2.1.6.1 Ethernet 10BASE-T1S
	2.1.6.2 Ethernet 100BASE-T1

	2.1.7 Eletronic Control Unit (ECU)
	2.1.7.1 Electronic Brake Control Module (EBCM)
	2.1.7.2 Powertrain Control Module (PCM)
	2.1.7.3 Body Control Module (BCM)

	2.1.8 Mother ECU (MECU)
	2.1.9 Log Formats
	2.1.9.1 Diagnostic Log Trace (DLT)
	2.1.9.2 DLT Message Format

	3 Related Work
	3.1 Over The Air (OTA) Updates
	3.1.1 Uptane

	3.2 Automotive Intrusion Detection System
	3.3 Reverse Engineering

	4 Automotive Use Case
	4.1 Architeture
	4.1.1 ECUs
	4.1.2 Logs
	4.1.2.1 DLT Logs

	4.2 Security Analysis
	4.2.1 Assumptions
	4.2.2 Attaker Capabilities

	5 Creating a Centralized In-Vehicle Data Store
	5.1 Description

