379 research outputs found

    Bridging spatiotemporal scales in biomechanical models for living tissues : from the contracting Esophagus to cardiac growth

    Get PDF
    Appropriate functioning of our body is determined by the mechanical behavior of our organs. An improved understanding of the biomechanical functioning of the soft tissues making up these organs is therefore crucial for the choice for, and development of, efficient clinical treatment strategies focused on patient-specific pathophysiology. This doctoral dissertation describes the passive and active biomechanical behavior of gastrointestinal and cardiovascular tissue, both in the short and long term, through computer models that bridge the cell, tissue and organ scale. Using histological characterization, mechanical testing and medical imaging techniques, virtual esophagus and heart models are developed that simulate the patient-specific biomechanical organ behavior as accurately as possible. In addition to the diagnostic value of these models, the developed modeling technology also allows us to predict the acute and chronic effect of various treatment techniques, through e.g. drugs, surgery and/or medical equipment. Consequently, this dissertation offers insights that will have an unmistakable impact on the personalized medicine of the future.Het correct functioneren van ons lichaam wordt bepaald door het mechanisch gedrag van onze organen. Een verbeterd inzicht in het biomechanisch functioneren van deze zachte weefsels is daarom van cruciale waarde voor de keuze voor, en ontwikkeling van, efficiënte klinische behandelingsstrategieën gefocust op de patiënt-specifieke pathofysiologie. Deze doctoraatsthesis brengt het passieve en actieve biomechanisch gedrag van gastro-intestinaal en cardiovasculair weefsel, zowel op korte als lange termijn, in kaart via computermodellen die een brug vormen tussen cel-, weefsel- en orgaanniveau. Aan de hand van histologische karakterisering, mechanische testen en medische beeldvormingstechnieken worden virtuele slokdarm- en hartmodellen ontwikkeld die het patiënt-specifieke orgaangedrag zo accuraat mogelijk simuleren. Naast de diagnostische waarde van deze modellen, laat de ontwikkelde modelleringstechnologie ook toe om het effect van verschillende behandelingstechnieken, via medicatie, chirurgie en/of medische apparatuur bijvoorbeeld, acuut en chronisch te voorspellen. Bijgevolg biedt deze doctoraatsthesis inzichten die een onmiskenbare impact zullen hebben op de gepersonaliseerde geneeskunde van de toekomst

    Exploring the Danish Diseasome

    Get PDF

    Engineering multifunctional adhesive hydrogel patches for biomedical applications

    Get PDF
    Traditional patches, such as sticking plaster or acrylic adhesives used for over a hundred years, lack functionality. To address this issue of poor functionality, adhesive hydrogel patches have emerged as an efficient bioactive multifunctional alternative. Hydrogels are three-dimensional, water-swellable, and polymeric materials closely resembling the native tissue architecture. The physicochemical properties of hydrogels can be modified easily, allowing them to be suitable for various biomedical applications. Moreover, adhesive properties can be imparted to hydrogels through physicochemical manipulations, making them ideal candidates for supplementing or replacing traditional sticking plaster. As a result, sticky hydrogel patches are widely used for transdermal drug delivery and have even found commercial purposes. Beyond transdermal delivery, such hydrogel patches have also found applications in cardiac therapy, cancer research, and biosensing, among other applications. In this mini-review, we critically discuss the challenges of fabricating multifunctional adhesive hydrogel patches. Furthermore, we introduce some of the chemical strategies involved with fabricating the patches. We also review their emerging biomedical applications. Finally, we explore their potential future in the flourishing field of tissue engineering and drug delivery

    Echocardiography

    Get PDF
    The book "Echocardiography - New Techniques" brings worldwide contributions from highly acclaimed clinical and imaging science investigators, and representatives from academic medical centers. Each chapter is designed and written to be accessible to those with a basic knowledge of echocardiography. Additionally, the chapters are meant to be stimulating and educational to the experts and investigators in the field of echocardiography. This book is aimed primarily at cardiology fellows on their basic echocardiography rotation, fellows in general internal medicine, radiology and emergency medicine, and experts in the arena of echocardiography. Over the last few decades, the rate of technological advancements has developed dramatically, resulting in new techniques and improved echocardiographic imaging. The authors of this book focused on presenting the most advanced techniques useful in today's research and in daily clinical practice. These advanced techniques are utilized in the detection of different cardiac pathologies in patients, in contributing to their clinical decision, as well as follow-up and outcome predictions. In addition to the advanced techniques covered, this book expounds upon several special pathologies with respect to the functions of echocardiography

    Glosarium Kedokteran

    Get PDF

    Preclinical Animal Modeling in Medicine

    Get PDF
    The results of preclinical animal research have been successfully implemented in various medical and biological practices. The use of animals in medicine is based on significant anatomical, physiological, and molecular similarities between humans and animals. Particularly, mammals that have vast biological commonalities with humans represent not only a valuable model to explore the mechanisms of varied human diseases, but also to define new diagnostic and treatment strategies. This book covers broad but important aspects of animal modeling for scientific medicine as well as for translational systems and biological sciences. Alternative methods such as cell culture and in vitro experiments that do not require the sacrifice of an animal are encouraged for scientific and medical studies

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 142

    Get PDF
    This bibliography lists 256 reports, articles, and other documents introduced into the NASA scientific and technical information system in May 1975 for aerospace medicine and biology

    Deep Risk Prediction and Embedding of Patient Data: Application to Acute Gastrointestinal Bleeding

    Get PDF
    Acute gastrointestinal bleeding is a common and costly condition, accounting for over 2.2 million hospital days and 19.2 billion dollars of medical charges annually. Risk stratification is a critical part of initial assessment of patients with acute gastrointestinal bleeding. Although all national and international guidelines recommend the use of risk-assessment scoring systems, they are not commonly used in practice, have sub-optimal performance, may be applied incorrectly, and are not easily updated. With the advent of widespread electronic health record adoption, longitudinal clinical data captured during the clinical encounter is now available. However, this data is often noisy, sparse, and heterogeneous. Unsupervised machine learning algorithms may be able to identify structure within electronic health record data while accounting for key issues with the data generation process: measurements missing-not-at-random and information captured in unstructured clinical note text. Deep learning tools can create electronic health record-based models that perform better than clinical risk scores for gastrointestinal bleeding and are well-suited for learning from new data. Furthermore, these models can be used to predict risk trajectories over time, leveraging the longitudinal nature of the electronic health record. The foundation of creating relevant tools is the definition of a relevant outcome measure; in acute gastrointestinal bleeding, a composite outcome of red blood cell transfusion, hemostatic intervention, and all-cause 30-day mortality is a relevant, actionable outcome that reflects the need for hospital-based intervention. However, epidemiological trends may affect the relevance and effectiveness of the outcome measure when applied across multiple settings and patient populations. Understanding the trends in practice, potential areas of disparities, and value proposition for using risk stratification in patients presenting to the Emergency Department with acute gastrointestinal bleeding is important in understanding how to best implement a robust, generalizable risk stratification tool. Key findings include a decrease in the rate of red blood cell transfusion since 2014 and disparities in access to upper endoscopy for patients with upper gastrointestinal bleeding by race/ethnicity across urban and rural hospitals. Projected accumulated savings of consistent implementation of risk stratification tools for upper gastrointestinal bleeding total approximately $1 billion 5 years after implementation. Most current risk scores were designed for use based on the location of the bleeding source: upper or lower gastrointestinal tract. However, the location of the bleeding source is not always clear at presentation. I develop and validate electronic health record based deep learning and machine learning tools for patients presenting with symptoms of acute gastrointestinal bleeding (e.g., hematemesis, melena, hematochezia), which is more relevant and useful in clinical practice. I show that they outperform leading clinical risk scores for upper and lower gastrointestinal bleeding, the Glasgow Blatchford Score and the Oakland score. While the best performing gradient boosted decision tree model has equivalent overall performance to the fully connected feedforward neural network model, at the very low risk threshold of 99% sensitivity the deep learning model identifies more very low risk patients. Using another deep learning model that can model longitudinal risk, the long-short-term memory recurrent neural network, need for transfusion of red blood cells can be predicted at every 4-hour interval in the first 24 hours of intensive care unit stay for high risk patients with acute gastrointestinal bleeding. Finally, for implementation it is important to find patients with symptoms of acute gastrointestinal bleeding in real time and characterize patients by risk using available data in the electronic health record. A decision rule-based electronic health record phenotype has equivalent performance as measured by positive predictive value compared to deep learning and natural language processing-based models, and after live implementation appears to have increased the use of the Acute Gastrointestinal Bleeding Clinical Care pathway. Patients with acute gastrointestinal bleeding but with other groups of disease concepts can be differentiated by directly mapping unstructured clinical text to a common ontology and treating the vector of concepts as signals on a knowledge graph; these patients can be differentiated using unbalanced diffusion earth mover’s distances on the graph. For electronic health record data with data missing not at random, MURAL, an unsupervised random forest-based method, handles data with missing values and generates visualizations that characterize patients with gastrointestinal bleeding. This thesis forms a basis for understanding the potential for machine learning and deep learning tools to characterize risk for patients with acute gastrointestinal bleeding. In the future, these tools may be critical in implementing integrated risk assessment to keep low risk patients out of the hospital and guide resuscitation and timely endoscopic procedures for patients at higher risk for clinical decompensation

    Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists

    Get PDF
    New updated edition first published with Cambridge University Press. This new edition includes 29 chapters on topics as diverse as pathophysiology of atherosclerosis, vascular haemodynamics, haemostasis, thrombophilia and post-amputation pain syndromes

    Front Lines of Thoracic Surgery

    Get PDF
    Front Lines of Thoracic Surgery collects up-to-date contributions on some of the most debated topics in today's clinical practice of cardiac, aortic, and general thoracic surgery,and anesthesia as viewed by authors personally involved in their evolution. The strong and genuine enthusiasm of the authors was clearly perceptible in all their contributions and I'm sure that will further stimulate the reader to understand their messages. Moreover, the strict adhesion of the authors' original observations and findings to the evidence base proves that facts are the best guarantee of scientific value. This is not a standard textbook where the whole discipline is organically presented, but authors' contributions are simply listed in their pertaining subclasses of Thoracic Surgery. I'm sure that this original and very promising editorial format which has and free availability at its core further increases this book's value and it will be of interest to healthcare professionals and scientists dedicated to this field
    • …
    corecore