7,165 research outputs found

    Product assurance technology for custom LSI/VLSI electronics

    Get PDF
    The technology for obtaining custom integrated circuits from CMOS-bulk silicon foundries using a universal set of layout rules is presented. The technical efforts were guided by the requirement to develop a 3 micron CMOS test chip for the Combined Release and Radiation Effects Satellite (CRRES). This chip contains both analog and digital circuits. The development employed all the elements required to obtain custom circuits from silicon foundries, including circuit design, foundry interfacing, circuit test, and circuit qualification

    Testability enhancement of a basic set of CMOS cells

    Get PDF
    Testing should be evaluated as the ability of the test patterns to cover realistic faults, and high quality IC products demand high quality testing. We use a test strategy based on physical design for testability (to discover both open and short faults, which are difficult or even impossible to detect). Consequentially, layout level design for testability (LLDFT) rules have been developed, which prevent the faults, or at least reduce the chance of their appearing. The main purpose of this work is to apply a practical set of LLDFT rules to the library cells designed by the Centre Nacional de Microelectrònica (CNM) and obtain a highly testable cell library. The main results of the application of the LLDFT rules (area overheads and performance degradation) are summarized and the results are significant since IC design is highly repetitive; a small effort to improve cell layout can bring about great improvement in design

    An Extended CMOS ISFET Model Incorporating the Physical Design Geometry and the Effects on Performance and Offset Variation

    No full text
    This paper presents an extended model for the CMOS-based ion-sensitive field-effect transistor, incorporating design parameters associated with the physical geometry of the device. This can, for the first time, provide a good match between calculated and measured characteristics by taking into account the effects of nonidealities such as threshold voltage variation and sensor noise. The model is evaluated through a number of devices with varying design parameters (chemical sensing area and MOSFET dimensions) fabricated in a commercially available 0.35-Âľm CMOS technology. Threshold voltage, subthreshold slope, chemical sensitivity, drift, and noise were measured and compared with the simulated results. The first- and second-order effects are analyzed in detail, and it is shown that the sensors' performance was in agreement with the proposed model

    Integrating 'atomistic', intrinsic parameter fluctuations into compact model circuit analysis

    Get PDF
    MOSFET parameter fluctuations, resulting from the 'atomistic' granular nature of matter, are predicted to be a critical roadblock to the scaling of devices in future electronic systems. A methodology is presented which allows compact model based circuit analysis tools to exploit the results of 'atomistic' device simulation, allowing investigation of the effects of such fluctuations on circuits and systems. The methodology is applied to a CMOS inverter, ring oscillator, and analogue NMOS current mirror as simple initial examples of its efficacy

    End-of-fabrication CMOS process monitor

    Get PDF
    A set of test 'modules' for verifying the quality of a complementary metal oxide semiconductor (CMOS) process at the end of the wafer fabrication is documented. By electrical testing of specific structures, over thirty parameters are collected characterizing interconnects, dielectrics, contacts, transistors, and inverters. Each test module contains a specification of its purpose, the layout of the test structure, the test procedures, the data reduction algorithms, and exemplary results obtained from 3-, 2-, or 1.6-micrometer CMOS/bulk processes. The document is intended to establish standard process qualification procedures for Application Specific Integrated Circuits (ASIC's)

    Product assurance technology for procuring reliable, radiation-hard, custom LSI/VLSI electronics

    Get PDF
    Advanced measurement methods using microelectronic test chips are described. These chips are intended to be used in acquiring the data needed to qualify Application Specific Integrated Circuits (ASIC's) for space use. Efforts were focused on developing the technology for obtaining custom IC's from CMOS/bulk silicon foundries. A series of test chips were developed: a parametric test strip, a fault chip, a set of reliability chips, and the CRRES (Combined Release and Radiation Effects Satellite) chip, a test circuit for monitoring space radiation effects. The technical accomplishments of the effort include: (1) development of a fault chip that contains a set of test structures used to evaluate the density of various process-induced defects; (2) development of new test structures and testing techniques for measuring gate-oxide capacitance, gate-overlap capacitance, and propagation delay; (3) development of a set of reliability chips that are used to evaluate failure mechanisms in CMOS/bulk: interconnect and contact electromigration and time-dependent dielectric breakdown; (4) development of MOSFET parameter extraction procedures for evaluating subthreshold characteristics; (5) evaluation of test chips and test strips on the second CRRES wafer run; (6) two dedicated fabrication runs for the CRRES chip flight parts; and (7) publication of two papers: one on the split-cross bridge resistor and another on asymmetrical SRAM (static random access memory) cells for single-event upset analysis

    LC-VCO design optimization methodology based on the gm/ID ratio for nanometer CMOS technologies

    Get PDF
    In this paper, an LC voltage-controlled oscillator (LC-VCO) design optimization methodology based on the gm/ID technique and on the exploration of all inversion regions of the MOS transistor (MOST) is presented. An in-depth study of the compromises between phase noise and current consumption permits optimization of the design for given specifications. Semiempirical models of MOSTs and inductors, obtained by simulation, jointly with analytical phase noise models, allow to get a design space map where the design tradeoffs are easily identified. Four LC-VCO designs in different inversion regions in a 90-nm CMOS process are obtained with the proposed methodology and verified with electrical simulations. Finally, the implementation and measurements are presented for a 2.4-GHz VCO operating in moderate inversion. The designed VCO draws 440 ÎźA from a 1.2-V power supply and presents a phase noise of -106.2 dBc/Hz at 400 kHz from the carrier
    • …
    corecore