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Abstract 

Deep Risk Prediction and Embedding of Patient Data:  

Application to Acute Gastrointestinal Bleeding 

Dennis Legen Shung 

2022 

Acute gastrointestinal bleeding is a common and costly condition, accounting for over 2.2 million 

hospital days and 19.2 billion dollars of medical charges annually. Risk stratification is a critical part 

of initial assessment of patients with acute gastrointestinal bleeding. Although all national and 

international guidelines recommend the use of risk-assessment scoring systems, they are not 

commonly used in practice, have sub-optimal performance, may be applied incorrectly, and are not 

easily updated.  

With the advent of widespread electronic health record adoption, longitudinal clinical data captured 

during the clinical encounter is now available. However, this data is often noisy, sparse, and 

heterogeneous. Unsupervised machine learning algorithms may be able to identify structure within 

electronic health record data while accounting for key issues with the data generation process: 

measurements missing-not-at-random and information captured in unstructured clinical note text. 

Deep learning tools can create electronic health record-based models that perform better than 

clinical risk scores for gastrointestinal bleeding and are well-suited for learning from new data. 

Furthermore, these models can be used to predict risk trajectories over time, leveraging the 

longitudinal nature of the electronic health record.  

The foundation of creating relevant tools is the definition of a relevant outcome measure; in acute 

gastrointestinal bleeding, a composite outcome of red blood cell transfusion, hemostatic 

intervention, and all-cause 30-day mortality is a relevant, actionable outcome that reflects the need 

for hospital-based intervention. However, epidemiological trends may affect the relevance and 

effectiveness of the outcome measure when applied across multiple settings and patient 

populations.   
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Understanding the trends in practice, potential areas of disparities, and value proposition for using 

risk stratification in patients presenting to the Emergency Department with acute gastrointestinal 

bleeding is important in understanding how to best implement a robust, generalizable risk 

stratification tool. Key findings include a decrease in the rate of red blood cell transfusion since 

2014 and disparities in access to upper endoscopy for patients with upper gastrointestinal bleeding 

by race/ethnicity across urban and rural hospitals. Projected accumulated savings of consistent 

implementation of risk stratification tools for upper gastrointestinal bleeding total approximately $1 

billion 5 years after implementation.  

Most current risk scores were designed for use based on the location of the bleeding source: upper 

or lower gastrointestinal tract. However, the location of the bleeding source is not always clear at 

presentation. I develop and validate electronic health record based deep learning and machine 

learning tools for patients presenting with symptoms of acute gastrointestinal bleeding (e.g., 

hematemesis, melena, hematochezia), which is more relevant and useful in clinical practice.  I 

show that they outperform leading clinical risk scores for upper and lower gastrointestinal bleeding, 

the Glasgow Blatchford Score and the Oakland score. While the best performing gradient boosted 

decision tree model has equivalent overall performance to the fully connected feedforward neural 

network model, at the very low risk threshold of 99% sensitivity the deep learning model identifies 

more very low risk patients. Using another deep learning model that can model longitudinal risk, 

the long-short-term memory recurrent neural network, need for transfusion of red blood cells can 

be predicted at every 4-hour interval in the first 24 hours of intensive care unit stay for high-risk 

patients with acute gastrointestinal bleeding.  

Finally, for implementation it is important to find patients with symptoms of acute gastrointestinal 

bleeding in real time and characterize patients by risk using available data in the electronic health 

record. A decision rule-based electronic health record phenotype has equivalent performance as 

measured by positive predictive value compared to deep learning and natural language processing-

based models, and after live implementation appears to have increased the use of the Acute 

Gastrointestinal Bleeding Clinical Care pathway. Patients with acute gastrointestinal bleeding but 

with other groups of disease concepts can be differentiated by directly mapping unstructured 
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clinical text to a common ontology and treating the vector of concepts as signals on a knowledge 

graph; these patients can be differentiated using unbalanced diffusion earth mover’s distances on 

the graph. For electronic health record data with data missing not at random, MURAL, an 

unsupervised random forest-based method, handles data with missing values and generates 

visualizations that characterize patients with gastrointestinal bleeding.  

This thesis forms a basis for understanding the potential for machine learning and deep learning 

tools to characterize risk for patients with acute gastrointestinal bleeding. In the future, these tools 

may be critical in implementing integrated risk assessment to keep low risk patients out of the 

hospital and guide resuscitation and timely endoscopic procedures for patients at higher risk for 

clinical decompensation.  
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Introduction 

Gastrointestinal bleeding (GIB) is the most common cause of GI-related hospitalization in the 

United States (U.S) and accounts for $19.2 billion in hospital-related charges with over 500,000 

hospitalizations annually.1 Risk stratification has the potential to decrease unnecessary 

hospitalizations. With the advent of care delivery through the electronic health records, there is an 

exciting new opportunity to access and analyze data generated through clinical care. However, 

electronic health record data is messy, sparse, and varied, primarily generated for billing purposes 

and therefore not optimized for computation with traditional statistical tools. New tools should be 

considered that adapt to specific aspects of the electronic health record data generation process. 

As a physician-scientist, I have sought to tackle the challenge of using electronic health record data 

using novel machine learning and deep learning tools while also being firmly grounded in the clinical 

value proposition that leads to adoption of such tools on a provider and health system level. This 

thesis seeks to 1) define the trends, possible sources of bias, and value proposition of machine 

learning approaches for risk stratification in gastrointestinal bleeding; 2) develop and validate EHR-

based tools for identifying patients with EHR phenotyping and providing risk stratification to identify 

very low risk patients who could be discharged directly from the ED with machine learning and 

deep learning tools; 3) explore dynamic risk prediction for patients who have changes in risk or who 

are at high risk; 4) create new tools tailored for the challenges of using EHR data to characterize 

patient cohorts and provide continuously updated risk prediction.  

Artificial intelligence (AI) is a broad term that encompasses a diverse array of subfields. Machine 

learning, a subset of artificial intelligence, refers to a group of computational tools, or algorithms, 

that can be trained to learn specific patterns within data and optimize prediction.  

Machine learning has the potential to enhance the practice of medicine.2 However, an ‘AI chasm’ 

has been described that limit the clinical application of machine learning models.3 Clinicians are 

domain experts that can help bridge the gap by becoming active partners in developing and 

implementing machine learning models for clinical use. The paradigm of collaboration between 

domain experts and machine learning engineers has been successful in developing expert-
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augmented machine learning.4 Gastrointestinal bleeding (GIB) is the most common cause of GI-

related hospitalization in the United States (U.S), accounting for 19.2 billion USD of estimated 

charges.1  

The future of gastrointestinal bleeding will include the integration of machine learning algorithms to 

enhance clinician risk assessment and decision-making. For risk assessment, the goals are 

twofold: first, triage to the appropriate level of care, and second, to inform decisions for testing and 

treatment.  

Triage of very low risk patients for outpatient management rather than hospitalization is 

recommended by national and international guidelines for both upper and lower gastrointestinal 

bleeding.5-9 The benefit for identifying high risk patients  is uncertain, but has been explored recently 

by predicting in-hospital mortality in patients presenting with acute gastrointestinal bleeding 

admitted to the intensive care unit.10  

Machine learning tools have specific advantages over clinical risk scores, including the ability to 

improve over time and to be retrained with data reflecting local epidemiology and patterns of 

disease.  

Upper Gastrointestinal Bleeding: 

Existing clinical risk scores use statistical models applied to a mixture of clinical, laboratory, and 

demographic data taken during initial assessment and have been shown to 1) accurately identify 

very low risk patients and 2) decrease unnecessary healthcare utilization when applied 

consistently. More importantly, two prospective trials have shown that consistent application of the 

Glasgow Blatchford Score at very low risk thresholds (score 0 or less than 1) significantly decreases 

hospital admissions (96% without using the GBS to 71% with GBS;P<0.001, 94% without using 

GBS versus 82% with using GBS;P<0.001).11,12  Machine learning scores appear to perform better 

than clinical risk scores, and in particular outperforms the GBS at the very low risk threshold.13 A 

gradient-boosted machine learning model outperformed the most common and validated clinical 

risk scores for acute upper GIB, the admission Rockall, AIMS65, and GBS in predicting a composite 
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outcome reflecting need for hospitalization (packed red blood cell transfusion, hemostatic 

intervention, or 30-day mortality) with significantly increased overall are under the receiver 

operating curve and at the very low risk cutoff.14  

Lower Gastrointestinal Bleeding: 

The Oakland score has been shown to perform well in identifying very low risk patients with lower 

gastrointestinal bleeding, and also has been externally validated in an electronic health record 

database.15,16 However, there are no prospective trials applying the score to test its performance 

in affecting differences in healthcare utilization.  Machine learning scores, particularly neural 

network models, appear to perform better than clinical risk scores for patients with lower 

gastrointestinal bleeding.17-19 

A key challenge to applying these scores for risk stratification has been provider uptake and 

application in clinical practice. Only about 30% of all physician providers in the United States have 

ever used a score in caring for patients with acute upper gastrointestinal bleeding.20 The reasons 

for this may include ignorance, cumbersomeness of calculating the score, and unclearly defined 

responsibility in the use of these risk scores.21 For lower gastrointestinal bleeding, none of the 

scores developed have been adopted consistently in clinical practice, and existing scores suffer 

from limitations of being developed in large administrative data registries and in small samples of 

patients.22 

Electronic Health Records: A New Era of Learning Health Systems 

With the advent of electronic health records deployed across the world, there is a clear opportunity 

to address the challenge of deployment of risk stratification tools, particularly machine learning 

tools.  Electronic health records provide infrastructure that can be leveraged to deploy these tools 

in real time. The potential of data streams generated through the electronic health record can be 

harnessed to identify patients with GIB, provide timely risk stratification based on presenting vital 

signs, laboratory results, and co-morbidities, and then monitor ongoing risk to guide decisions 
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regarding clinical care.23 Machine learning tools are well-suited for identifying patients using EHR-

based phenotypes and developing prognostic risk models with electronic health record data.24,25 

Phenotyping is the first step to leveraging the EHR for risk stratification in acute GIB 

Identifying patients with a specific condition or outcome is a central challenge to deploy risk 

stratification tools in the EHR. For acute gastrointestinal bleeding, an automated mechanism that 

would identify patients at the time of presentation would be the first step in consistently deploying 

risk stratification tools.  

For EHR phenotyping, and two primary approaches have been deployed: expert-driven decision 

rules and machine learning approaches. The challenge comes from the mixture of datatypes in 

EHR data and the dynamic nature of data collection. These datatypes are broadly defined as 

structured datafields, or discrete values that are stored individually in specified categories including 

lab values and diagnosis codes, and unstructured datafields, user generated blocks of data that do 

not fall under specific categories such as clinician notes. For expert-driven decision rules, experts 

define the condition through the presence of specific conditions to include or exclude patients (e.g., 

laboratory exam fecal calprotectin for inflammatory bowel disease, ICD code for reflux disease) 

and then use these conditions to create decision rules. Machine learning models include both 

supervised and unsupervised learning models, which can be coupled with data preprocessing to 

extract information from unstructured text through natural language processing. In particular, 

unsupervised machine learning approaches have been used to identify variables without the need 

for expert-defined conditions, and have demonstrated promise in providing portability across 

different medical centers.26-28  

For gastrointestinal bleeding, the relevant population of patients are patients who present with 

either reported symptoms of overt gastrointestinal bleeding or provider observed signs of active 

gastrointestinal bleeding. Inherently this can only be approximated by diagnosis codes entered 

during a hospital encounter, since not all patients receive therapy (inpatient endoscopic 

procedures, blood product transfusions) and the lab tests used to assess risk are nonspecific (e.g., 
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hemoglobin, INR). In a large cohort of patients presenting with possible symptoms of 

gastrointestinal bleeding, we have conducted the first study to test and compare the performance 

of expert decision rules and natural language processing approaches to identify patients presenting 

with symptoms of overt acute gastrointestinal bleeding.29  

Limitations include interpretability, ability to incorporate unstructured data reliably, and 

generalizability.  While decision rule models are simple and interpretable, they usually cannot use 

unstructured data, have poor performance and do not generalize easily across practice settings.30-

32 Machine learning models are promising but have not undergone extensive validation studies. For 

all phenotyping efforts, the major limitation is the generation of expert-labeled datasets, which are 

time intensive and difficult to replicate.  

EHR-based Risk Prediction Models: Static and Dynamic 

Clinical risk scores can and should be mapped to EHR datafields to enable automated calculation. 

The key challenge is understanding how to translate the specific components of the risk score to 

structured datafields captured in the EHR. For example, the Oakland score for acute lower GIB has 

been translated to an “EHR-friendly” format, which necessitated the removal of the digital rectal 

exam and definition of “previous lower GIB” through a combination of ICD-10 diagnosis codes.16  

Machine learning risk prediction tools developed using EHR data have shown promise in when 

deployed to predict sepsis, acute kidney injury, and in-hospital delirium.33-36 However, there has 

been limited work in acute GIB.  

One study using EHR data to develop machine learning models in acute gastrointestinal bleeding 

uses a gradient boosted tree machine learning that is superior to the APACHE score in predicting 

inpatient mortality risk for high risk patients admitted to the intensive care unit for 24 hours.10  

While initial risk assessment is helpful for identifying low risk patients who could undergo outpatient 

management, dynamic continuous risk assessment can leverage the longitudinal information in the 

EHR to guide triage and may prove useful for anticipating clinical deterioration or timing therapeutic 

interventions such as packed red blood cell transfusion. The cornerstone of management of 
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patients with acute GIB is adequate resuscitation using intravenous fluids and packed red blood 

cell transfusion.  

Overview of Material Covered in This Work: 

I start with a detailed epidemiological study of trends in acute gastrointestinal bleeding, including 

components of the composite outcome, to evaluate for changes in practice patterns and types of 

GIB. Furthermore, I evaluate for disparities in access to endoscopic evaluation for patients 

presenting with UGIB by race/ethnicity and rural versus urban, teaching versus non-teaching 

hospitals. I define the value of consistent implementation of risk stratification systems for UGIB 

using a cost-minimization analysis.  

I then present findings using structured EHR data from the first 4 hours to develop and validate 

machine learning and deep learning models. I present work to develop EHR phenotypes that can 

be used in real time to identify patients with acute GIB using structured and unstructured data with 

preliminary data from real-time implementation of the decision rule phenotype to suggest the use 

of a Clinical Care pathway for Acute Gastrointestinal Bleeding.  

I present a dynamic risk modeling approach using Long-Short Term Memory Recurrent Neural 

Networks to predict need for red blood cell transfusion in high-risk patients with GIB admitted to the 

ICU.  

Finally, I created a new algorithmic approach to visualize electronic health record data with data 

missing-not-at-random and present a proof of concept of using standard clinical ontologies to map 

unstructured data into a standardized concept dictionary, and then applying the concepts as signals 

on a knowledge graph with an algorithmic innovation to separate different diagnostic phenotypes. 

Future work will include thinking through issues of data access, bias, equity, and challenges to 

implementation in healthcare systems.   

Key terms: 
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Artificial intelligence (AI): Generally, the ability for a computer to accomplish tasks typically 

associated with human intelligence.  

Machine learning (ML): a subfield of artificial intelligence, broadly refers to the ability of a 

computational platform to learn from data and make predictions or recommendations based on this 

data without being explicitly programmed  

Supervised learning is conducted with the concept of “truth” where the model tries to approximate 

the relationship between inputs and labeled outputs. For example, given images of cats and dogs, 

where each image has a correct answer, can you train a model that accurately identifies of cats 

versus dogs?   

Unsupervised learning is performed without data labels and the goal is for the computer to infer 

inherent structure or patterns in the data.  For example, given a set of heart rate, accelerometer, 

and location data from a wearable fitness monitor, can the computer identify periods of rest versus 

exercise based on differences in the raw data? 

Neural networks (NN): a form of machine learning with a basic architecture consisting of nodes and 

connections existing in multiple layers, loosely analogous to neurons and synapses in the biological 

brain. This broad category is inclusive of many kinds of modern machine learning models which 

are used in tasks such as computer vision, voice recognition, bioinformatics, among others. 

Deep learning: A broad family of neural network architectures that have multiple layers (aka deep).   
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Epidemiology of Acute Gastrointestinal Bleeding in the Emergency Department 

 

Introduction 

Gastrointestinal bleeding (GIB) is the most common cause of GI-related hospitalization in the 

United States (U.S).1 Traditionally, epidemiologic studies have classified GIB into upper GIB (UGIB) 

and lower GIB (LGIB) based on the location of the bleeding source. UGIB refers to bleeding from 

the esophagus, stomach, or duodenum, and LGIB arises from the small and large bowel distal to 

the Ligament of Treitz.  

Previous epidemiological studies have reported a low case fatality rate for GIB in the U.S. (<5%) 

and suggested decreasing incidence, but these studies only evaluated hospitalized patients and 

did not include patients who presented and were discharged from emergency departments (ED).37-

41 Moreover, the most recent studies that reported on GIB trends over time evaluated patients no 

later than 2012 for UGIB and 2014 for LGIB.37-41 Possible factors contributing to the downward 

trend in UGIB incidence include Helicobacter pylori eradication and the increased use of proton 

pump inhibitors.42 The most recent epidemiological study of LGIB in the U.S. suggested an 

increased hospitalization rate for LGIB since 2010,40 thought to be related to an aging population 

and increasing frequency of antithrombotic therapy.40,42 Furthermore, new evidence regarding 

management of GIB and resultant changes in guideline recommendations (e.g., restrictive red 

blood cell [RBC] transfusion strategies, discharge of very-low-risk patients from the ED for 

outpatient management) may have affected clinical practice patterns.  

We believe that an updated and comprehensive epidemiological evaluation of the incidence and 

secular trends, as well as hospital-based management and outcomes, for all patients with GIB 

presenting to EDs in the U.S. is needed to better understand the characteristics and current state 

of care of patients with GIB. This study uses a large, national emergency department database to 

characterize epidemiological trends for GIB incidence, management, and outcomes – and 
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assesses whether real-world management has changed with the advent of new guideline 

recommendations.   

Materials and Methods 

Data source: 

This study includes data from 2006 to 2019 collected in the Nationwide Emergency Department 

Sample (NEDS), Healthcare Cost and Utilization Project (HCUP), Agency for Healthcare Research 

and Quality.43 NEDS is the largest all-payer ED database in the U.S  and is a composite of the 

HCUP State Inpatient Database and the State Emergency Department Database, which includes 

information on ED visits that result in admission at that ED’s hospital and those that do not, 

respectively. NEDS includes information on patients treated and discharged from the ED, those 

seen in the ED and admitted to the same hospital, and those who were transferred from the ED to 

another hospital. For patients who were transferred, only information from their ED visit was 

available. The composite database from 2019 describes an unweighted sample of 33.1 million 

discrete ED visits across 989 hospitals in 41 states, including the District of Columbia, and a 

weighted national estimate of 143.4 million ED visits. Weighted samples were used for the 

purposes of this study. We performed final checks to comply with HCUP privacy protections policy 

and confirm that no individual persons have been identified either directly or indirectly, hospitals 

have not been identified, with all aggregate statistical reporting containing at least two hospitals in 

any individual cell, and no cell sizes are included that are less than or equal to 10. 

Variables: 

We identified ED visits with a primary diagnosis of GIB using the International Classification of 

Disease (ICD) codes (Table 1).  

Table 1: ICD-9-CM and ICD-10-CM codes for gastrointestinal bleeding 

 ICD-9-CM ICD-10-CM * 

Upper GIB    
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     Bleeding Ulcer 530.21 

531.00, 531.01, 531.20, 

531.21, 531.40, 531.41, 

531.60, 531.61, 

532.00, 532.01, 532.20, 

532.21, 532.40, 532.41, 

532.60, 532.61, 

533.00, 533.01, 533.20, 

533.21, 533.40, 533.41, 

533.60, 533.61, 

534.00, 534.01, 534.20, 

534.21, 534.40, 534.41, 

534.60, 534.61 

 

K22.11,  

K25.0, K25.2, K25.4, K25.6, 

K26.0, K26.2, K26.4, K26.6, 

K27.0, K27.2, K27.4, K27.6, 

K28.0, K28.2, K28.4, K28.6 

     Variceal Bleed 456.0, 456.20 

 

I85.01, I85.11 

     Mallory-Weiss Tears 

 

530.7 

 

K22.6 

     Angiodysplasia  537.83 

 

K31.811 

     Dieulafoy’s Lesion 537.84 

 

K31.82 

     Gastritis/Duodenitis 535.01, 535.11, 535.21, 

535.31, 535.41, 535.51, 

535.61, 535.71 

K29.01, K29.21, K29.31, 

K29.41, K29.51, K29.61, 

K29.71, K29.81, K29.91 

 

     Other 530.82, 578.0 K22.8, K92.0 
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Lower GIB   

     Diverticular Bleed 562.02, 562.03, 562.12, 

562.13 

K57.01, K57.11, K57.13, 

K57.21, K57.31, K57.33, 

K57.41, K57.51, K57.53, 

K57.81, K57.91, K57.93 

 

     Anorectal Hemorrhage 569.3 K62.5 

 

     Hemorrhoid 455.0, 455.1, 455.2, 455.5, 

455.6, 455.8 

K64.0, K64.1, K64.2, K64.3, 

K64.4, K64.8 

 

     Angiodysplasia 569.85 K55.21 

 

     Dieulafoy’s Lesion 569.86 K63.81 

 

     Other 569.41, 565.0 K62.6, K60.2, K62.7, 

K51.411 

 

Unspecified GIB 578.1, 578.9 K92.1, K92.2, K91.840 

 

* Other ICD-10-CM codes for GIB have been added after 2019 (e.g., K21.01, K20.81, K20.91) 

and therefore were not present in our dataset. 

Due to the shift from the ninth revision (ICD-9) to tenth revision (ICD-10) after the third quarter of 

2015, we used ICD-9 from 2006 to 2015 3rd quarter and ICD-10 from 2015 4th quarter to 2019. 

Diagnosis of GIB were categorized into upper, lower, and unspecified GIB with further specification 

of the types of UGIB and LGIB. Types of UGIB included bleeding from ulcers, varices, Mallory-

Weiss tears, angiodysplasia, Dieulafoy’s lesions, gastritis or duodenitis, and other non-specific 

UGIB diagnoses (e.g., unspecified esophageal hemorrhage, hematemesis). Types of LGIB 
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included diverticular bleed, anorectal hemorrhage, angiodysplasia, Dieulafoy’s lesions, 

hemorrhoids, and other intestinal and anorectal causes (e.g., bleeding from polyp, anorectal ulcer). 

Unspecified GIB included blood in stool defined as melena or hematochezia, unspecified 

hemorrhage of the gastrointestinal tract, and unspecified postprocedural gastrointestinal 

hemorrhage. 

Demographic data included sex, age, geography based on zip code (Northeast, Midwest, South, 

West), income quartile based on estimated median household income of residents in the patient's 

zip code, and primary insurance payer (Medicare, Medicaid, private insurance, self-pay, no charge, 

other). Charlson Comorbidity Index (CCI) scores, which predict 10-year survival in patients with 

multiple comorbidities, were calculated based on ICD codes as described by Glasheen et. al with 

minor revisions.44 

Study Outcomes: 

The outcomes of interest were incidence of GIB, rates of RBC transfusions, case fatality, ED 

discharge, presence of upper or lower endoscopy, average inpatient length of stay, and inpatient 

healthcare costs. Age- and sex-adjusted incidence and rates were calculated to remove the 

confounding effects of changes in age and sex composition across time. We included patients aged 

≥20 years in our analyses as population structure estimates for age and sex were only available in 

5-year intervals from the U.S. Census Bureau (e.g., age=15-19, 20-25) and GIB is rare in 

individuals aged <20 years.45  

For incidence, we calculated crude incidence rate for each calendar year by dividing the total 

number of ED visits with a primary diagnosis of GIB by the U.S. population estimate for the 

respective year. We used the 2010 U.S. population structure as the standard to calculate age- and 

sex-adjusted incidence rate by summing the multiplicative product of each age- and sex-specific 

incidence by the age- and sex-specific standard population divided by the total standard population. 

We similarly calculated age-adjusted incidence rates for GIB stratified by sex and stratified by 10-
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year age group categories. 10-year age group stratified data from 2006 was not available since the 

U.S. Census Bureau did not report uniform age categories in 2006 for age population structure.  

Rates of RBC transfusion, case fatality, ED discharge, and upper or lower endoscopy were 

standardized to the respective GIB population structure in 2010 following the method described 

above. RBC transfusions and endoscopic procedures were identified using codes from both 

Current Procedure Terminology (CPT), a set of medical codes used to report medical, surgical, and 

diagnostic procedures and services, and ICD Procedure Coding System (ICD-PCS) (Table 2). 

Case fatality rate was defined as the proportion of all-cause, in-facility deaths among the total ED 

visits with a primary diagnosis of GIB. The specific cause of death was not available in this 

database. 

Table 2: CPT and ICD-PCS codes for transfusions and endoscopies. 

 CPT ICD-9-PCS ICD-10-PCS 

RBC 

Transfusion 

36430, 36440, 

36450, 36444, 

36455, 36456, 

36460 

99.00, 99.02, 99.03, 

99.04 

30233N0, 30233N1, 30233H0, 

30233H1, 30233P0, 30233P1,  

30243N0, 30243N1, 30243H0, 

30243H1, 30243P0, 30243P1,  

30230N0, 30230N1, 30230H0, 

30230H1, 30230P0, 30230P1, 

30240N0, 30240N1, 30240H0, 

30240H1, 30240P0, 30240P1 
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Upper 

endoscopy 

Diagnostic 

43235, 43239 

 

Any hemostasis 

43255 

 

Submucosal 

injection 

43236, 43243 

 

Band ligation 

43244 

Diagnostic 

42.21, 42.22, 42.23, 

42.24,  

44.11, 44.12, 44.13, 

44.14,  

45.11, 45.11, 45.13, 

45.14, 45.16, 

 

Esophagus hemostasis 

42.33, 42.82 

 

Stomach hemostasis 

44.43 

 

Duodenum hemostasis 

45.30 

 

Submucosal injection 

39.92 

 

Band ligation 

42.91 

 

Diagnostic 

0DJ04ZZ, 0DJ08ZZ,  

0DJ64ZZ, 0DJ68ZZ, 

0DB14ZX, 0DB24ZX, 

0DB34ZX, 0DB44ZX, 

0DB54ZX, 0DB64ZX, 

0DB74ZX, 0DB84ZX, 

0DB94ZX,  

0DB18ZX, 0DB28ZX, 

0DB38ZX, 0DB48ZX, 

0DB58ZX, 0DB68ZX, 

0DB78ZX, 0DB88ZX, 

0DB98ZX 

 

Esophagus hemostasis 

0D514ZZ, 0D524ZZ, 

0D534ZZ, 0D544ZZ, 

0D554ZZ, 

0D518ZZ, 0D528ZZ, 

0D538ZZ, 0D548ZZ, 

0D558ZZ,  

0DQ14ZZ, 0DQ24ZZ, 

0DQ34ZZ, 0DQ44ZZ, 

0DQ54ZZ,  

0DQ18ZZ, 0DQ28ZZ, 

0DQ38ZZ, 0DQ48ZZ, 

0DQ58ZZ 
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Stomach hemostasis 

0D564ZZ, 0D574ZZ,  

0D568ZZ, 0D578ZZ, 

0DQ64ZZ, 0DQ74ZZ, 

0DQ68ZZ, 0DQ78ZZ 

 

Duodenum hemostasis 

0D594ZZ, 0D598ZZ, 

0DQ84ZZ, 0DQ94ZZ, 

0DQ88ZZ, 0DQ98ZZ 

 

Unspecified upper GI 

hemostasis 

3E0G8TZ 

 

Band ligation 

06L34CZ, 06L38CZ 

 

Lower 

endoscopy 

Diagnostic 

45378, 45300, 

45330, 

 

Any hemostasis 

45382, 45317, 

45334, 

Diagnostic 

45.21, 45.22, 45.23, 

45.24, 45.25 

48.21, 48.22, 48.23, 

48.24 

 

Any hemostasis 

Diagnostic 

0DJD4ZZ, 0DJD8ZZ, 

0DBA4ZX, 0DBB4ZX, 

0DBC4ZX, 0DBE4ZX, 

0DBF4ZX, 0DBG4ZX, 

0DBH4ZX, 0DBK4ZX, 
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Submucosal 

injection 

45381, 45335, 

 

Band ligation 

45398, 45350 

45.43, 48.32 

 

Submucosal injection 

39.92 

 

Hemorrhoid ligation 

49.45 

0DBL4ZX, 0DBM4ZX, 

0DBN4ZX, 0DBP4ZX, 

0DBA8ZX, 0DBB8ZX, 

0DBC8ZX, 0DBE8ZX, 

0DBF8ZX, 0DBG8ZX, 

0DBH8ZX, 0DBK8ZX, 

0DBL8ZX, 0DBM8ZX, 

0DBN8ZX, 0DBP8ZX 

 

Any hemostasis 

0D5A4ZZ, 0D5B4ZZ, 

0D5C4ZZ, 0D5E4ZZ, 

0D5F4ZZ, 0D5G4ZZ, 

0D5H4ZZ, 0D5K4ZZ, 

0D5L4ZZ, 0D5M4ZZ, 

0D5N4ZZ, 0D5P4ZZ, 

0D5A8ZZ, 0D5B8ZZ, 

0D5C8ZZ, 0D5E8ZZ, 

0D5F8ZZ, 0D5G8ZZ, 

0D5H8ZZ, 0D5K8ZZ, 

0D5L8ZZ, 0D5M8ZZ, 

0D5N8ZZ, 0D5P8ZZ, 

0DQA4ZZ, 0DQB4ZZ, 

0DQC4ZZ, 0DQE4ZZ, 

0DQF4ZZ, 0DQG4ZZ, 

0DQH4ZZ, 0DQK4ZZ, 

0DQL4ZZ, 0DQM4ZZ, 

0DQN4ZZ, 0DQP4ZZ, 
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0DQA8ZZ, 0DQB8ZZ, 

0DQC8ZZ, 0DQE8ZZ, 

0DQF8ZZ, 0DQG8ZZ, 

0DQH8ZZ, 0DQK8ZZ, 

0DQL8ZZ, 0DQM8ZZ, 

0DQN8ZZ, 0DQP8ZZ 

 

Hemorrhoid ligation 

06LY4CC, 06LY8CC 

 

Unspecified 

location of 

endoscopy 

  Unspecified hemostasis 

0W3P4ZZ, 0W3P8ZZ 

 

 

 

Inpatient length of stay was a provided variable in NEDS. We used two methods to evaluate 

inpatient healthcare costs (reported in US dollars). First, we converted the NEDS inpatient charge 

variable to inpatient cost using the HCUP hospital-level charge-to-cost ratios dataset, which was 

available for years 2012 to 2019.46 Second, we converted NEDS provided Medicare Severity 

Diagnosis Related Group (DRG) to average national Medicare payment using the Medicare 

Inpatient Hospitals dataset, which was available for years 2014 to 2019.47 Both NEDS-derived 

inpatient cost and Medicare DRG-derived cost exclude provider fees. The NEDS-derived cost will 

be referred to as “inpatient cost” and the Medicare DRG-derived cost will be referred to as 

“Medicare payment” hereafter. Following guidelines for inflation adjustments,48 we adjusted both 

calculations of inpatient healthcare costs to 2019 using the Gross Domestic Product index.49 

Statistical analysis: 
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Data extraction and preprocessing was performed using Python 3.8.5 (Python Software 

Foundation, Wilmington, DE, USA). Statistical analyses were performed using R v4.0.2 (R 

Foundation for Statistical Computing, Vienna, Austria) and STATA v17.0 (StataCorp LLC., College 

Station, TX, USA). Simple linear regressions were employed to analyze linear trends over 2006 to 

2019 for age- and sex-adjusted GIB incidence and rates of RBC transfusions, case fatality, ED 

discharge, and upper or lower endoscopy. Univariate and multivariate weighted logistic regressions 

were performed to determine if there was a relationship between the year of GIB ED visits and 

outcomes (RBC transfusion, case fatality, discharge from ED, and endoscopic evaluation). Trends 

in inpatient length of stay and inpatient healthcare costs were evaluated using a weighted negative 

binomial regression and log-linked gamma generalized linear model, respectively.  Multivariate 

models were adjusted for age (per 5-year increase), sex, hospital region, income quartile, and CCI 

score. Patients older than 95 years were excluded from the model due to a small sample size. All 

statistical tests were based on two-tailed probability. 

Results 

The total ED visits with GIB as the primary diagnosis from the NEDS database was 172,358 in 

2006 and 241,077 in 2019, with the national weighted projected cases of 804,604 in 2006 and 

1,043,604 in 2019 (Table 1). The distributions of age, sex, hospital region, and income quartile for 

GIB cases were similar across the 14-year study period. For primary payor, more patients were on 

Medicaid in 2019 (15.0%) than 2006 (9.0%). GIB cases with greater comorbidities (CCI ³4) 

increased from 8.9% in 2006 to 15.6% in 2019 with corresponding decreases in cases with minimal 

or no comorbidities (CCI £1: 2006=73.1%, 2019=64.4%). 

Table 1. Selected characteristics for gastrointestinal bleeding patients from the National 

Emergency Department Sample, 2006 – 2019. 
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The age- and sex-adjusted incidence for ED visits for GIB increased from 387.9/100,000 population 

in 2006 to 407.1/100,000 in 2019 (P-value <0.001; Figure 1A). The increase in incidence was 

larger in male patients (411.7/100,000 in 2006, 438.5/100,000 in 2019; P <0.001) than in female 

patients (2006 = 365.5/100,000, 2019 = 377.6/100,000; P=0.021). UGIB incidence decreased from 

112.3/100,000 in 2006 to 94.4/100,000 in 2014 but then increased to 116.2/100,000 by 2019 

(Figure 1B). In contrast, incidence for LGIB increased from 155.5/100,000 in 2006 to a peak of 

171.9/100,000 in 2015 but then declined to 159.8/100,000 by 2019. Incidence for unspecified GIB 

increased from 120.1/100,000 in 2006 to a peak of 148.1/100,000 in 2016 before then declining to 

131.2/100,000 in 2019. We observed similar trends for UGIB, LGIB, and unspecified when 

stratifying by male and female patients. 

 

Characteristics 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 
Total (n) 804604 812410 837528 850863 870232 894664 892278 914763 945515 997371 1006088 1038566 1018495 1043604 
Location of Bleed 
(%)               
    Upper  28.8 27.7 26.3 25.8 25.6 25.1 24.6 24.7 23.7 24.0 23.9 25.2 27.2 28.7 
    Lower  40.4 40.6 40.4 41.0 41.4 42.5 42.4 42.0 42.1 41.0 39.6 39.3 38.6 38.5 
    Unspecified  30.8 31.7 33.3 33.2 33.0 32.4 33.0 33.3 34.2 35.0 36.5 35.5 34.2 32.8 
Female (%) 48.8 49.3 49.1 49.0 48.7 48.9 48.5 48.3 48.2 48.3 48.0 47.8 47.6 47.5 
Age, year (%)               

    < 25 5.0 5.1 5.2 5.5 5.6 5.8 5.8 5.4 5.5 5.3 5.3 4.7 4.5 4.6 
    25-44 19.9 20.1 20.3 20.0 20.6 20.0 20.2 19.5 19.8 20.0 20.5 19.8 19.5 19.7 
    45-64 26.2 26.4 26.8 27.3 27.6 27.3 27.8 27.3 27.9 27.7 28.0 27.9 27.4 27.4 
    ³ 65 49.0 48.5 47.6 47.3 46.2 46.9 46.2 47.8 46.7 47.0 46.3 47.6 48.6 48.3 
Region (%)               

    Northeast 19.3 19.4 19.0 18.4 18.5 19.0 18.6 18.7 17.9 17.0 17.7 18.3 18.4 18.4 
    Midwest 23.1 23.1 22.3 22.9 23.6 22.8 22.5 22.3 23.2 23.2 23.2 22.8 22.7 23.5 
    South 38.5 39.1 39.4 39.4 38.7 38.9 39.5 39.8 39.7 39.6 39.2 39.6 39.0 38.3 
    West 19.0 18.4 19.2 19.3 19.2 19.2 19.2 19.2 19.2 20.0 19.8 19.3 19.8 19.8 
Income Quartile (%)               

    $1 - 43,999 29.3 30.0 28.7 29.1 29.7 28.7 30.4 30.9 31.6 32.3 31.5 30.8 32.4 31.0 
    $44,000 - 55,999 25.0 25.9 28.3 27.7 26.6 25.3 25.3 26.6 28.4 24.1 26.7 26.3 27.0 25.2 
    $56,000 - 73,999 23.5 23.2 21.2 22.6 22.5 24.2 23.1 22.7 21.0 23.4 21.7 22.7 21.0 23.0 
    $74,000+ 20.1 18.6 19.1 18.1 19.0 19.6 19.2 17.5 16.8 18.4 18.3 18.6 18.0 19.1 
Primary Payor (%)               

    Medicare 51.4 50.2 49.6 49.3 48.9 50.1 49.7 51.1 50.0 50.2 49.4 50.3 51.1 50.4 
    Medicaid 9.0 9.3 10.0 10.7 11.6 11.9 12.3 12.1 15.8 15.7 15.8 15.4 15.7 15.0 
    Private Insurance 24.8 25.5 25.7 24.6 23.2 22.5 21.5 21.5 21.8 23.0 23.8 23.0 22.4 23.3 
    Self-Pay 10.6 11.4 11.1 11.3 12.2 11.5 12.3 11.2 9.0 7.7 7.8 8.2 8.0 8.3 
    No Charge 0.9 0.6 0.7 0.9 0.7 0.7 0.7 1.0 0.6 0.5 0.4 0.5 0.3 0.4 
    Other 3.0 2.7 2.8 2.9 3.1 3.1 3.4 3.1 2.8 2.9 2.8 2.4 2.4 2.6 
Charlson Co-
morbidity Index (%)               

     0 51.5 50.7 50.4 49.8 49.8 49.0 49.5 47.9 47.9 47.5 48.2 46.8 45.5 45.0 
     1 21.6 21.9 21.6 21.3 21.4 21.4 21.1 21.3 20.6 20.5 19.9 19.9 19.8 19.4 
     2 11.2 12.3 12.1 12.3 12.2 12.4 12.1 12.6 12.1 11.9 11.2 11.2 11.2 11.1 
     3 6.8 7.5 7.7 7.8 7.9 8.1 8.1 8.4 8.4 8.4 8.3 8.4 8.7 8.8 
     4+ 8.9 7.7 8.1 8.7 8.8 9.1 9.2 9.8 11.0 11.7 12.3 13.8 14.8 15.6 
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Figure 1. Incidences (per 100,000 population) and percent change from 2006 to 2019 for 

gastrointestinal bleeding (GIB) as the primary diagnosis for emergency department visit stratified 

by male, female, and all (A) and stratified by upper, lower, and unspecified GIB (B). Percentages 

indicate overall percent change from 2006 to 2019. *P<0.05 for trend.   

Cumulative percent changes in GIB incidence compared to 2007 and stratified by 10-year age 

categories are shown in Figure 2. Data from 2006 was not available since the U.S. Census Bureau 

did not report uniform categories in 2006 for age population structure. From 2007 to 2019, we 

observed marked increases in any GIB incidence in younger and middle age groups (Figure 2A). 

There were upward trends for age groups 20-29 years (+13.1%; P=0.033), 30-39 years (+27.5%; 

P <0.001), 40-49 years (+16.4%; P <0.001), and 50-59 years (+27.0%; P <0.001). However, the 

incidence of any GIB was relatively constant for the 60-69 years age group (+3.1%; P=0.061) and 

decreased for age groups of 70-79 years (-4.8%; P=0.014) and ≥80 years (-13.0%; P=0.003).  
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Figure 2. Cumulative percent changes in sex-adjusted incidence (per 100,000 population) 

compared to 2007 and stratified by categorical age for any gastrointestinal bleed (A), upper 

gastrointestinal bleed (B), and lower gastrointestinal bleed (C). Percentages indicate overall 

percent change from baseline year of 2007 to 2019. *P<0.05 for trend. 

We observed similar age-stratified trends for UGIB and LGIB incidence from 2007 to 2014 with 

increasing incidence among younger and middle age groups but relatively stable or decreasing 

incidence among older patients. For UGIB (Figure 2B), incidence was relatively stable from 2007 

to 2014 for age groups of 20-29 years, 30-39 years, 40-49 years, and 50-59 years before 

substantially increasing afterward, resulting in overall changes of +43.8% (P <0.001), +48.8% (P 

<0.001), +23.4% (P=0.004), and +23.6% (P=0.002), respectively. In contrast, UGIB incidence 

declined for age groups of 60-69 years and 70-79 years from 2007 to 2016 and then increased 

afterwards, resulting in overall changes of +8.6% (P=0.412) and -5.3% (P=0.069), respectively. 

UGIB incidence decreased in patients aged ≥80 years (-18.3%; P=0.002). For LGIB (Figure 2C), 

there was a consistent upward trend from 2007 to 2019 for age group 50-59 years with a percent 

change of +26.2% (P <0.001). For age groups 20-29 years, 30-39 years, and 40-49 years, the 

incidences rose from 2007 to 2015 before decreasing thereafter, resulting in overall changes of 

+6.7% (P=0.486), +19.1% (P=0.002), and +13.9% (P=0.002), respectively. There were decreases 

in patients aged 60-69 (-6.5%; P=0.004), 70-79 (-10.7%; P <0.001) and ≥80 years (-13.4%; 

P=0.001).  

When looking at etiologies of UGIB (Figure 3A), incidence of bleeding from ulcers, gastritis, and 

angiodysplasia decreased from 2006 to 2016 and then increased afterward with overall percent 

changes of -8.3% (P=0.102), -2.3% (P=0.271), and +29.7% (P=0.042), respectively. Incidence of 

variceal bleeding was constant from 2006 to 2014 with a marked increase thereafter (overall 

change +73.6%; P=0.001). There was a linear decrease in Mallory-Weiss tears (-18.7%; P <0.001) 

and an increase in bleeding from other UGIB causes (+14.5%; P <0.001). Incidence of bleeding 

from Dieulafoy’s lesions was relatively constant from 2006 to 2014 (+5.4%; P=0.942).  
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For LGIB etiologies (Figure 3B), incidence of diverticular and angiodysplasia bleeding decreased 

from 2006 to 2016 and then increased afterwards with overall percent changes of -17.2% (P 

<0.001) and -5.0% (P=0.142), respectively. Incidence of bleeding from anorectal hemorrhage and 

hemorrhoids increased from 2006 to 2015 before decreasing thereafter with overall percent 

changes of +20.2% (P=0.001) and -0.7% (P=0.511), respectively. We observed an increase in 

LGIB from Dieulafoy’s lesion (+80.8%; P <0.001). Bleeding from other LGIB causes was stable 

from 2006 to 2019 (+2.0%; P=0.667). 

 

Figure 3. Age- and sex-adjusted incidences (per 100,000 population) and percent change from 

2006 to 2019 for specific types of upper gastrointestinal bleed (A) and lower gastrointestinal bleed 

(B). Percentages indicate overall percent change from baseline year of 2006 to 2019. 

With a few exceptions, proportions of UGIB patients with common comorbidities were increased 

from 2006 to 2019, particularly for myocardial infarction (relative change=55.2%), congestive heart 

failure (43.2%), peripheral vascular disease (61.3%), liver disease (58.6%), and renal disease 

(85.4%) (Figure 4A). While comorbidities for LGIB patients were fewer overall than that of UGIB 

patients, there were notable increases from 2006 to 2019 in myocardial infarction (42.1%), 

congestive heart failure (37.4%), peripheral vascular disease (70.1%), liver disease (94.8%), renal 

disease (103.2%), rheumatic disease (39.9%), and HIV/AIDs (55.6%) (Figure 4B). 
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Figure 4: Trends in proportion of patients with specific co-morbidity as measured by the Charlson 

Co-morbidity Index mapped from ICD-9 and ICD-10 CM codes.  

Between 2006 and 2019, the RBC transfusion rate for any GIB decreased from 23.2% to 18.2% 

(relative risk reduction [RRR] -21.2%, P=0.001; Figure 5A). UGIB cases saw the greatest raw 
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decrease in RBC transfusion rate from 37.4% to 28.3%. Notably, the inflection point for the 

decreasing trend in RBC transfusion rate was around 2014. Case fatality rate decreased from 

1.44% to 0.94% (RRR -34.5%, P <0.001; Figure 5B), rate of discharge from ED increased from 

38.7% to 41.5% (RRR +7.1%, P <0.001; Figure 5C), and rate of any endoscopy decreased from 

43.0% to 36.6% (RRR -14.9%, P <0.001; Figure 5D) from 2006 to 2019.  

 

Figure 5. Age- and sex-adjusted rates and percent change from 2006 to 2019 for red blood cell 

transfusion (A), case fatality (B), emergency department discharge (C) and any endoscopy (D). 

Percentages indicate overall percent change from baseline year of 2006 to 2019. *P<0.05 for trend. 

RBC = red blood cell; ED = emergency department; GIB = gastrointestinal bleed; UGIB = upper 

GIB; LGIB = lower GIB. 
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Decreases in endoscopy rates for patients who were discharged from the ED (RRR -31.1%; P 

<0.001) were greater than for those admitted or placed under observation from the ED (RRR -

7.35%; P <0.001) (Figure 6).  

 

Figure 6: Trends and percentage change from 2006 to 2019 of endoscopy rate for patients 

discharged from the ED and those admitted for observation or inpatient stay 

Results of multivariate regression analyses of outcomes by year are found in Table 2 (univariate 

analyses in Table 2A). Compared to patients in 2006, patients in 2019 with any GIB were less likely 

to receive RBC transfusions (odds ratio [OR]=0.62; 95% confidence interval [CI]=0.61, 0.63) or 

endoscopy (OR=0.64; 95% CI=0.63, 0.65). Patients in 2019 compared to 2006 also had lower odds 

of death (OR=0.52; 95% CI=0.49, 0.56) and were more likely to be discharged from the ED 

(OR=1.44; 95% CI=1.42, 1.47). Multivariate analyses showed that patients in 2019 compared to 

2006 had shorter length of stays (relative ratio [RR]=0.87; 95% CI=0.86, 0.88; Table 2). Inpatient 

healthcare costs were stable from 2012 to 2019 (RR=1.00; 95% CI=0.99, 1.01) and Medicare costs 

increased only slightly (RR=1.02; 95% CI=1.01, 1.02). 

Table 2. Multivariate weighted regressions for gastrointestinal bleeding outcomes of interest with 

comparison to reference year 
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Table 2A: Univariate weighted regressions for outcomes of interest with comparison to reference 

year. 

Year 
RBC 

Transfusion 
OR (95% CI) 

Case 
Fatality 

OR (95% CI) 

ED 
Discharge 

OR (95% CI) 
Endoscopy 
OR (95% CI) 

Length of 
Stay 

RR (95% CI) 

Inpatient 
Cost 

RR (95% CI) 

Medicare 
Payment 

RR (95% CI) 
2006 Reference Reference Reference Reference Reference   

2007 1.15 
(1.13,1.17) 

0.95 
(0.89,1.01) 

0.99 
(0.98,1.01) 

0.97 
(0.96,0.99) 

1.00 
(0.99,1.01) 

  

2008 1.13 
(1.11,1.15) 

0.91 
(0.86,0.97) 

1.07 
(1.05,1.09) 

0.92 
(0.90,0.93) 

0.99 
(0.98,1.00) 

  

2009 1.15 
(1.13,1.17) 

0.89 
(0.84,0.95) 

1.10 
(1.08,1.12) 

0.92 
(0.90,0.93) 

0.97 
(0.96,0.98) 

  

2010 1.23 
(1.20,1.25) 

0.84 
(0.79,0.90) 

1.11 
(1.10,1.13) 

0.85 
(0.84,0.87) 

0.95 
(0.94,0.96) 

  

2011 1.12 
(1.10,1.14) 

0.77 
(0.72,0.82) 

1.16 
(1.14,1.18) 

0.85 
(0.84,0.86) 

0.93 
(0.92,0.94) 

  

2012 1.13 
(1.11,1.15) 

0.77 
(0.73,0.82) 

1.22 
(1.20,1.24) 

0.79 
(0.78,0.80) 

0.92 
(0.91,0.93) 

Reference  

2013 1.16 
(1.14,1.18) 

0.76 
(0.71,0.80) 

1.23 
(1.20,1.25) 

0.81 
(0.80,0.82) 

0.91 
(0.90,0.92) 

0.97 
(0.96,0.98) 

 

2014 1.02 
(1.00,1.04) 

0.69 
(0.65,0.73) 

1.32 
(1.29,1.34) 

0.75 
(0.73,0.76) 

0.90 
(0.89,0.91) 

0.94 
(0.93,0.95) 

Reference 

2015 0.84 
(0.83,0.86) 

0.65 
(0.62,0.70) 

1.42 
(1.40,1.44) 

0.69 
(0.68,0.70) 

0.88 
(0.87,0.89) 

0.93 
(0.92,0.94) 

1.03 
(1.02,1.03) 

2016 0.62 
(0.60,0.63) 

0.61 
(0.58,0.65) 

1.45 
(1.43,1.48) 

0.64 
(0.63,0.65) 

0.88 
(0.87,0.89) 

0.99 
(0.98,1.00) 

1.09 
(1.08,1.09) 

2017 0.59 
(0.58,0.60) 

0.57 
(0.54,0.61) 

1.40 
(1.37,1.42) 

0.66 
(0.65,0.67) 

0.87 
(0.86,0.88) 

0.96 
(0.95,0.97) 

0.98 
(0.98,0.99) 

2018 0.62 
(0.61,0.63) 

0.55 
(0.52,0.58) 

1.39 
(1.37,1.41) 

0.66 
(0.65,0.67) 

0.86 
(0.85,0.87) 

0.96 
(0.95,0.98) 

0.97 
(0.96,0.97) 

2019 0.62 
(0.61,0.63) 

0.52 
(0.49,0.56) 

1.44 
(1.42,1.47) 

0.65 
(0.64,0.65) 

0.87 
(0.86,0.88) 

1.00 
(0.99,1.01) 

1.02 
(1.01,1.02) 

Multivariate weighted regression adjusted for age (per 5-year increase), sex, hospital region, income quartile, and 
Charlson Comorbidity Index score.  
RBC = red blood cell; ED = emergency department; OR = odds ratio; RR = relative ratio; CI = confidence interval. 
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Average inpatient length of stay for any GIB steadily decreased from 4.5 days to 4.2 days between 

2006 and 2019, a relative reduction of 6.0% (P <0.001; Figure 7A). Patients hospitalized for UGIB 

had longer average inpatient stay than LGIB and unspecified GIB. Length of stay for LGIB declined 

from 2006 to 2015 but increased thereafter. Between 2012 and 2019, average inpatient costs 

increased from $6144 to $6605, a relative increase of 7.5% (P=0.043; Figure 7B). The average 

Medicare payment was $8442 in 2014 and $8849 in 2019, a relative increase of 4.8% (P=0.998; 

Figure 7C).  

Year 
RBC 

Transfusion 
OR (95% 

CI) 

Case 
Fatality 

OR (95% 
CI) 

ED 
Discharge 
OR (95% 

CI) 

Any 
Endoscopy 

OR (95% 
CI) 

Length of 
Stay 

RR (95% 
CI) 

Inpatient 
Cost 

RR (95% 
CI) 

Medicare 
Payment 

RR (95% CI) 

2006 Reference Reference Reference Reference Reference     

2007 1.12 
(1.10,1.14) 

0.94 
(0.89,1.00) 

1.00 
(0.98,1.01) 

0.97 
(0.96,0.99) 

1.01 
(1.00,1.02) 

    

2008 1.12 
(1.10,1.13) 

0.91 
(0.85,0.96) 

1.05 
(1.04,1.07) 

0.93 
(0.92,0.94) 

0.99 
(0.99,1.00) 

    

2009 1.13 
(1.12,1.15) 

0.90 
(0.85,0.96) 

1.07 
(1.05,1.08) 

0.93 
(0.92,0.95) 

0.98 
(0.97,0.99) 

    

2010 1.18 
(1.17,1.20) 

0.85 
(0.80,0.90) 

1.09 
(1.07,1.11) 

0.87 
(0.86,0.89) 

0.97 
(0.96,0.98) 

    

2011 1.12 
(1.11,1.14) 

0.80 
(0.75,0.85) 

1.09 
(1.08,1.11) 

0.89 
(0.88,0.90) 

0.95 
(0.94,0.96) 

    

2012 1.12 
(1.10,1.13) 

0.78 
(0.74,0.83) 

1.14 
(1.13,1.16) 

0.83 
(0.82,0.85) 

0.94 
(0.93,0.95) 

Reference   

2013 1.18 
(1.16,1.20) 

0.80 
(0.75,0.84) 

1.09 
(1.08,1.11) 

0.88 
(0.87,0.89) 

0.94 
(0.93,0.95) 

0.97 
(0.96,0.98) 

  

2014 1.06 
(1.04,1.07) 

0.74 
(0.69,0.78) 

1.15 
(1.14,1.17) 

0.82 
(0.81,0.83) 

0.94 
(0.93,0.95) 

0.96 
(0.95,0.97) 

Reference 

2015 0.91 
(0.89,0.92) 

0.72 
(0.68,0.77) 

1.19 
(1.18,1.21) 

0.78 
(0.77,0.79) 

0.92 
(0.92,0.93) 

0.95 
(0.94,0.97) 

1.03 
(1.03,1.04) 

2016 0.69 
(0.68,0.70) 

0.67 
(0.63,0.71) 

1.23 
(1.22,1.25) 

0.73 
(0.72,0.74) 

0.93 
(0.92,0.94) 

1.04 
(1.03,1.05) 

1.10 
(1.09,1.11) 

2017 0.68 
(0.67,0.69) 

0.65 
(0.62,0.69) 

1.14 
(1.13,1.16) 

0.77 
(0.76,0.78) 

0.93 
(0.92,0.94) 

1.01 
(1.00,1.02) 

1.00 
(1.00,1.01) 

2018 0.74 
(0.73,0.75) 

0.65 
(0.62,0.69) 

1.10 
(1.09,1.12) 

0.78 
(0.77,0.79) 

0.92 
(0.92,0.93) 

1.03 
(1.02,1.04) 

0.99 
(0.98,0.99) 

2019 0.74 
(0.73,0.75) 

0.63 
(0.60,0.67) 

1.12 
(1.10,1.13) 

0.78 
(0.77,0.79) 

0.94 
(0.93,0.95) 

1.07 
(1.06,1.09) 

1.05 
(1.04,1.05) 

Multivariate weighted regression adjusted for age (per 5-year increase), sex, hospital region, income 
quartile, and Charlson Comorbidity Index score.  
RBC = red blood cell; ED = emergency department; OR = odds ratio; RR = relative ratio; CI = confidence 
interval. 

 



 

 
 

37 

 

Figure 7. Trends and percent change from 2006 to 2019 for inpatient length of stay (A), inflation-

adjusted average inpatient healthcare cost (B), and inflation-adjusted average Medicare payment 

(C). Percentages indicate overall percent change from baseline year to 2019. *P<0.05 for trend. 

GIB = gastrointestinal bleed; UGIB = upper GIB; LGIB = lower GIB. 

Discussion 

We found that the overall incidence of patients presenting to the ED with GIB in the U.S. has 

increased from 2006 to 2019, although changes in incidence vary based on location of GIB and 

age of patients. UGIB incidence has been increasing since 2014, especially in young and middle 

age groups (<60 years). LGIB incidence has been decreasing since 2015, but incidence in young 

and middle age groups (<60 years) is increasing while incidence in older age groups (³60 years) 

is declining. Even though patients presenting with GIB are now sicker with more comorbidities, 

RBC transfusion, case fatality rate, and length of inpatient stay have decreased from 2006 to 2019, 

while the proportion of patients discharged from the ED has increased.  

Our results regarding declining UGIB incidence from 2006 to 2014 are supported by previous 

studies that used national inpatient databases to examine UGIB during this timeframe.37-39 Since 

the most recent trend data reported from UGIB was in 2012, the increasing incidence of UGIB after 

2014 has not been shown previously. We observed increasing incidence of bleeding from ulcers, 

varices, gastritis/duodenitis, and angiodysplasia, suggesting that multiple causes may be driving 

this shift. The upward pattern after 2014 was observed as substantial increases in UGIB incidence 

among younger and middle-aged patients (<60 years) and smaller increases among older patients 

(³60 years). Several studies showed that the expansion of Medicaid in 2014 through the Affordable 
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Care Act led to improved healthcare and ED utilization among younger adults.50-53 In our study, the 

proportion of GIB patients with Medicaid grew by 67% between 2006 and 2019, which may have 

contributed to the rise in younger and middle-aged patients presenting to the ED with GIB. 

However, the steady increase in UGIB incidence between 2014 to 2019 across all age groups is 

unlikely to be explained by greater ED utilization from Medicaid expansion alone, calling for further 

studies on potential underlying causes for the recent rise in UGIB incidence.  

The trend reversal in UGIB incidence may also be a consequence of the increasing burden of 

comorbidities in UGIB patients from 2006 to 2019. Increased non-gastrointestinal comorbidities 

comprises a strong, independent risk factor for non-variceal UGIB.54 The growing number of 

patients with chronic liver disease in the U.S., especially non-alcoholic fatty liver disease, may be 

contributing to the increased incidence of variceal bleed.55,56 Our study also demonstrated rising 

burdens of myocardial infarction, peripheral vascular disease, renal failure and congestive heart 

disease over time. Antithrombotic therapies, which are often prescribed for long-term prophylaxis 

or management of cardiovascular disease, are known risk factors for GIB.57,58 Increasing number 

of patients on these antithrombotic therapies may be contributing to the more recent uptick in UGIB 

incidence. 

Our findings of increasing LGIB incidence from 2006 to 2015 are supported by the most recent 

study of inpatient LGIB epidemiology from 2005 to 2014.40 This trend in our study was greater in 

younger and middle-aged patients (<60 years) than in older patients (³60 years). Decreased 

diverticular bleeding across that same timeframe is also consistent with other studies.37,41 Previous 

studies observed that the most common inpatient diagnosis associated with LGIB was diverticular 

bleeding.37,40 In contrast, we observed that anorectal hemorrhage was the most common diagnosis 

associated with ED visit for LGIB followed by hemorrhoidal and then diverticular bleed, likely 

reflecting the different patterns of LGIB etiologies in the ED versus inpatient settings. Our 

observation of decreasing LGIB incidence since 2015 has not been shown previously. Decreasing 

incidence of anorectal hemorrhage and hemorrhoids from 2015 to 2019 may be driving this trend. 
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Since studies of LGIB incidence have been limited, further research is needed to validate these 

findings.  

Trends in clinical practice patterns observed in this study are consistent with updates to guideline 

recommendations for the management of GIB. For example, the decrease in the rate of RBC 

transfusion around 2014 may reflect 2010 international consensus recommendations and 2012 

U.S. guideline recommendations for a restrictive transfusion strategy in patients with UGIB,7,59 and 

the 2013 publication of a large randomized trial documenting improved outcomes with such a 

strategy.60 Similar restrictive RBC transfusion strategies were recommended by national guidelines 

for LGIB in 2016.8  The increase in ED discharge rate in our data is also consistent with updates to 

guideline recommendations suggesting discharge of very-low-risk patients with outpatient 

management.7 We also observed declining rates of endoscopy for GIB patients. This trend is 

probably related to improved risk stratification and the increase in ED discharge of very-low-risk 

patients: patients generally do not receive endoscopy while in the ED and most of the decline in 

endoscopy was seen in those discharged from the ED.  

Despite substantial increases in comorbidities in GIB patients presenting to the ED, case fatality 

continued to decrease from 2006 to 2019, which is supported by previous studies examining case 

fatality in both upper and lower GIB.37-40 Similarly, average length of stay for patients hospitalized 

for GIB decreased from 2006 to 2019, suggesting that management and outcomes for GIB patients 

have steadily improved over the past two decades. Although average unadjusted NEDS-derived 

inpatient cost and Medicare payment showed small overall increases from 2012 to 2019 (7.5%) 

and 2014 to 2019 (4.8%), respectively, multivariate regression analyses showed that inpatient costs 

in 2019 did not change compared to 2012 and that Medicare payment in 2019 was increased only 

2% compared to 2014.  

Value in healthcare is defined as health outcomes achieved per dollar spent.61 This is typically 

measured by evaluating improvements in quality via changes in clinical outcomes and evaluating 

changes in cost. A previous study using the National Inpatient Sample identified trends in in-

hospital mortality and costs for bariatric surgery to suggest that increased value could be attributed 
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to the use of new surgical techniques and technologies.62 With GIB, we found an improvement in 

in-facility case fatality (either in the ED or inpatient) while maintaining roughly flat hospital-based 

costs, suggesting increased value. This trend potentially reflects improvements in the management 

of GIB since 2006, such as integration of clinical guidelines recommending restrictive transfusion 

strategies and early risk assessment with discharge of very-low-risk patients from the ED. The 

importance of the “Triple Aim” of better health care quality, lower costs, and improved health care 

outcomes can be seen across different domains in healthcare.63 This study suggests that improved 

healthcare delivery for patients with GIB has resulted in captured value for patients, providers, and 

payers.  

There are several limitations to this study. First, NEDS does not include information from the 

hospital stay for ED patients that were transferred to another hospital, limiting longitudinal follow-

up of the clinical management for these patients. However, the majority of patients admitted from 

EDs with GIB are admitted to the same hospital, which is included in NEDS. Second, we did not 

have information on patients who may develop GIB after hospitalization for another diagnosis. 

Third, NEDS only provides encounter-level data and not patient-level data. Therefore, patients with 

recurrent bleeding who visited the ED more than once would have been counted as separate 

encounters, leading to an overestimate of GIB incidence. This systematic overestimation should be 

uniform over the 14-year study period and should not affect the observed trends. Fourth, we used 

ICD and CPT codes to identify diagnoses and procedures for GIB without individual chart review, 

which may have introduced some misclassification. This is unlikely to affect specific upper and 

lower GIB diagnoses as several studies have shown good positive predictive values for these 

codes.64-66 However, nearly a third of GIB diagnoses had non-specific ICD codes and could not be 

categorized into upper or lower GIB.67 Redistribution of these unspecified cases may affect the 

relative proportions of upper and lower GIB, especially with the introduction of more specific codes 

in ICD-10-CM and new diagnostic techniques leading to better identification of bleeding in the small 

intestine.68 The shift from ICD-9-CM to ICD-10-CM in 2015 does not primarily explain our findings, 

given that trends for GIB incidence began before the shift and continued after. Additionally, different 

secular trends in GIB by age groups also argues against the code change as the main explanation. 
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Fifth, both NEDS-derived inpatient cost and Medicare DRG-derived cost exclude provider fees and 

therefore underestimate the true total healthcare cost. Nonetheless, the absence of provider fees 

is systematic and is unlikely to impact the observed trends. Lastly, case fatality was derived from 

all-cause death and does not indicate death directly attributable to GIB.  

In summary, the overall incidence of acute GIB and UGIB in the U.S. is increasing, especially for 

young and middle age groups, while the incidence of LGIB is decreasing. Clinical management of 

GIB appears to reflect updated guideline recommendations, with decreased RBC transfusions and 

increased patient discharges from the ED. Despite a sicker population presenting with GIB, case 

fatality rate and inpatient length of stay has decreased with minimal change in healthcare costs. 

Our findings call for greater awareness and further investigation of underlying causes for the 

increasing incidence of GIB and UGIB. 
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Disparities in Access to Endoscopic Evaluation for Patients with Acute Upper 

Gastrointestinal Bleeding Presenting to the Emergency Department 

Introduction 

In the United States, acute upper gastrointestinal bleeding (UGIB) has an annual incidence of 72.6 

per 100,000 cases, accounts for approximately 230,000 hospitalizations yearly and is associated 

with an annual in-hospital economic burden greater than $2 billion.69 The standard of care involves 

consideration of upper endoscopic evaluation with esophagogastroduodenoscopy (EGD) for 

patients presenting with acute UGIB with an endoscopist trained in endoscopic hemostasis, 

possibly within 24 hours of presentation.5 For Black and Hispanic populations, access to 

endoscopic evaluation when presenting to the emergency department (ED) with a primary 

diagnosis of acute UGIB is not clearly described. A previous study found that for hospitalized 

patients with non-variceal UGIB (NVUGIB), uninsured and Black patients have lower odds of 

undergoing EGD, Black and Hispanic patients have lower odds of early endoscopic evaluation and 

Native American patients have the highest odds of in-hospital mortality.70 Access as measured by 

services rendered during an ED visit is particularly relevant to Black and Hispanic populations, who 

are more likely to visit the emergency department (ED) and utilize the ED for routine clinical care.71  

We aim to assess national disparities in access to endoscopic care among individuals presenting 

to the ED with UGIB. We hypothesize that historically marginalized racial/ethnic populations will 

have lower odds of undergoing EGD. 

Methods 

A retrospective cross-sectional analysis of the 2019 Nationwide Emergency Department Sample 

(NEDS) was performed. Variables assessed included race/ethnicity, age, sex, hospital region, 

median income by zip code, insurance, hospital location and teaching status, and Charlson 

Comorbidity Index (CCI).44 Univariate, survey adjusted, and population weighted-multivariable 

logistic regression analyses were performed. The interaction between race/ethnicity, hospital 

rurality, and hospital teaching status was also assessed with subsequent stratified analyses.  
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189,547 of 276,740 individuals with a primary diagnosis of UGIB underwent EGD. Most individuals 

undergoing EGD were White (66.2%), male (54.3%), had Medicare for primary insurance (59.8%), 

received care in an urban non-teaching hospital (71.0%) and had a Charlson co-morbidity index 

(CCI) ≥4 (27.0%) (Table 3).  

Table 3: Characteristics of Patients with Primary Diagnosis of Upper Gastrointestinal Bleeding 

Presenting to the Emergency Department.  

Characteristics No Endoscopy Endoscopy P value 

Total (n) 85557 191183  

Hospital Admission * 38.4 97.5 < 0.001 

RBC Transfusion 9.7 36.7 < 0.001 

Endoscopic Hemostasis 0.0 34.7 < 0.001 

Female 43.9 45.7 < 0.001 

Age (year)   < 0.001 

< 25 13.4 1.1  

25-45 38.4 15.0  

45-65 31.9 49.6  

> 65 16.3 34.3  

Race/Ethnicity   < 0.001 

White 62.4 66.2  

Black 18.1 15.7  

Hispanic 13.5 11.4  

Asian 2.1 3.7  

Native American 0.9 0.4  

Other 3.0 2.7  

Region   < 0.001 

Northeast 16.6 18.0  

Midwest 22.8 21.4  
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South 36.9 39.7  

West 23.7 20.9  

Teaching Hospital **   < 0.001 

Urban Teaching 20.1 21.1  

Urban Non-Teaching 64.4 71.0  

Rural 15.5 7.9  

Income Quartile   < 0.001 

$1 - 43,999 32.8 27.8  

$44,000 - 55,999 25.5 24.4  

$56,000 - 73,999 23.5 25.1  

$74,000+ 18.1 22.7  

Primary Payer   < 0.001 

Medicare 32.8 59.8  

Medicaid 24.1 12.6  

Private Insurance 25.9 19.4  

Self-Pay 13.8 5.6  

No Charge 0.4 0.5  

Other 3.0 2.2  

Charlson Co-morbidity Index   < 0.001 

0 55.1 21.1  

1 18.5 21.9  

2 9.0 15.7  

3 6.3 14.3  

4+ 11.1 27.0  

*Hospital admission includes patients who were admitted from the ED or placed under 

observation in the ED 

**NEDS does not differentiate teaching status for rural hospitals as only a small number of rural 

hospitals were teaching 
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Results 

In univariate analysis, patients who were age ≥25 years-old, female, Asian, had a median income 

by zip code above the lowest quartile, and had a CCI>0 were associated with increased odds of 

undergoing EGD. Conversely, Black (OR 0.80;CI 0.77-0.84), Hispanic (OR 0.80;CI 0.76-0.84), and 

Native American (OR 0.41;CI 0.33-0.50) race/ethnicity, and receiving care at a rural hospital (OR 

0.49;CI 0.46-0.52) were associated with lower odds of undergoing EGD. On weighted multivariable 

analysis, Black (OR 0.82;CI 0.78-0.87), Native American (OR 0.60;CI 0.47-0.76), Medicaid (OR 

0.74;CI 0.70-0.79) and patients receiving care in rural/non-metropolitan hospitals (OR 0.51;CI 0.48-

0.55) had lower odds of undergoing EGD. In comparison, increasing age and median income by 

zip code, Asian race (OR 1.7;CI 1.49-1.94), and receiving care in urban teaching-hospitals (OR 

1.06;CI 1.01-1.11) were independent predictors for undergoing EGD (Table 4). 

Table 4: Weighted Univariate and Multivariate Logistic Regression Analysis for Upper Endoscopic 

Evaluation in Patients with Upper Gastrointestinal Bleeding  

 

 Univariate Multivariate 

Weighted Population = 276,744 

Number of Encounters = 64,330 

 
Odds 

Ratio 

95% 

Confidence 

Interval 

Odds Ratio 

95% 

Confidence 

Interval 

Age     

<25 years old Reference Reference Reference Reference 

25-50 years old 4.75*** 4.27-5.28 3.75*** 3.37-4.17 

50 to 75 years old 18.86*** 16.99-20.93 9.8*** 8.79-10.92 

>75 years old 25.56*** 22.96-28.46 10.9*** 9.68-12.27 
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Gender 

Male Reference Reference Reference Reference 

Female 1.08*** 1.04-1.11 0.94** 0.91-0.98 

 

Region 
    

Northeast Reference Reference Reference Reference 

Midwest 0.87*** 0.82-0.91 1.03 0.97-1.10 

South 0.99 0.95-1.05 1.2*** 1.13-1.27 

West 0.81*** 0.77-0.86 0.86*** 0.81-0.92 

 

Zip Income Quartile 
    

$1-47,999 Reference Reference Reference Reference 

$48,000 - 60,999 1.13*** 1.08-1.18 1.06* 1.00-1.12 

$61,000 - 81,999 1.26*** 1.20-1.32 1.13*** 1.07-1.20 

$82,000+ 1.48*** 1.40-1.55 1.22*** 1.14-1.29 

 

Primary Payer 
    

Medicare Reference Reference Reference Reference 

Medicaid 0.29*** 0.27-0.30 0.72*** 0.68-0.77 

Private Insurance 0.41*** 0.39-0.43 0.99 0.93-1.05 

Self-Pay 0.22*** 0.21-0.24 0.69*** 0.63-0.74 

No Charge 0.61*** 0.47-0.78 1.42* 1.07-1.89 

Other‡ 0.4*** 0.36-0.45 0.82** 0.73-0.93 

 

Charlson Co-morbidity Index 
    

0 Reference Reference Reference Reference 

1 3.09*** 2.95-3.25 2.14*** 2.03-2.25 

2 4.55*** 4.28-4.84 2.54*** 2.38-2.71 



 

 
 

47 

3 5.99*** 5.58-6.42 3.56*** 3.30-3.83 

≥4 6.40*** 6.02-6.72 3.32*** 3.12-3.52 

 

Urban vs Rural and Teaching 

Status 

    

Urban (>50,000) and Non-

Teaching Hospital 
Reference Reference Reference Reference 

Urban (>50,000) and Teaching 

Hospital 
1.05* 1.01-1.10 1.06* 1.01-1.11 

Rural (<50,000) and Non-

Metropolitan Hospital 
0.49*** 0.46-0.52 0.51*** 0.48-0.55 

 

Race 
    

White Reference Reference Reference Reference 

Black 0.81*** 0.78-0.85 0.84*** 0.79-0.89 

Hispanic 0.79*** 0.75-0.84 0.98 0.92-1.04 

Asian 1.66*** 1.48-1.87 1.7*** 1.49-1.94 

Native American 0.4*** 0.33-0.50 0.6*** 0.47-0.76 

Other 0.86** 0.78-0.95 1.01 0.90-1.14 

 

* p<0.05, ** p<0.01, *** p<0.001 

‡ Includes Worker’s Compensation, CHAMPUS, CHAMPVA, Title V, and other government 

programs 

 

On stratified analysis Black race was associated with lower odds of undergoing EGD in urban-

teaching hospitals (OR 0.79;CI 0.75-0.85) and urban non-teaching hospitals (OR 0.87;CI 0.77-

0.98), while Hispanic ethnicity (OR 0.49;CI 0.34-0.72) or Native American race (OR 0.46;CI 0.28-

0.76) were associated with lower odds of undergoing EGD in rural hospitals. (Table 5) 
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Table 5: Stratified multivariate analysis of upper endoscopy for patients with UGIB by Urban / Rural 

and Teaching Hospital Status 

Race   

Urban Non-Teaching 

Hospital 

Urban Teaching 

Hospital Rural Hospital 

  N OR 95% CI OR 95% CI OR 95% CI 

White 179949 Ref Ref Ref Ref Ref Ref 

Black 45452 0.87* 0.77-0.98 0.79*** 0.74-0.84 1.02 0.83-1.25 

Hispanic 33252 1.11 0.97-1.27 0.97 0.90-1.04 0.49*** 0.34-0.72 

Asian 8866 1.40* 1.07-1.84 1.71*** 1.47-1.99 2.92** 1.40-6.11 

Native 

American 1491 
0.53* 0.29-0.935 0.85 0.60-1.20 0.46** 0.28-0.76 

Other 7734 1.00 0.78-1.27 1.04 0.91-1.20 0.77 0.37-1.61 

Multivariate weighted logistic regression adjusted for age (per 5-year increase), sex, hospital region, 

income quartile, CCI score, and year 

 

Discussion 

In this study we found that Black and Native American patients had lower odds of undergoing EGD 

for UGIB compared to White patients. When stratified by context, Black patients had lower odds of 

undergoing EGD for UGIB compared to White patients in urban-teaching and non-teaching 

hospitals. In addition, Hispanic and Native American patients had lower odds of undergoing EGD 

for UGIB compared to White patients in rural hospitals. Conversely, Asian race and receiving care 

in an urban teaching-hospital were independent predictors for undergoing EGD for UGIB. 

Our analysis found that Black and Native American populations have lower odds of undergoing 

EGD for UGIB, which is consistent with prior research showing that Black patients have lower odds 

of undergoing EGD and early endoscopic evaluation.70 Similar to prior studies, we also found that 

Asian populations have higher odds of undergoing EGD for UGIB.70 While socioeconomic factors 

and co-morbidity burden disparately effect historically marginalized populations, the disparity in 
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access persists after our adjustment for CCI, primary insurance payer, and zip code income 

quartile. Explanations for this disparity could include individual barriers (time-off, lost wages and 

ability to secure affordable childcare) and structural barriers (healthcare fluency, mistrust of the 

healthcare system, implicit bias, and structural racism). Healthcare fluency refers to the 

conglomerate of general literacy, scientific knowledge, cultural perception as well as trust and ability 

to self-advocate in the healthcare system.72 Healthcare fluency may thus effect the perceived 

understanding regarding urgency of an acute UGIB and the recommendation to undergo potential 

EGD. 

Implicit bias can lead to varying treatment recommendations across race/ethnicity.73 Importantly, 

these biases may be exacerbated under periods of high stress,74 such as caring for patients with 

an acute UGIB. Implicit bias may subsequently contribute towards Black, Hispanic, and Native 

American populations having worse quality healthcare measures.75  

While our findings do not explicitly link these individual and structural barriers to disparities in 

access, structural, interpersonal, and internalized racism is a modifiable risk factor that may be 

addressed through anti-racism policies76 in order to combat ongoing inequities in care.   

Our study showed that receiving care in a rural/non-metropolitan hospital was independently 

associated with lower odds of undergoing EGD for UGIB. Rural hospitals are being increasingly 

classified with safety-net status77 and safety-net hospitals disproportionately care for low-income, 

uninsured/underinsured, and historically marginalized racial/ethnic populations. Thus, this finding 

may be in the context of both safety-net hospitals often being under-resourced and rural hospitals 

also facing geographic isolation with limited access to specialty care. Study findings also 

demonstrate increased odds of undergoing EGD in urban-teaching hospitals, which may be due to 

increased access to sub-specialty care. 

Furthermore, stratified analysis assessing the interaction between race/ethnicity, hospital rurality, 

and hospital teaching status demonstrates that Hispanic ethnicity and Native American race was 

associated with lower odds of undergoing EGD in rural hospitals. In the US, half of the agricultural 

workforce, often located in rural regions, is comprised of Hispanic individuals78 and 34% of 
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agricultural laborers are undocumented.78 Additionally, rural EDs are experiencing greater 

utilization rates compared to urban EDs and are increasing their care of Medicaid, and uninsured 

patient populations.77  Unfortunately, rural Hispanic populations have the lowest rates of insurance 

coverage and the highest rates of not having a healthcare provider.79 Hispanic individuals also have 

lower endoscopic therapy rates70 and the highest rebleeding rates.80 Our study findings could be 

explained, in part, by structural barriers impacting the patient-provider dynamic and subsequent 

provision of care, which may also be compounded by documentation and insurance status. 

Race/ethnicity has been found to be an independent risk factor for differences in specialty 

healthcare delivery, which can contribute to inequities in outcomes.81 Our study found that 

historically marginalized patient populations including Black, Native American and individuals 

receiving care in a rural hospital are independently associated with lower odds of undergoing EGD 

for UGIB. Additionally, Hispanic, and Native American patients have lower odds of undergoing EGD 

in rural hospitals. While individual and structural barriers may contribute to this disparity, further 

studies should assess barriers on the continuum of care for UGIB such as appropriate access to 

endoscopic care and equitable healthcare delivery, including policies governing access to 

procedural resources. 
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Cost Minimization Analysis of Applying Risk Stratification to Patients Presenting with Acute 

Upper Gastrointestinal Bleeding 

Introduction 

Approximately 300,000 patients present to the emergency department (ED) in the U.S. with upper 

gastrointestinal bleeding (UGIB) annually. National guidelines recommend using risk assessment 

scores, such as the Glasgow-Blatchford Score (GBS), to discharge very low risk patients, who have 

a very low risk of requiring red blood cell transfusion, hemostatic intervention, or death.82,83 In a 

prospective non-randomized multicenter study studying the GBS, 29% of patients were discharged, 

with none of them experiencing any adverse events (death, interventions or readmission).84  

Despite this evidence, uptake has been low, with approximately only 30% of all physicians ever 

using an upper gastrointestinal bleeding risk score in a national survey of emergency physicians, 

internists, and gastroenterologists practicing in hospitals affiliated with an ACGME-accredited 

gastroenterology fellowship.20 Underutilization of risk stratification scores has been attributed to 

lack of knowledge, unbelief in the value of using these scores, and diffusion of responsibility for risk 

classification among ER physicians, gastroenterologists, and nurses.21  

Previous studies have shown that integrating clinical decision support within electronic health 

records can make implementation of new practices more salient and overcome clinician inertia in 

adapting unfamiliar practices. Furthermore, these approaches may be more easily scaled, 

facilitating the use of risk adjustment tools such as GBS, or even more powerful machine learning 

tools, into care for patients with UGIB.  

Quantifying the cost implications of consistently using risk stratification for patients with UGIB is 

important. Implementing and maintaining clinical decision support applications comes at a cost to 

each hospital system—a prior study has estimated the cost of a similar application at $217,138.85 

Nevertheless, these costs are offset by averted hospitalizations, which result in lower inpatient 

spending, fewer days of work lost, and less informal care. 
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This study evaluates the potential healthcare and societal cost implications of widespread 

implementation of GBS or a machine learning model to guide triage of patients with UGIB using a 

cost minimization analysis. We account for the cost of implementation and maintenance of clinical 

decision support applications, as well as cost-savings related to reduced inpatient utilization, 

reductions in lost employment, and lower cost of informal care. These analyses form a robust 

framework that can provide a comprehensive estimate of the potential cost savings to society with 

the consistent use of risk stratification tools in UGIB. 

Methods 

Model Structure 

A hypothetical cohort of patients with UGIB was modeled using a Markov chain model that followed 

the cohort from presentation to the ED through either inpatient stay to 28 days post-discharge, or 

28 days after discharge from the ED. This timeframe was chosen because generally, post-

discharge diagnostic evaluation and assessment with endoscopy, if necessary, is completed within 

30 days of the patient encounter. Moreover, the patients modeled (very low risk), are not expected 

to have complications past this timeframe. 

Two triage strategies were compared to usual care: using GBS=0 or a previously validated machine 

learning model applied for all patients presenting with UGIB with comparable sensitivity to identify 

very low risk patients. The use of GBS=0 applied to every patient with UGIB reflects the multicenter 

prospective trial where 71% of patients with UGIB were admitted compared to the previous rate of 

96%. The use of machine learning estimated proportion of admitted patients at 65% using the 

absolute increase in sensitivity of the machine learning model (14%) compared to GBS at the 

matched 100% sensitivity threshold in an external validation study. Since this was not directly taken 

from the original trial, the proportion of admitted patients was varied along a normal distribution with 

standard deviation of 5%. For each strategy, patients are either admitted to the hospital or 

discharged from the ED for outpatient care.  

Triage Strategies 
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For each scenario, we compared usual care with application of the Glasgow Blatchford Score and 

a previously published machine learning model at the very high sensitivity threshold identify very 

low risk patients.  

Model Inputs 

Rates of hospital admission from the ED, in-patient mortality, discharge from the hospital, discharge 

from the ED, post-ED discharge mortality, post-ED readmission, and outpatient endoscopy under 

each triage strategy were derived from a prospective multicenter trial.84 Proportion of 30-day 

readmissions were derived from a retrospective study using the Agency for Healthcare Research 

and Quality’s Healthcare Cost and Utilization Project 2014 Nationwide Readmission Database for 

hospitalized patients with non-variceal UGIB, and the proportion adjusted for the projected 

decrease in hospital admissions with the applied triage tool.86 The proportion of patients discharged 

from the hospital without endoscopic evaluation, and thus potentially needing outpatient 

endoscopic evaluation, was derived from the 2019 National Emergency Department Sample. Of 

patients who require outpatient endoscopy, the proportion of patients who go to an Ambulatory 

Surgery Center versus a Hospital Outpatient Surgery Center were derived from a report published 

by the Anthem Public Policy Institute in 2020. For the patient perspective to quantify indirect costs, 

the rate of patients requiring informal care with lost employment were derived from the largest 

prospective micro-costing study of patients with AUGIB from the TRIGGER pragmatic cluster 

randomized trial of restrictive versus liberal RBC transfusion strategies for AUGIB.87  

Costs from Payer Perspective 

Our analysis adopts a U.S. health care sector perspective and evaluates direct costs, including 

validation, implementation and maintenance of risk assessment scores. Inpatient costs and 

outpatient follow-up costs (clinic visit, outpatient laboratory values, endoscopy) were estimated 

from Medicare reimbursement tables (Table 6).  

Table 6: Key Input Parameters with references and Costs based on Medicare reimbursement cost 
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We chose to use Medicare reimbursement cost because Medicare pays less than other insurers 

and is a conservative estimate of cost savings when applying either the GBS or the machine 

Parameter Base Case 
Value 

Source Distribution 

Admission Rate from ED  
     Usual Care 0.96 Stanley et al. 2009  
     GBS 0.71 Stanley et al. 2009  
     Machine Learning Model 0.65 Shung et al. 2020 Normal 
Proportion of Admitted Patients 
who Die 

0.04 Stanley et al. 2009  

Patients Discharged from Inpatient Stay Readmitted to the ED  
     Usual Care 0.13 Abougergi et al. 

2018 
 

     GBS 0.19 Abougergi et al. 
2018 

 

     Machine Learning Model 0.21 Abougergi et al. 
2018 

 

Patients Discharged from 
Inpatient Stay without endoscopy 
performed inpatient 

0.309 National 
Emergency 
Department Sample 
2019 

 

Patients Discharged from 
Inpatient Stay who Return for 
Outpatient Endoscopy 

0.4 Stanley et al. 2009  

Ambulatory Surgery Center 0.52 Anthem Public 
Policy Institute 2020 

 

Hospital Outpatient Surgery 
Center 

0.48 Anthem Public 
Policy Institute 2020 

 

Discharge Rate from ED  
     Usual Care 0.04 Stanley et al. 2009  
     GBS 0.29 Stanley et al. 2009  
     Machine Learning Model 0.35 Shung et al. 2020  
Proportion of Discharged Patients 
who Die 

0 Stanley et al. 2009  

Proportion of Discharged Patients 
who Return for Outpatient 
Endoscopy 

0.4 Stanley et al. 2009  

Ambulatory Surgery Center 0.52 Anthem Public 
Policy Institute 2020 

 

Hospital Outpatient Surgery 
Center 

0.48 Anthem Public 
Policy Institute 2020 

 

Patients Discharged from 
Inpatient Stay who Require 
Informal Care  

0.344 Campbell et al. 
2015 

 

Cost  
Year 1 Validation and 
Implementation 

$2,867.29 Sendak et al. 2017  

Years 2-10 Maintenance $519.61 Sendak et al. 2017  
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learning model. For inpatients, we used a weighted cost derived from Diagnosis Related Groups 

for gastrointestinal bleeding: 377, 378, and 379 with proportions of patients with each DRG derived 

from the 2019 NEDS and national average Medicare Payment Amount from 2021 Medicare tables. 

Provider fees were calculated based on length of stay estimates for DRG 378 and 379 with 

Hospitalist and Gastroenterology services rendered, while for DRG 377 we assumed 60% required 

ICU care for half of their stay and 40% did not. Provider fees for inpatient upper endoscopy with 

conscious sedation fee were estimated with proportions from 2019 NEDS for diagnostic EGD only, 

EGD with biopsies, EGD with hemostasis, and EGD with band ligation. For outpatients, we 

assumed patients discharged from the hospital would require one outpatient clinic visit and one 

laboratory draw comprising of complete blood count, complete metabolic panel, and prothrombin 

time. We assumed that patients discharged from the ED may require double the visit and laboratory 

testing. Costs for outpatient endoscopy with conscious sedation fee in ASC versus HOSC were 

estimated from Medicare reimbursement tables and rates assumed to be 30% diagnostic and 70% 

with biopsy. Total initial validation and implementation costs ($217,519) in an EHR for year 1 was 

estimated from an analytics application for chronic kidney disease to identify high risk patients 

requiring a nephrology referral.85 Maintenance costs were estimated from the same study and 

quantified based on the need for query development to extract variables, data exploration and data 

pipeline costs (total $39,350 each year) for years 2 to 10 per hospital emergency department, which 

were applied on a per-patient basis. The per-patient basis was calculated using the 2019 National 

Emergency Department Sample. Additional details are provided below. 

Inpatient Costs: 

DRG Costs: 

For DRG 379, GI Hemorrhage without CC/MCC the 2021 national average Medicare payment was 

$4,056.92. 2019 NEDS estimated 6.6% of patients with hospitalization for UGIB. 

DRG 378, GI Hemorrhage with CC the 2021 national average Medicare payment was $6,421.23. 

2019 NEDS estimated 47.6% of patients with hospitalization for UGIB. 



 

 
 

56 

DRG 377, GI Hemorrhage with MCC the 2021 national average Medicare payment was 

$12,326.26. 2019 NEDS estimated 25% of patients with hospitalization for UGIB. 

The weighted cost was calculated by adding the proportion of each DRG multiplied by the national 

average Medicare payment for DRGs 377, 378, and 379.  

Inpatient Provider Fees 

Provider fees were estimated by associated mean length of stay for each DRG from the 2019 

NEDS. For DRG 379, the length of stay was 2.23 (CI 2.18-2.28). On Day 1 Hospitalist and 

Gastroenterologist would both bill 99222 for Initial Hospital Care; Day 2 the Hospitalist and 

Gastroenterologist  would bill 99231; Day 3 the Hospitalist would bill 99238 Hospital Discharge day.  

For DRG 378 the length of stay was 3.37 (CI 3.34-3.40). On Day 1 Hospitalist and 

Gastroenterologist would both bill 99222 for Initial Hospital Care; Day 2 the Hospitalist and 

Gastroenterologist would bill 99232; Day 3 the Hospitalist and Gastroenterologist would bill 99231; 

Day 4 the Hospitalist would bill 99238 Hospital Discharge Day and Gastroenterologist would bill 

99231. 

For DRG 379 the length of stay was 5.72 (CI 5.63-5.81). We assumed that 60% would require ICU 

care for 50% of their hospitalization (3 days out of 6), and 40% would not. 

For DRG 379 requiring ICU care: on Day 1 Hospitalist or ICU would bill 99291 and 

Gastroenterologist would bill 99223 for Initial Hospital Care; Day 2 Hospitalist or ICU would bill 

99291 and Gastroenterologist would bill 99232; Day 3 Hospitalist or ICU would bill 99291 and 

Gastroenterologist would bill 99232; Day 4 the Hospitalist and Gastroenterologist would bill 99232; 

Day 5 the Hospitalist and Gastroenterologist would bill 99231; Day 6 the Hospitalist would bill 99239 

Hospital Discharge Day. 

For DRG 379 not requiring ICU care: on Day 1 Hospitalist and Gastroenterologist would both bill 

99223 for Initial Hospital Care; Day 2 the Hospitalist would bill 99233 and Gastroenterologist would 

bill 99232; Day 3 the Hospitalist would bill 99233 and Gastroenterologist would bill 99232; Day 4 
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the Hospitalist and Gastroenterologist would bill 99232; Day 5 the Hospitalist and 

Gastroenterologist would bill 99231; Day 6 the Hospitalist would bill 99239 Hospital Discharge Day. 

CPT CPT Code Description 
2021 National 

Medicare Rate 

Critical Care Services-Inpatient Only 

99291 Critical Care First Hour $220.87 

99292 Critical Care Additional 30 Min $110.96 

Hospital Care, Inpatient 

99221 Initial Hospital Care $101.19 

99222 Initial Hospital Care $136.08 

99223 Initial Hospital Care $200.29 

Subsequent Hospital Care, Inpatient 

99231 Subsequent Hospital Care $38.38 

99232 Subsequent Hospital Care $71.88 

99233 Subsequent Hospital Care $103.28 

Hospital Discharge, Inpatient 

99238 Hospital Discharge Day $72.23 

99239 Hospital Discharge Day $106.42 

Admission & Discharge on Same Day from Hospital Observation Care 

99234 Observation/Hospitalization Same Date $131.55 
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99235 Observation/Hospitalization Same Date $167.14 

99236 Observation/Hospitalization Same Date $214.59 

99217 Observation Care Discharge $72.23 

Outpatient GI Consult 

99204 Office New $137.48 

 

Inpatient EGD Provider Fees 

UGIB patients who underwent diagnostic EGD only (19.8%), EGD with biopsy (35.1%), EGD with 

hemostasis (22.5%), and EGD with ligation (1.9%) were derived from 2019 NEDS and multiplied 

by the 2021 National Average Medicare Provider Fee to obtain a weighted estimate. We added the 

conscious sedation fee to all EGDs since the estimate was easily obtained and anesthesia fees 

were not clearly delineated in Medicare.  

Inpatient Endoscopy Fee Description Provider Fee only 

45235 EGD only $124.57 

43239 EGD with biopsy $140.27 

43255 EGD and hemostasis $203.43 

43244 EGD and ligation $248.44 

Conscious Sedation Fee 

  
99151 Conscious Sedation $25.47 

 

Observation Provider Fees 
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From 2019 NEDS 4.4% of patients with UGIB were under observation, and we assumed billing of 

99235 (Observation Same Date), 99217 (Observation Care Discharge), and 99204 (GI consult 

while observation).   

Outpatient Endoscopy Costs 

We assumed that of all patients presenting for outpatient endoscopy, 30% had diagnostic 

endoscopy only and 70% had endoscopy with biopsy, presumably to test for H. pylori. 

CPT Code ASC HOSC 

45235 $533.00 $933.00 

43239 $549.00 $949.00 

 

Per-Patient Cost of Implementation and Maintenance 

In the 2019 NEDS, there were 920 unique hospital EDs in the sample for UGIB, with 69,671 patient 

encounters (unweighted). Based on the cost of implementation of $217,138 multiplied by 920 EDs 

was divided by the 69,671 unweighted patient encounters to give a cost per patient of $2,867.29. 

Likewise, maintenance cost per patient was calculated to be $519.61. 

Costs from Patient Perspective 

Our analysis also performs a secondary model incorporating indirect costs faced by patients after 

inpatient hospitalization, namely lost employment and costs of informal care. The mean hours of 

unpaid informal care were 69.17 hours with standard deviation of 10.3 hours, and lost working 

hours 125.21 hours with standard deviation of 7.8 hours. Per patient cost was estimated using the 

estimated average annual wage by the Economic Policy Institute and assuming 52 40-hour work 

weeks. 

Main Outcomes 
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Outcomes were per patient costs and per patient length of stay over the first 10 years of 

implementation.  

Sensitivity Analyses 

We performed several scenario analyses, including patient-borne indirect costs and inpatient costs 

estimated from the 2019 NEDS rather than Medicare tables. We performed probabilistic sensitivity 

analysis sampling model inputs 1,000 times from uncertainty distributions, and tested model 

stability by modeling our base-case scenario with 10,000 simulations. We performed model testing 

using TreeAge Pro Healthcare Version 2021 R2.0 release. 

Results 

Base Case Analysis 

With the GBS threshold of 0, projected cumulative savings at year 2 after implementation are 

$346.92 and at year 3 $1694.52 per patient when the score is applied compared to usual care 

(Figure 8). Projected savings using a machine learning model at a matched sensitivity threshold 

are $1248.27 at year 2 and $3048.97 at year 3 per patient.  

Scenario Analyses 

Base Case with Indirect Costs 

Incorporating indirect patient-facing costs of informal care and lost employment, with the GBS 

threshold of 0, projected cumulative savings at year 2 after implementation are $785.52 and at year 

3 $2133.12 per patient when the score is applied compared to usual care (Figure 8). Projected 

savings using a machine learning model at a matched sensitivity threshold are $1786.16 at year 2 

and $3586.86 at year 3 per patient.  
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Figure 8: Projected cumulative savings on a per-patient basis in the first 5 years for a single 

healthcare system. 

When applied across the United States, a projected 1 billion dollars could be saved in cumulative 

savings by Year 5 with either GBS or a machine learning model. (Figure 9) 

 

 

Figure 9: Projected cumulative savings across the United States using the National Emergency 

Department Sample 2019 weighted estimate of patients presenting with a primary diagnosis of 

upper gastrointestinal bleeding and number of healthcare systems.  

NEDS Costs  

Year 1

Year 2

Year 3

Year 4

Year 5

Savings are
realized by Year 2 

Glasgow-Blatchford Score Machine Learning Model

$0

Year 1

Year 2

Year 3

Year 4

Year 5
$1 Billion saved 
by Year 5

$1 Billion

Glasgow-Blatchford Score Machine Learning Model
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Using 2019 NEDS costs instead of Medicare costs for the inpatient associated costs, with the GBS 

threshold of 0, projected cumulative savings at year 2 after implementation are $614.02 and at year 

3 $1961.62 per patient when the score is applied compared to usual care (Figure 8). Projected 

savings using a machine learning model at a matched sensitivity threshold are $1574.96 at year 2 

and $3375.66 at year 3 per patient.  

NEDS Costs with Indirect Costs 

Using 2019 NEDS costs instead of Medicare costs for the inpatient associated costs, with the GBS 

threshold of 0, projected cumulative savings at year 2 after implementation are $876.32 and at year 

3 $2223.92 per patient when the score is applied compared to usual care (Figure 8). Projected 

savings using a machine learning model at a matched sensitivity threshold are positive at year 1 

with savings of $118.92 per patient, $1919.62 at year 2 and $3720.32 at year 3 per patient.  

Discussion 

Full implementation of GBS or machine learning risk assessment model for patients presenting with 

UGIB is projected to be cost-saving for the U.S. healthcare sector by year 2, with potential 

nationwide savings of hundreds of millions of dollars annually by year 3, and 1 billion dollars by 

year 5. Payers should consider developing novel payment structures to incorporate reimbursement 

to healthcare systems for the use of clinical decision support tools in patients with UGIB. 

Under scenario analyses, the incorporation of indirect patient-facing costs and use of 2019 NEDS 

estimate for inpatient costs led to a positive cost savings within year 1 with implementation of a 

machine learning model for UGIB.  
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Development and Validation of Deep Learning and Machine Learning Approaches versus 

Clinical Risk Scores using Electronic Health Records 

 

Introduction  

Gastrointestinal bleeding (GIB) is the most common gastrointestinal diagnosis requiring 

hospitalization in the U.S., and accounts for 2.2 million hospital days and inpatient charges of 19.2 

billion dollars69 Traditionally acute GIB has been classified by the suspected or confirmed 

anatomical location of the bleeding, either upper GIB or lower GIB. Guidelines recommend risk 

stratification using clinical risk scores for both upper and lower gastrointestinal bleeding to identify 

very-low-risk patients, defined as patients who do not require red-blood-cell transfusion or 

intervention to stop bleeding, and who not die.5-7,9,88 Once accurately identified as very-low-risk, 

such patients can then be considered for discharge from the emergency room with outpatient 

management, thereby reducing costs without risk of harm to the patient. Existing clinical risk scores 

for upper and lower GIB are used uncommonly in clinical practice. Barriers to use include 

cumbersome data entry, an uncertain distinction between upper and lower sources of GIB at 

presentation in many patients, as well as relatively poor performance of many risk scores.  

The location of the bleeding source is not always clear at presentation: a patient presenting with 

melena may have a bleeding lesion in the small intestine or proximal colon, while hematochezia 

can be the presenting symptom for up to ~15% of patients with upper GIB.89 Therefore, risk 

assessment tools that are designed for patients with symptoms of GIB rather than site of bleeding 

would be more clinically useful and practical for assessment of risk in the emergency room.90 The 

Glasgow Blatchford Score has been validated on multiple patient cohorts with upper GIB and is 

able to identify very-low-risk patients with high sensitivity (low false negative rate) allowing 

discharge of these patients from the emergency room without hospitalization.12,84 The Oakland 

score is a clinical risk score recently developed for lower GIB  and has shown good performance 

for identifying very-low-risk patients when validated in a U.S. electronic health record (EHR) 

database.15,16  
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Machine learning, a field of study that gives computers the ability to learn without being explicitly 

programmed, can be used to construct models that perform better than clinical risk scores for GIB.13 

Deep learning models, which use layers of computational units to create a complex function from 

simpler functions, appear to have better overall performance than machine learning models.13 

Furthermore, the EHR stores a large quantity of clinical data that can be used to automatically 

calculate risk assessments. Such a model ideally could be applied to all patients with GIB, 

preventing the need for immediate differentiation91,92 between upper and lower GIB. We previously 

showed a machine learning model performed better than standard risk stratification tools in 

identifying very-low-risk patients with upper GIB, but this analysis used only 24 variables obtained 

by manual data collection.14 We propose a symptom-based deep learning risk score derived from 

EHR data that bases initial assessment on presenting symptoms rather than presumed anatomical 

location. This score is designed to be deployed automatically through the EHR by extracting data 

to automatically calculate scores that can be then made available to providers in real-time, soon 

enough after presentation to be of clinical utility in making important decisions regarding care. We 

compare the best performing machine learning model from previous work to the deep learning 

model and two guideline-recommended clinical risk scores, the Glasgow Blatchford Score and the 

Oakland Score. 

Methods  

Data Source  

A cohort of patients presenting with overt GIB, defined as hematemesis, melena, or hematochezia, 

from July 2014 to December 2017 to the emergency rooms of the two campuses of Yale New 

Haven Hospital in New Haven, CT was used for development and temporal validation of the 

machine learning model. A separate cohort of patients presenting with overt GIB to the emergency 

room of a separate hospital (Bridgeport Hospital, Bridgeport, CT) from July 2014 to December 2017 

was used for external validation. EHR phenotyping for overt GIB using a Boolean decision rule 

integrating GIB-specific triage terms (structured datafields entered by the emergency room triage 

nurse) and GIB-specific review-of-systems fields was utilized to identify a total of 5,720 patients at 
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these hospitals from 2014 to 2017 who met the criteria of having complete data available at 4 hours 

into the emergency department encounter. Manual validation with chart review was performed for 

this sample to evaluate for overt GIB in the emergency room rather than an episode of over GIB 

during the hospital stay, resulting in the final patient cohorts (total of 3,572).  

Study Design  

A cohort of 2,004 patient encounters from January 2014 to December 2016 was used as the 

development set to train and tune (internally validate) the model. In order to evaluate model 

performance in the same centers, a cohort of 719 patient encounters from January 2017 to January 

2018 was used to test the model via temporal validation. The model was then externally validated 

on a separate cohort of 849 patient encounters from 2014 to 2017 at a geographically separate 

hospital.  

Input Variables  

The model used 151 structured datafields in the EHR (Epic, Verona, WI) that were available within 

4 hours of presentation to the emergency room. There were 1,931 unique laboratory tests that were 

sorted by the base name to 701, 3,654 unique medication classes sorted by generic code to 1,198, 

3,283 unique ICD-10 codes in Medical History, and 9 specific data elements including vitals and 

nursing assessments. Feature selection to the final set was a combination of expert-driven 

selection of relevant laboratory values, vital signs, and provider assessment plus a selection of 

features from the medical history and medication tables. The features from medical history and 

medication tables were selected using a pre-specified cutoff of 95% to exclude very rare variables 

from the final feature set. (Table 7) The final dataset includes 20 base laboratory tests, 70 

medication classes, 6 variables from 3 vital signs, 3 variables from nursing assessments, age, 

gender, and 50 variables from ICD-10 codes listed in the medical history.  

Table 7: Input Variables Included in the Models 
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Outcome Variable  

Demographic Information Gender, Age at Encounter 
Vital Signs and Nursing Assessments Systolic Blood Pressure 

Diastolic Blood Pressure 
Pulse 
Pulse Oximetry (oxygen saturation) 
Respiratory Rate 
Temperature 
Glasgow Coma Scale – Eye, Motor, and Verbal 
Assessments  

Medication Classes Alpha-2-receptor antagonist antidepressants  
Alpha-Beta adrenergic blocking agents  
Analgesic antipyretics salicylates  
Analgesic antipyretics non salicylate  
Antacids  
Anti anxiety benzodiazepines  
Anticholinergics (orally inhaled long acting) 
Anticoagulant Coumadin  
Anticonvulsant benzodiazepine  
Anticonvulsants  
Antidiarrheal microorganism agents  
Antiemetic antivertigo agents  
Antihistamines 1st generation  
Antihistamines 2nd generation  
Antihyperglycemic (biguanides) 
Antihyperglycemic (insulin release stimulant) 
Antihyperlipidemic (HMG CoA reductase inhibitor 
statins)  
Antihypertensives (ACE inhibitors)  
Antihypertensives (angiotensin receptor antagonist) 
Antipsychotic (atypical dopamine serotonin 
antagonist) 
Benign prostatic hypertrophy micturition agents  
Beta adrenergic agents (inhaled short acting)  
Beta adrenergic and anticholinergic combo inhaled 
Beta adrenergic and glucocorticoid combo inhaled  
Beta adrenergic blocking agents  
Blood sugar diagnostics  
Calcium channel blocking agents  
Calcium replacement  
Direct Factor Xa inhibitors  
Durable medical equipment (miscellaneous) 
Electrolyte depleters  
Folic acid preparations  
Glucocorticoids  
Histamine H2 receptor inhibitors  
Xanthine oxidase inhibitors  
Insulins  
Iron replacement  
Laxatives and cathartics  
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The primary outcome was a composite of red-blood-cell transfusion, hemostatic intervention 

(endoscopic, interventional radiologic, or surgical), and 30-day mortality.  

Data Processing  

Continuous variables that include laboratory tests, vital signs, and age are extracted with complete 

cases. Log transformation prior to standardization was performed on the variables of oxygen 

saturation, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, total 

bilirubin, blood urea nitrogen, creatinine, international normalized ratio, and white blood cell count. 

Standardization alone was performed on age at encounter, diastolic blood pressure, systolic blood 

pressure, heart rate, respiratory rate, temperature, albumin, chloride, bicarbonate, hematocrit, 

hemoglobin, potassium, mean corpuscular hemoglobin, mean corpuscular hemoglobin 

concentration, mean corpuscular volume, platelet count, red blood cell distribution width, and 

sodium. Categorical variables of nursing assessment in the Emergency Department include 

Glasgow Coma Score for eye response, motor activity, and verbal response.  

Missing Values  

Medication classes and medical history diagnoses are treated as indicator variables that code 

missing values as 0 and presence as 1. Otherwise, we limited our dataset to patients with complete 

data.  

Model Background and Comparisons 

Initially we assessed the performance of the neural network model compared to four machine 

learning models: gradient boosted tree, regularized regression with the elastic net penalty, and 

random forest. The neural network model had equivalent overall performance with the gradient 

boosted tree model and was used for all analyses to predict the composite outcome for patients 

presenting with acute GIB (Table 8).  

Table 8: Performance characteristics of different machine learning and deep learning models. 
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These models were developed and tuned using the glmnet and randomForest packages in R (R 

Foundation for Statistical Computing, Vienna, Austria). The gradient boosted tree model assembles 

a collection of decision trees (tree ensemble model) by adding trees that minimize prediction error 

measured by a gradient at each training step. Specifically, the model used also has additional 

options of regularization, shrinkage, and subsampling to prevent overfitting and speed up 

computation time. The XGBoost package in R and Python (Python Software Foundation) was used 

to develop and tune the final algorithm. Hyperparameters were tuned using a grid-search approach, 

with final parameters presented below: 

Parameters for XGBoost to Develop Final Model: Learning rate (eta) = 0.01, Minimum split loss 

(gamma) = 0.013, Maximum tree depth (max_depth) = 18, Minimum sum of instance weight in a 

child (min_child_weight) = 0, Subsample ratio of training instances (subsample) = 0.75, Subsample 

ratio of columns when constructing each tree (colsample_bytree) = 0.75, L1 regularization (alpha) 

= 0.6, L2 regularization (lambda) = 0.01 

For the deep learning neural network model, we trained a 5-layer feedforward neural network with 

ReLU activation functions attached to a binary classifier to predict outcome. The weights were 

initialized using the Kaiming initialization and trained using stochastic weight averaging with 

lookahead optimizer with early stopping. A hyperparameter search for learning rate, L1/L2 

regularization, dropout rate, and AdamW optimizer was performed using a Tree-structured Parzen 

estimator using the Optuna framework. 

Statistical Analysis  

 Neural 
Network 
Model 

AUC (95% CI) 

Gradient 
Boosted 

Decision Tree 
Model 
AUC 

(95% CI) 

LASSO 
AUC 

(95% CI) 

Random 
Forest (1000 

trees) 
AUC 

(95% CI) 

External 
Validation  
(N = 849) 

0.92  
(0.90-0.94) 

0.92 
(0.90-0.94) 

0.91 
(0.89-0.93) 

0.91  
(0.89-0.93) 
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Primary analysis of model performance was assessment of area under receiver operating 

characteristic curve (AUC), with predefined goal of AUC>0.90. The AUC on internal validation was 

reported with tenfold cross validation, and the AUCs on temporal validation and external validation 

were compared using the nonparametric DeLong test. Secondary analysis was specificity when 

sensitivity is 99% or higher. Specificity identifies the proportion of patients who will not die or need 

transfusion or intervention (i.e., very-low-risk patients) who are correctly identified by the risk score 

as being at very-low-risk; the higher the specificity the more patients who can be discharged from 

the emergency room with very low risk. Comparison of specificities was performed at the 99% 

sensitivity threshold for external validation (versus GBS=0, Oakland=8). Specificities were 

compared using McNemar’s test. Chi-squared and T-tests were used to compare the variables and 

characteristics of training and test patient cohorts. Calibration was measured by Brier score for the 

deep learning model, the machine learning model, the GBS, and the Oakland score. 

Results  

Selected baseline characteristics of the cohorts used for development, test set, and external 

validation of the model are shown in Table 9.  

Table 9: Selected characteristics of datasets used in development and validation of machine 

learning model 
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1 Median (IQR); n (%)  

The training and test sets were from the same center and temporally separated, with similar 

demographic and laboratory values at presentation. The external validation was from a separate 

center and had increased serological tests for liver dysfunction (ALT, AST, total bilirubin), less 

proportion of the population identifying as Caucasian (59% versus 66-70%), and slightly more 

abnormal INR (1.12 versus 1.04-1.07). The components of the GBS and Oakland Score for patients 

in the external validation dataset is shown. (Table 10) 

 
Development 

Dataset1 
Temporal 
Dataset1 

External 
Validation 
Dataset1 

Number of Patients 2004 719 849 
Age 65 (52, 79) 67 (53, 79) 67 (54, 80) 
Sex 
Female 935 (47%) 322 (44%) 379 (44%) 
Male 1,069 (53%) 402 (56%) 473 (56%) 
Race 
  White or Caucasian 1,332 (66%) 505 (70%) 501 (59%) 
  Black or African 
American 433 (22%) 140 (19%) 161 (19%) 

  Asian 27 (1.3%) 12 (1.7%) 11 (1.3%) 
  American Indian or 
Alaska  
  Native 

3 (0.1%) 6 (0.8%) 0 (0%) 

  Native Hawaiian or Other 
  Pacific Islander 4 (0.2%) 3 (0.4%) 0 (0%) 

  Other 200 (10%) 58 (8%) 179 (20.6%) 
Vitals and Laboratory Values 
  Pulse 81 (71, 93) 82 (70, 94) 81 (71, 93) 
  SBP 123 (111, 139) 125 (113, 140) 131 (116, 146) 
  DBP 68 (59, 78) 69 (60, 79) 69 (61, 79) 
  SpO2 98 (96, 100) 98 (96, 100) 98 (97, 99) 

  Hemoglobin 11.50 (9.20, 13.50) 10.80 (8.67, 13.00) 11.05 (8.30, 
13.30) 

  Platelets 228 (165, 297) 219 (157, 290) 226 (172, 285) 
  INR 1.04 (0.97, 1.20) 1.07 (0.99, 1.26) 1.12 (1.05, 1.29) 
  ALT 18 (12, 29) 18 (13, 29) 31 (24, 43) 
  AST 23 (18, 36) 25 (19, 41) 26 (20, 40) 
  Total Bilirubin 0.40 (0.28, 0.70) 0.40 (0.30, 0.80) 0.60 (0.40, 0.90) 
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Table 10: Components of the Glasgow Blatchford Score and Oakland Score in the external 

validation dataset. 

 

Oakland Score External Validation (N=849) 

 Mean (SD) 

Total Score 16.8 (0.24) 

Pulse 1.2 (0.03) 

Systolic Blood Pressure 2.5 (0.04) 

Hemoglobin 11.1 (0.22) 

Age 1.4 (0.02) 

 Proportion (%) 

Gender 470 (65%) 

Previous LGIB 82 (11%) 

 

External Validation  

The AUC for the deep learning model (AUC=0.92, 0.90-0.94) was similar to the gradient boosted 

machine learning model (AUC=0.92, 0.90-0.94; p=0.93) and was higher than GBS (0.88, 0.85-0.90; 

p=0.005) and Oakland (0.89, 0.87-0.91; p=0.057) (Table 11).  

Glasgow Blatchford Score External Validation (N=849) 
 Mean (SD) 
Total Score 6.2 (0.15) 
Blood Urea Nitrogen 1.9 (0.06) 
Hemoglobin 2.9 (0.09) 
Systolic Blood Pressure 0.25 (0.02) 

Pulse 0.14 (0.01) 
 Proportion (%) 
Melena 261 (31%) 
Syncope 57 (6.7%) 
Hepatic Disease 120 (14%) 
Cardiac Failure 132 (15%/) 
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Table 11: Area under the receiver operating curve (AUC) for the gradient boosted decision tree 

machine learning model vs. Glasgow-Blatchford Score (GBS) and Oakland Score.  

 

At 100% sensitivity, the machine learning model has higher specificity than Oakland=4 (21% vs 

2%, p<0.001); no GBS achieved 100% sensitivity in external validation dataset (Table 12). At 99% 

sensitivity, the machine learning model has higher specificity (41.6%) than GBS=0 (20.5%, 

p<0.001) and Oakland=8 (19.7%, p<0.001) (Table 4). At the 99% sensitivity cutoff, the machine 

learning model correctly identified more very-low-risk patients (N=214) among the 849 patients in 

this cohort than GBS=0 (N=106) and Oakland=8 (N=104).   

Table 12: Specificities of the gradient boosted decision tree machine learning model vs. Glasgow 

Blatchford Score and Oakland Score at high sensitivity cutoffs to identify very-low-risk patients in 

the external validation dataset (N = 849). 

 

Calibration of the deep learning model (0.11) was equivalent to the gradient boosted decision tree 

model (0.11) and better than the GBS (0.14) and Oakland models (0.13) by Brier scores (Figure 

10). 

 Deep 
Learning 

Model 
AUC (95% 

CI) 

Machine 
Learning 

Model 
AUC 

(95% CI) 

P-value GBS 
AUC 

(95% CI) 

P-
value 

Oakland 
AUC 

(95% CI) 

P-
value 

External 
Validation  
(N = 849) 

0.92 
(0.90-
0.94) 

0.92 
(0.90-0.94) 

0.93 0.88 
(0.85-
0.90) 

0.005 
 

0.89 
(0.87-
0.91) 

0.057 

 
 

 Sensitivity Specificity P-Value 

Deep Learning Model 100% 17.8%  
Machine Learning Model 100% 11.2% <0.001 
Oakland = 4 100% 2% 
    
Deep Learning Model 99% 41.6%  
Machine Learning Model 99% 30.6% <0.001 
GBS = 0 99% 20.5% 
Oakland = 8 99% 19.7% 
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Figure 10: Calibration curves for the neural network model (black, Brier score 0.11), gradient 

boosted model (green, Brier score 0.11), Glasgow-Blatchford Score (red, Brier score 0.14), and 

Oakland Score (blue, Brier score 0.13) for external validation. 

Discussion  

This is the first study to develop and validate an EHR-based deep learning model that provides 

excellent performance in predicting very-low-risk patients presenting with acute GIB who are 

eligible for discharge from the emergency room without admission to hospital. This deep learning 

model demonstrates similar overall performance to the gradient boosted decision tree model and 
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superior overall performance as compared to the two guideline-recommended clinical risk scores, 

the GBS and the Oakland Score. Importantly, at cutoffs (sensitivity of 99% and 100%) designed to 

avoid falsely labeling patients who will die or require transfusion or intervention as very-low-risk, 

the neural network model identifies more patients who are eligible for discharge and outpatient 

management than the gradient boosted decision tree model and currently recommended clinical 

risk scores. The model was developed specifically on data collected and available in the EHR within 

the first four hours of presentation, which allows the potential integration of the model in real time 

to provide decision support. Additionally, the score can be automatically calculated and does not 

require manual data extraction and input from the provider due to the use of only structured 

datafields from the EHR.  

Strengths 

While many machine learning models have been developed, the gap between development and 

implementation is hampered by the choice of dataflow, absence of external validation and 

calibration, and no consideration for where or how the tool will integrate into and enhance provider 

workflow. For example, 2 recent studies of EHR-based machine learning models for acute GIB 

have examined the use of machine learning tools to predict in-intensive-care-unit mortality93 and 

need for red-blood-cell transfusion 94 for patients in the intensive care unit. These models may have 

more limited utility given the fact that most patients with GIB aren’t admitted to the intensive care 

unit and many important care decisions (e.g., admission vs. discharge, level of care if admitted, 

initial resuscitation and transfusion requirements, initial medications for GIB, timing of endoscopy) 

are made prior to placement in the intensive care unit. In contrast, our study specifically targets the 

guideline-recommended risk stratification triage in the emergency department. We provide a 

comprehensive scheme for developing and validating an EHR-based deep learning and machine 

learning tools that are designed for integration into the assessment of patients with acute GIB in 

the emergency room in 4 hours from presentation and can be used to help decide whether very-

low-risk patients can be discharged for outpatient management. Since these models are developed 

using available structured datafields available within 4 hours of the patients’ presentation, it can 
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automatically extract the necessary data from the patient record and automatically calculate a risk 

score after the data are processed using the gradient boosted tree model. This study demonstrates 

robust performance on a temporally separate patient cohort presenting to the same centers and 

also on external validation in a separate hospital using the same EHR system. In the era of learning 

health systems, this study suggests that machine learning with EHR data has the potential of 

scalability not only at one center but multiple centers. The development of our model in the most 

widely used EHR system in the U.S. may be useful in generalizing this algorithmic approach to 

other healthcare systems.  

Limitations  

Complete cases analysis was performed, limiting the use of all training examples. Missingness in 

EHR data, especially laboratory data, is of particular concern since practice patterns may be biased 

by experience, seniority, and provider perception. In order to allay those concerns in this analysis, 

only patients with measured values for laboratory values and vital signs were included in the 

analysis. In future studies, new ways of modeling missing data and comparing the performance of 

various approaches of data imputation will be important to increase representation of all patient 

data. The findings of this study, while promising, requires prospective implementation in live ED 

provider workflow to evaluate real world performance. Importantly, feasibility and usability studies 

that assess provider acceptance is critical. Interpretability of the machine learning tool is also an 

aspect that needs to be studied, particularly due to the role of the tool in assisting clinicians’ decision 

making.  
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Development and Validation of Electronic Health Record Phenotypes for Acute 

Gastrointestinal Bleeding 

Introduction 

Acute gastrointestinal bleeding (GIB) is the most common gastrointestinal diagnosis requiring 

hospital admission in the United States.69 Guidelines for upper and lower GIB recommend risk 

stratification of patients, including the use of risk assessment scores.7,9,95 Although many risk 

stratification tools have been developed and validated, they are not commonly used in real-world 

clinical practice partly because providers must manually enter a variety of variables into the scoring 

system. Widespread electronic health record (EHR) adoption makes it possible to automatically 

deploy risk stratification scores within the clinical workflow for acute GIB; however, in order to 

embed risk stratification models into EHRs and deploy them in real time, patients must first be 

correctly identified.  This process of accurately identifying patients, called phenotyping, is used for 

any study that seeks to reliably group patients with a specific diagnosis or condition, from 

surveillance studies to comparative effectiveness research. Phenotyping is typically the first step 

in developing and validating risk stratification models within EHRs.96 Such processes have been 

used to improve the accuracy of case definition of inflammatory bowel disease patients as Crohn’s 

disease or ulcerative colitis, as well as to facilitate clinical trial recruitment and deploy randomized 

controlled trials.97,98  

Unlike many conditions that require multiple elements of the record (laboratory testing, reported 

symptoms, and biometrics such as vital signs) for diagnosis, acute GIB is a condition that can be 

directly and clearly identified using a limited number of terms by patient report or provider 

evaluation. To our knowledge, no previous study has explored the early identification of patients 

with acute GIB with an EHR-based model or its implementation within standard EHR workflow.  

Phenotypes utilize both structured and unstructured data and are typically used retrospectively 

after the clinical encounters have ended (e.g., ICD codes are a popular component of phenotypes). 

If the goal is to identify patients that would benefit from predictive models tailored for a particular 

condition, EHR phenotypes must use data elements generated during the visit. The Systematized 
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Nomenclature of Medicine (SNOMED) is an international comprehensive clinical terminology that 

is the standard for encoding patient conditions in the EHR. Other approaches for phenotyping can 

be decision rules using specific data elements (e.g., triage diagnosis) or a machine learning (ML) 

approach to utilize unstructured clinical text through natural language processing (NLP). ML models 

use computational modeling to learn from data and their performance can improve with an 

increasing amount of data.  NLP is a set of tools used to extract data from narrative text and uses 

syntactic processing, the order and arrangement of words in sentences and phrases, and semantic 

analysis to capture the meaning of the text. The empirical performance of these tools could provide 

useful comparisons to decision rules. For prediction, however, a “screening” phenotype using data 

elements likely to be entered close to real time may be better than a tool that may be delayed (e.g. 

due to delays in note writing).25   

Our study aimed to accurately identify patients with acute GIB reported or witnessed in the 

emergency department, such that the identification of this phenotype can occur in real time in the 

EHR to subsequently launch predictive models for risk stratification. We chose to use the current 

standard for phenotyping patients, SNOMED, as the comparator, even though SNOMED does not 

provide real-time phenotyping in the emergency department. 

Methods 

We began with creating a sensitive data mart, a patient dataset selected using specified criteria, to 

screen for all patients presenting with GIB from 2014 to 2017 in the Yale New Haven Health System 

electronic health record (Epic, Verona, WI, USA). Creation of a sensitive data mart allows exclusion 

of patients with no evidence of the phenotype and to adequately handle the volume, heterogeneity, 

and velocity of data.99  To create the data mart, we screened for patients with data that suggested 

the phenotype of overt gastrointestinal bleeding. In order to maximize the capture of relevant data, 

we defined the process by which patients were evaluated in the emergency department and 

common time periods for data entry. We also identified points at which a diagnosis would be 

entered in the electronic health record throughout the hospital stay: hospital problem list, encounter 

diagnosis, admission diagnosis, and hospital billing diagnosis.  
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There were 4 categories of screening criteria, which were selected based on existing identifiers in 

the EHR used to denote gastrointestinal bleeding (Figure 11).  

 

Figure 11: Screening criteria used to create data mart for acute gastrointestinal bleeding. 

Development of EHR GIB Phenotypes  

We developed rule-based algorithms and two machine-learning based algorithms, one using 

syntactic NLP analysis and the other using a Bidirectional Encoder Representation from 

Transformers (BERT) neural network NLP model and compared their performance to the 

SNOMED-only classification (Figure 12).  
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Figure 12: Rule-based algorithms and machine learning (Natural Language Processing) algorithm. 

To determine the specific data elements included in the rule-based algorithm, we analyzed the 

clinical workflow to identify two points where relevant diagnosis or symptom data was entered into 

the EHR. The first point of data entry was at triage, where a nurse selected presenting diagnoses 

from a drop-down list of pre-specified diagnoses. We reviewed all triage diagnoses to identify any 

that were gastrointestinal diagnoses. The second data entry point was the review of systems 

section in the note template used for all ED patients, which contains elements referring to overt 

gastrointestinal bleeding. Both the triage diagnosis and review of systems provide structured data 

fields that can be used to identify patients as either 0 (not present) or 1 (present). We hypothesized 

that terms specific to gastrointestinal bleeding may have improved performance and therefore 

created two decision rules. Decision rule 1 was positive if the ROS field (e.g., hematemesis, blood 

in stool) was positive or if any GI triage term was positive. Decision rule 2 was positive if the ROS 

field was positive or GIB triage terms were positive.   

The syntax-based NLP approach includes the preprocessing of the unstructured text in notes 

written by physician providers in the Emergency Department using ScispaCy, a Python software 

library used for advanced NLP that allows for breaking down text into smaller unique parts, which 
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is a strategy applied to other biomedical text data.100, 101,102 Classification was performed using 

random forest, support vector machine, and elastic net classifiers.  

The NLP approach to capture meaning, or sematic information, from physician notes was the 

Bidirectional Encoder Representation from Transformers (BERT) model.103 The BERT model is a 

neural network Transformer based model that generates embeddings for sentences to capture 

meaning.  We used Clinical BERT, a variant of BERT fine-tuned on biomedical and clinical text 

corpora (MIMIC-III and PubMed).104  

We performed a sensitivity analysis for hematemesis and/or melena and hematochezia. For 

hematemesis or melena decision rule 2 was modified to only include triage diagnoses GI Bleeding, 

hematemesis, melena, vomiting blood and review of systems elements of melena and 

hematemesis. For hematochezia decision rule 2 was modified to only include triage diagnoses GI 

Bleeding, major rectal bleeding, rectal bleeding, and review of systems elements of blood in stool, 

anal bleeding, rectal bleeding, and hematochezia.   

Evaluation of Phenotype 

To assess the performance of the different phenotypes, we performed manual note review to create 

a gold standard. Two clinical domain experts (DS and CT) reviewed the medical records of all 

patients and classified each patient as having the phenotype or not based on expert opinion and a 

prespecified structured evaluation (Table 13). We further categorized the acute bleeding by 

symptoms, either hematemesis/melena or hematochezia.  

Table 13: Gold-Standard Strategy to Label Encounters 
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Training and Validation Datasets 

The total number of encounters was temporally divided into training (70%, from 9/2014 to 7/2016) 

and validation (30%, 7/2016 to 5/2017) sets. Internal validation was performed with ten replications 

of tenfold cross-validation across the training set for decision rules and the syntax-based natural 

language processing. For each cross-validation split, the McNemar’s test was performed for 

sensitivity, specificity, and positive predictive value comparing SNOMED to the decision rule 1, 

decision rule 2, and syntax-based NLP with random forest, support vector machine, and elastic net 

classifiers. Unfortunately, due to computational constraints we did not perform the internal 

validation on the BERT neural network model. External validation was performed directly using the 

held-out validation set.  The primary metric for performance was the positive predictive value, and 

secondary metrics for performance the sensitivity and specificity. A high PPV indicates that a high 

proportion of the patients identified with acute GIB are true cases, but ideally would also have a 

high sensitivity to identify a high proportion of all true cases of acute GIB. There is no clear 

performance threshold for PPV, but PPV>75% has been considered acceptable and reported for 

EHR phenotypes.105-110  

Sensitivity Analysis by Bleeding Etiology  

Steps to label the Gold Standard: Acute Gastrointestinal Bleeding in the ED 

1. Review of the ED Provider Note  

2. Any text that identifies acute gastrointestinal bleeding for 

a. Hematemesis: e.g. “hematemesis”, “vomiting blood” 

b. Melena: e.g. “dark stool”, “black stool”, “tarry stool”, “melena” 

c. Hematochezia: e.g. “blood in toilet bowl”, “blood in stool”, “bright red blood in 

the stool” 

3. Patient report or physical exam findings were considered equally valid  

4. Exclude patients with other reasons for hematemesis – e.g. epistaxis 
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Pre-defined sensitivity analysis was performed in the same external validation cohort to predict 

either hematemesis and/or melena or hematochezia. These are two clinically distinct symptom 

complexes that may indicate an upper gastrointestinal tract or lower gastrointestinal tract source, 

respectively.  

Statistical Methodology 

McNemar’s test was used to compare sensitivity, specificity, and PPV for each iteration of internal 

validation for SNOMED, decision rules, and NLP tools. For the ten replications of tenfold internal 

validation, the median and range of p-values for the McNemar’s test are presented (Tables 14 and 

15).  

Table 14: Internal Validation with Tenfold Cross-Validation for 10 iterations: SNOMED versus 

Decision Rules. 

Table 15: Internal Validation with Tenfold Cross-Validation for 10 iterations: SNOMED versus NLP 

approaches. 

Training (70%) N = 7144 
Internal Validation: Tenfold Cross-Validation for 10 iterations 
Phenotype and Performance Characteristics 
 Performance Algorithm (with 99% confidence interval)  

SNOMED Codes 
(reference) 

Problem List 
Encounter 
Diagnosis 

Billing Diagnosis 

Decision Rule 1: 
All GI Triage 

Terms + ROS 
fields 

P-Value 
(Median, 
Range) 

Decision Rule 2: 
GI Bleed-

Specific Triage 
terms + ROS 

Fields 

P-Value 
(Median, 
Range) 

PPV 74% 
(0.740 – 0.746) 

85% 
(0.849 – 0.855) 

<0.0001 
(0 – 0.002) 

91% 
(0.907 – 0.913) <0.0001 

Sensitivity 61% 
(0.606 – 0.618) 

91% 
(0.904 – 0.910) <0.0001 88% 

(0.882 – 0.889) <0.0001 

Specificity 39% 
(0.382 – 0.399) 

55% 
(0.536 – 0.555) 

0.036  
(0 – 0.50) 

75% 
(0.740 – 0.757) <0.0001 
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We considered ten replications of tenfold cross-validation to account for variabilities of random 

splitting, so that we could generate a more robust understanding of potential performance for each 

of the approaches. McNemar’s test was also applied for the external validation dataset (Table 16). 

Table 16: External Validation  of NLP phenotypes on temporally separate cohort of patients. 

 

 P<0.001 compared to SNOMED (baseline) 

PPV was considered the primary metric for performance with goal PPV >75%.  We also predefined 

comparisons between the baseline (SNOMED) and each of the phenotyping approaches (decision 

Training (70%) N = 7144 
Internal Validation: Tenfold Cross-Validation for 10 iterations 
Phenotype and Performance Characteristics 

 Performance Algorithm (with 99% confidence interval) 
 

SNOMED Codes 
(reference) 

Problem List 
Encounter 
Diagnosis 

Billing Diagnosis 

Syntax-based 
NLP with 

Random Forest 

P-Value 
(Median, 
Range) 

Syntax-based 
NLP with 

Support Vector 
Machines 

P-Value 
(Median, 
Range) 

Syntax-based 
NLP with 

Elastic Net 

P-Value 
(Median, 
Range) 

PPV 
74% 

(0.740 – 0.746) 
86% 

(0.857 – 0.862) <0.0001 88% 
(0.880 – 0.885) <0.0001 

 
89% 

(0.888 – 0.893) 
 

<0.0001 

Sensitivity 61% 
(0.606 – 0.618) 

97% 
(0.969 – 0.973) <0.0001 94% 

(0.937 – 0.942) <0.0001 90% 
(0.895 – 0.902) <0.0001 

Specificity 39% 
(0.382 – 0.399) 

54% 
(0.533 – 0.551) 

0.005 
(0-0.16) 

64% 
(0.630 – 0.649) 

<0.0001 
(0-0.001) 

68% 
(0.672 – 0.692) 

<0.0001 
(0-0.0003) 

 

External Validation (30%) N = 2988 

Phenotype and Performance Characteristics 

 Performance Algorithm (with 99% confidence interval) 
 

SNOMED 
Codes 

(reference) 
Problem List 
Encounter 
Diagnosis 

Billing Diagnosis 

Syntax-based 
NLP with 

Random Forest 

Syntax-based 
NLP with 

Support Vector 
Machines 

Syntax-based 
NLP with Elastic 

Net 

PPV 74% 
(0.71 – 0.76) 

80%* 
(0.78 – 0.82) 

81%* 
(0.79 – 0.83) 

83%* 
(0.81 – 0.86) 

Sensitivity 61% 
(0.59 – 0.64) 

98% * 
(0.96 – 0.98) 

95%* 
(0.93 – 0.96) 

85%* 
(0.83 – 0.87) 

Specificity 38% 
(0.34 – 0.43) 

51%* 
(0.46 – 0.54) 

54%* 
(0.50 – 0.58) 

65%* 
(0.61 – 0.69) 
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rule 1, decision rule 2, and the two NLP-based approaches). We corrected using the Bonferroni 

correction and defined significance as P<0.01; we present the corresponding 99% confidence 

intervals.  

Results: 

Performance of Decision Rules 

Internal Validation with Tenfold Cross-Validation for Ten Iterations 

Decision rules 1, 2, and the syntax-based NLP tools had better PPVs than SNOMED codes in 

identifying patients with acute bleeding. The syntax-based NLP tool with random forest classifier 

had the highest sensitivity (0.97, 99% CI: 0.969-0.973) and was better than SNOMED (0.61, 99% 

CI: 0.606-0.618) with median P value <0.0001.  Decision Rule 1, Decision Rule 2 (0.88, 99% CI: 

0.882-0.889), and the syntax-based NLP tool with elastic net and support vector machine classifiers 

also had higher sensitivity than SNOMED (median P value <0.0001). Decision Rule 2 had the 

highest specificity (0.75, 99% CI: 0.740-0.757) and was better than SNOMED (0.39, 99% CI: 0.382-

0.399) with median P value <0.0001). (Table 14, Table 15)  

External Validation 

The PPV of decision rules (0.78, 99% CI: 0.75-0.80 for decision rule 1, 0.85, 99% CI: 0.83-0.87 for 

decision rule 2) were increased compared to SNOMED (0.69, 99% CI: 0.66-0.72; P<0.001). 

Syntax-based NLP with the elastic net classifier (PPV 0.83, 99% CI: 0.81-0.86) and BERT neural 

network model (PPV 0.84, 99% CI: 0.82-0.86) also were increased compared to SNOMED 

(P<0.001). The sensitivity of decision rules (0.90, 99% CI: 0.88-0.92 for decision rule 1, 0.87, 99% 

CI: 0.85-0.89 for decision rule 2), syntax-based NLP with the elastic net classifier (0.85, 99% CI: 

0.83-0.87), and the BERT neural network NLP model (0.93, 99% CI: 0.92-0.95) are increased 

compared to SNOMED codes (0.59, 99% CI: 0.57-0.62;P<0.001). For specificity, SNOMED codes 

(0.45, 99% CI: 0.42-0.48) is worse than decision rule 2 (0.69, 99% CI: 0.65-0.73;P<0.001), syntax-

based NLP with the elastic net classifier (0.65, 99% CI: 0.61-0.69), and BERT neural network NLP 
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model (0.63, 99% CI: 0.59-0.67) but similar to decision rule 1 (0.47, 99% CI: 0.43-0.51;P=0.87). 

(Table 16) 

Sensitivity Analysis  

Sensitivity Analysis based on Type of Bleeding 

On external validation for hematemesis and/or melena decision rule and NLP algorithms had higher 

PPV than SNOMED codes (p<0.001). The BERT Neural Network NLP model had a similar 

sensitivity to SNOMED codes (p=0.77), while the syntax-based NLP models and the modified 

decision rule had lower sensitivity (p<0.001). For hematochezia alone, the decision rule and NLP 

algorithms had higher PPV than SNOMED codes (p<0.001). (Table 16) 

Table 16: Sensitivity Analysis of Hematemesis and/or Melena and Hematochezia in the External 

Validation Group.
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P<0.001 compared to SNOMED (baseline) 

Discussion 

This is the first study to develop an EHR phenotype for identifying acute gastrointestinal bleeding 

in real time. Prompt identification of individuals with acute gastrointestinal bleed in the emergency 

room is an important first step in order to deploy risk scores that would inform determine level of 

care and clinical management decisions. (Figure 13)  

Hematemesis and/or Melena Validation (30%) N = 650/2988 
Phenotype and Performance Characteristics 
 Performance Algorithm (with 99% confidence interval)  

SNOMED 
Codes 
(reference) 

Decision Rule 2 
Modified: Upper GI 
Bleed-Specific 
Triage Terms + 
ROS fields 

Syntax-based 
NLP with 
Random Forest 

BERT Neural 
Network NLP 

PPV 29% 
(0.26 – 0.31) 

82%* 
(0.76 – 0.87) 

85%* 
(0.81–0.90) 

78%* 
(0.74-0.83) 

Sensitivity 71% 
(0.67 – 0.75) 

34%* 
(0.30 – 0.39) 

46%* 
(0.42–0.51) 

72% 
(0.68-0.76) 

Specificity 46% 
(0.44 – 0.49) 

98%* 
(0.97 – 0.98) 

98%* 
(0.97–0.98) 

94%* 
(0.93-0.95) 

Hematochezia Validation (30%) N = 1316/2988 
Phenotype and Performance Characteristics 
 Performance Algorithm (with 99% confidence interval)  

SNOMED 
Codes 
(reference) 

Decision Rule 2 
Modified: Lower GI 
Bleed-Specific 
Triage Terms + 
ROS fields 

Syntax-based 
NLP with 
Support Vector 
Machines 

BERT Neural 
Networks NLP 

PPV 42% 
(0.39 – 0.45) 

72%* 
(0.69 – 0.74) 

86%* 
(0.83 – 0.88) 

84%* 
(0.82 – 0.87) 

Sensitivity 55% 
(0.51 – 0.58) 

87%* 
(0.85 – 0.89) 

82%* 
(0.79 – 0.84) 

90%* 
(0.88 – 0.92) 

Specificity 40% 
(0.37 – 0.43) 

73%* 
(0.70 – 0.75) 

89%* 
(0.87 – 0.91) 

87%* 
(0.84 – 0.89) 
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Figure 13: Schematic showing how the electronic health record (EHR) phenotyping rule fits into the 

provider workflow to find patients with gastrointestinal bleeding and deploy risk scores to assist 

decision making. 

We found that the automated decision rule that combined bleed-specific terms at initial triage by a 

nurse and bleed-specific terms in the emergency department provider’s review of systems had the 

highest PPV (85%) on external validation with a sensitivity of 84% to identify patients presenting 

with acute GIB in the emergency department. In practice, this would generate an alert that would 

deploy a risk stratification tool for acute GIB through the electronic health record to the provider. A 

proposed workflow would be the following: a patient presents to the emergency department with 

acute gastrointestinal bleeding and is identified with the decision rule from a triage GIB-specific 

diagnosis of “Vomiting Blood.” The patient would then be flagged and his vital signs, laboratory 

values, and medical history elements from the electronic health record would be extracted and run 

through a risk stratification algorithm that would identify very low risk patients with a pre-specified 

threshold (e.g. machine learning-based risk stratification tools).13,14 This algorithm would then 

prompt an alert that would be delivered to the provider to identify very low risk patients who could 

be discharged.  
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We chose the decision rule because it identifies patients who actually have acute GIB, which means 

we want a low false positive rate (high specificity and positive predictive value).  Sensitivity should 

also be as high as possible to ensure that most patients with acute GIB are detected. A positive 

predictive value of >75% has been reported as “high,” and the PPV for the highest performing 

decision rule was 91% on internal validation and 85% on external validation.105-110  

Traditionally no method exists to identify patients with gastrointestinal bleeding other than using 

diagnostic codes (ICD-9, ICD-10) from the billing diagnosis list. By definition, these diagnostic 

codes are useless for detecting patients presenting with acute GIB at the point of care because 

they generally are not entered into the EHR until much later in the hospital course, well after initial 

identification and risk assessment is needed. Additionally, ICD codes may not detect all patients 

who have bleeding, as it may be reported but not coded in their billing diagnosis. SNOMED may 

be better than diagnostic codes alone—it is a terminology that includes both billing codes and other 

related text, and is updated every quarter.111,112 Our decision rule outperforms the baseline 

SNOMED methodology even when sampled over multiple areas in the EHR, including the billing 

diagnosis list.  Interestingly, using multiple strategies of NLP over the entire text of the emergency 

department provider notes does not result in markedly improved performance over a decision rule 

for identifying patients with acute GIB, though it appears to have a slight benefit in the sensitivity 

analysis for hematochezia. Unfortunately, the NLP tools are not applicable to real-time 

phenotyping, since the availability of the entire text is delayed since providers may choose to 

complete documentation up to 24 hours after the actual visit.  

The NLP tools had similar performance to decision rules for detecting overall acute bleeding. On 

sensitivity analysis, NLP tools performed similarly to the modified decision rule for melena or 

hematemesis, and better than the modified decision rule for hematochezia. One advantage of NLP-

based tools over decision rules is flexibility in the ability to handle additional covariates, including 

demographics and clinical information. In our evaluation, we incorporated age and gender into the 

features for the syntax-based NLP algorithm, but the results were similar. Future work is needed to 
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systematically evaluate the additional benefits of incorporating other types of variables into NLP 

classification.  

Strengths 

This study compares the performance of existing automated methods (SNOMED) across multiple 

time points in the EHR in identifying acute GIB at admission. This excludes GIB after admission 

while already hospitalized for another condition, and provides the best data possible given the 

constraints of using only structured datafields. Prompt identification of individuals with acute GIB 

would allow for the automatic provision of risk stratification scores for providers to guide appropriate 

triaging and clinical decision-making.  

Limitations 

We did not review patients who did not have the specific SNOMED code for GIB, did not have a 

GI-related triage problem, and did not have a positive review of systems for GIB. We believe it is 

reasonable to assume that these patients likely present with another primary issue and without any 

clinically significant GIB. Risk stratification scores for acute gastrointestinal bleeding are typically 

used for patients who present with GIB as the chief and acute complaint, and clinical decisions, 

such as admission or hospital-based interventions, need to be made early after presentation.   

This phenotype was developed for a specific center with a local workflow, including the availability 

of a triage nurse with structured datafields for triage diagnosis. Patients outside this cohort (with 

negative SNOMED, none of the triage terms, and no ROS positivity) were not reviewed, which 

limits its applicability to all-comers in the emergency department. However, we believe patients 

without any GI symptoms or signs at triage or during emergency department evaluation and without 

any evidence of GIB on diagnostic codes or the other elements of SNOMED are very unlikely to 

have presented with clinically significant acute GIB.  Changes in coding (e.g., from ICD-9 to ICD-

10) and temporal shifts in treatment options, patient epidemiology, hospital utilization, and risk shifts 

can all decrease the performance of these phenotypes in identifying patients of interest.   
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Preliminary Results from Real-Time Implementation to Prompt an Acute Gastrointestinal 

Bleeding-specific Care Pathway 

From the results that suggested that the decision rule is a robust method of identifying patients with 

acute GIB, we implemented the phenotype as a way to identify patients who may benefit from the 

utilization of a clinical care pathway for acute gastrointestinal bleeding.  

Introduction 

Learning health systems can be defined as a broader system in which science, informatics, 

incentives, and culture align to integrate best practices into the health delivery process for 

improvement and innovation.113 The information and knowledge are thought to be captured as a 

by-product of clinical care delivery, which are ideally longitudinally tracked with readily available 

outcomes.114 In order to create clinical decision tool available in real time that utilizes the data 

generated during clinical care and integrates best evidence-based practice, one approach is to 

utilize clinical pathways integrated into the electronic health record. 

Clinical pathways, also known as critical or integrated care pathways, comprise a specific approach 

that seeks to align evidence-based practices into the care workflow in a standardized manner.115 

These pathways were first used in the 1980’s in response to changes in reimbursement policy 

turned the focus away from high volumes to improving patient outcomes.116 With the advent of the 

electronic health record, clinical pathways have been adapted from a paper-based system to 

become integrated within the electronic health record workflow with additional functionalities.117 

These pathways now integrate order sets based on specific recommendations, clinical risk score 

calculators, and visualization of available therapeutic options. 

Yale-New Haven Health System has recently made a significant investment in the Care Signatures 

Initiative, which has designed pathways for a variety of clinical conditions using stakeholders across 

the different departments and disciplines. These pathways have been integrated into the electronic 

health record via a visualization available for providers to reference during the course of patient 

care. While adoption across different contexts may require modifications given resource availability, 
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population shift, and workflow differences, clinical pathways are usually designed around best 

practices for specific conditions that apply across all health settings.   However, these digital 

pathways by themselves have low provider uptake and are insufficient for effective clinical decision 

support. They require a robust delivery strategy that automates the steps of identifying the right 

patients using elements in the electronic health record so that the pathways can be deployed to the 

right person, for the right patient, at the right time.118  

The Care Signatures Pathway for Acute Gastrointestinal Bleeding provides a workflow to assess, 

triage, manage, and formulate a follow-up plan for patients presenting with signs and symptoms of 

acute gastrointestinal bleeding. As part of the pathway, providers are given best practice guidelines 

for aspects of history and physical examination helpful for assessing the patient risk for needing 

hospital-based intervention, links to order sets to facilitate care (such as a consult link, intravenous 

fluids, and blood transfusion order sets), and considerations for patients with special conditions 

such as anticoagulant or antithrombotic medications or patients at risk of portal hypertensive 

bleeding.  

Methods 

Given the potential utility of the Care Signatures Pathway for Acute Gastrointestinal Bleeding, the 

decision rule phenotype was implemented in the Epic system such that it would flag the use of 

specific pathways for patients who fulfilled the decision rule criteria. Implementation of the pathways 

occurred on March 5th, 2021 for inpatients, on June 22nd, 2021 for the emergency department, and 

the decision rule to suggest the pathway was implemented in November 19th, 2021. The suggestion 

was available for all providers accessing the patient chart at all times during the hospital stay. 

Results 

The rate of inpatient usage before the suggestion system was implemented was approximately 9.4 

unique encounters per week, and emergency department usage was 2 per week. After 

implementation, inpatient usage was up to 11.2 unique encounters per week while emergency 

department usage was 2.7 unique encounters per week. Notably, the suggestion system accounted 
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for 21% of inpatient encounters for which the clinical pathway was utilized and 34% of emergency 

department encounters. (Figure 14) 

  

 

Figure 14: Trends of Clinical Care Pathway Utilization for Acute Gastrointestinal Bleeding after 

Introduction of the ED GIB Pathway and then After Introduction of the EHR Phenotype. 

Preliminary Conclusions 

Implementation of a suggestion system based on an electronic health record phenotype may 

increase the uptake of clinical care pathways in the care workflow. Such real-time identification of 

patients with acute gastrointestinal bleeding is a crucial first step in developing an EHR-based 
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model for risk prognostication. By mapping out the points at which data is generated from the 

process model, this guides the eventual deployment and implementation of a risk stratification 

prognostic algorithm for clinical decision making in real time.  
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Development and Validation of Long-Short-Term-Memory Recurrent Neural Networks for 

Dynamic Risk Prediction of Red Blood Cell Transfusion in Patients with Acute 

Gastrointestinal Bleeding Requiring Intensive Care Unit Stay 

Introduction 

Acute gastrointestinal bleeding accounts for over 2.2 million hospital days and 19.2 billion dollars 

of medical charges annually in the United States and frequently requires red-blood cell 

transfusion.119 The management of severe acute gastrointestinal bleeding begins with resuscitation 

using intravenous fluids and transfusion of packed red blood cells, which are given to 43% of 

patients hospitalized with upper gastrointestinal bleeding in the United Kingdom and 21% of 

patients hospitalized with lower gastrointestinal bleeding in the United States.120,121  

Transfusion needs may change during the hospital stay, but a tool to dynamically predict 

transfusion needs over time does not yet exist in clinical care. Patients with severe acute 

gastrointestinal bleeding who require care in the intensive care setting generally have higher 

transfusion needs and may benefit most from a predictive tool to guide resuscitation efforts. Current 

guidelines are based on a restrictive transfusion strategy using a hemoglobin threshold of 7g per 

deciliter compared to the previous threshold of 9g per deciliter in patients with upper gastrointestinal 

bleeding.122  

Dynamic risk prediction, where predictions are generated in real time every hour based on clinical 

and laboratory values, may help guide transfusion strategies and help in timing endoscopic 

intervention, particularly in severely ill patients who require intensive care. Existing clinical risk 

scores used to screen for risk of needing transfusion of packed red blood cells, such as the 

Glasgow-Blatchford Score, are static models that only use clinical information at the time of 

admission (e.g. initial systolic blood pressure).123 Machine learning approaches to model risk for 

gastrointestinal bleeding have shown promise in outperforming existing clinical risk scores, but are 

also static models.124,125 Electronic health records (EHRs) can capture clinical data in real time, and 

have been used to create automated tools to model adverse events, such as sepsis, post-operative 

complications, and acute kidney injury.126-129 Recurrent neural networks, a type of neural network 
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that accepts time series data and sequences,  have been demonstrated to be better than state-of-

the-art risk models for continuous prediction of acute kidney injury up to 48 hours, the onset of 

septic shock 28 hours before onset, and all-cause inpatient mortality.130-132 We propose the use of 

a Long-Short-Term Memory (LSTM) Network, an advanced recurrent neural network, to process 

data from electronic health records with an internal memory that stores relevant information over 

time and can generate a probability of transfusion within the 4 hour intervals for patients with severe 

acute gastrointestinal bleeding. LSTMs have the advantage that feature modules carefully decide 

what information to store and what information to discard, thereby offering the potential for 

improved performance.  Figure 15 shows the use of our LSTM model in an example patient with 

generated risk predictions throughout the first 24 hours from admission.  

 

Figure 15: Example of neural network prediction for the first 24 hours of a 62-year-old man with 

Hepatitis C cirrhosis presenting with 2 days of intermittent coffee ground emesis and lethargy. Initial 

Glasgow Blatchford Score = 14 a) Continuous risk prediction of the neural network through the first 

24 hours with the threshold set above 0.5 for detecting need for transfusion. The arrows indicate 

need for transfusion during that time period. b) Measurements of Heart Rate, Systolic Blood 

Pressure, and Hemoglobin occurring during the first 24 hours. 
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Methods 

Data Source 

A patient cohort presenting with acute gastrointestinal bleeding was identified from the Medical 

Information Mart for Intensive Care III (MIMIC-III) critical care database.133,134 The database 

contains data for over 40,000 patients in the Beth Israel Deaconess Medical Center from 2001 to 

2012 requiring an ICU stay. For external validation, a patient cohort presenting with acute 

gastrointestinal bleeding was extracted from the Phillips eICU Collaborative Research Database 

(eICU-CRD) of critical care units across the United States from 2014 to 2015. Only urban hospitals 

with greater than 500 beds were included.   

Patients were included if they had an admission diagnosis containing the terms “gastro”, “bleed”, 

“melena”, “hematochezia”. The diagnoses were collated and then manually reviewed. This 

inclusion criteria were meant to specifically capture patients with severe acute gastrointestinal 

bleeding requiring ICU stay. Patients were excluded if vital signs were only available greater than 

24 hours from time of admission to the ICU, since this constitutes missing values for all 4-hour time 

intervals used to train the models. The data included information that was updated over time during 

the course of hospitalization, including laboratory results and vital signs. For laboratory values, any 

negative entry or non-quantizable (e.g., >=, <) was converted to missing. Medications, current 

procedural terminology codes, and ICD9/10 codes from the visit were excluded from the analysis. 

The dataset had a total of 62 features: 5 clinical and demographic variables and 57 laboratory 

variables.  

Data Access 

All clinical data from MIMIC-III was approved under the oversight of the Institutional Review Boards 

of Beth Israel Deaconess Medical Center (Boston, MA). The Phillips eICU Collaborative Research 

Database (eICU-CRD) was under the oversight of the Massachusetts Institute of Technology 

(Cambridge, MA). Requirement for individual patient consent was waived by both institutional 

review boards of Beth Israel Deaconess Medical Center and the Massachusetts Institute of 
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Technology because the project did not impact clinical care and all protected health information 

was deidentified. All procedures were performed in accordance with relevant guidelines. The data 

was available on PhysioNet were derived from protected health information that has been de-

identified and not subject to HIPAA Privacy Rule restrictions. All use of the data was performed 

with credentialed access under the oversight of the data use agreement through PhysioNet and 

the Massachusetts Institute of Technology.  

Study Design 

The MIMIC cohort included 2,524 hospital admissions and was randomly split into a training set 

with 2,032 hospital admissions and an internal validation set with 492 hospital admissions. (Table 

17)  

Table 17: Demographics and Baseline Data for the Training and Validation Set 
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We chose to compare the model to a logistic regression model, a standard approach to prediction 

for time-varying electronic health record data that has previously been applied to acute kidney 

 
Training Set 
N = 2,032 

Validation Set 
N = 492 

 External Validation Set 
N = 1526 

 

 N Prop N Prop p-value N Prop p-value 
Demographic Information 
Male 836 41% 190 39% 0.31 919 59% <0.01 
Age 
>89 144 7% 42 9% 0.29 57 4% <0.01 
75-89 629 31% 168 34% 0.24 438 28% 0.06 
50-75 935 46% 200 41% 0.14 808 52% <0.01 
25-50 316 16% 71 14% 0.43 211 14% <0.01 
<25 8 0% 4 1% 0.27 12 1% 0.13 
Ethnicity 
White 1429 70% 380 77% 0.08 1246 79% <0.01 
African 
American 244 12% 52 11% 0.35 172 11% 0.35 

Hispanic 75 4% 22 4% 0.37 27 2% <0.01 
Asian 
American 74 4% 15 3% 0.42 20 1% <0.01 

Other 210 10% 23 5% 0.05 54 3% <0.01 
Clinical Features 
Upper 
Gastrointesti
nal Bleeding 

679 33% 203 41% 0.07 666 43% <0.01 

Lower 
Gastrointesti
nal Bleeding 

428 21% 162 33% 0.02 448 29% <0.01 

Unspecified 
Location 925 46% 127 26% <0.01 412 27% <0.01 

Outcomes 
Packed Red 
Blood Cells 1542 76% 381 77% 0.39 515 33% <0.01 

In-Hospital 
Mortality 156 8% 32 6.5% 0.35 103 6.6% 0.21 

 Mean Std 
Dev Mean Std 

Dev p-value Mean Std Dev p-value 

Vital Signs 
Heart Rate 
(beats per 
minute) 

88.9 18 88.1 16.6 0.35 86.8 17.8 <0.01 

Systolic 
Blood 
Pressure 

126.9 22.9 127.1 22.2 0.86 119 23.3 <0.01 

Diastolic 
Blood 
Pressure 

64.2 16.9 65.7 16.6 0.07 61.7 15.4 <0.01 
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injury.135 We also compared the model to a regularized regression model, which uses additional 

parameters to optimize prediction.136 The eICU cohort included 1,526 hospital admissions from 12 

large urban hospitals with over 500 beds. The performance of the neural network model and the 

regression-based models were compared on the internal validation dataset and the external 

validation dataset.  

Input Variables 

A total of 62 input variables were used and included age, gender, vital signs (systolic blood 

pressure, diastolic blood pressure, heart rate), and 57 unique laboratory values. (Table 18)  

Table 18: Input Variables (N = 62) 

  

Category Input Variables 

Demographic (2) Gender 

Age 

Vital Signs (3) Heart Rate 

Systolic Blood Pressure 

Diastolic Blood Pressure 

Laboratory Variables (57) Blood Gas (Base Excess, Total Carbon Dioxide, Oxygen 

Saturation, pH, Arterial Pressure of Oxygen) 

 

White Blood Cells, Neutrophils, Basophils, Eosinophils, 

Lymphocytes, Bands, Monocytes, Hemoglobin, Hematocrit, 

Mean Corpuscular Hemoglobin, Mean Corpuscular 

Hemoglobin Concentration, Mean Corpuscular Volume, Red 

Blood Cell Distribution Width, Platelet Count, International 

Normalized Ratio, Prothrombin Time, Partial Thromboplastin 

Time 

 

Sodium, Potassium, Chloride, Bicarbonate, Anion Gap, 

Magnesium, Phosphate, Calcium, Creatinine, Urea Nitrogen, 

Glucose 

 

Alanine Aminotransferase, Aspartate Aminotransferase, 

Alkaline Phosphatase, Albumin, Amylase, Lipase, Direct 

Bilirubin, Total Bilirubin 

 

Creatine Kinase, Creatine Kinase-MB, Ferritin, Total Iron, Iron 

Binding Capacity, Lactate, Lactate Dehydrogenase, Thyroid 

Stimulating Hormone, Transferrin, Troponin T, Vancomycin, 

Fibrinogen 

 

Urine Studies (Creatinine, Sodium, Specific Gravity) 
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The vital signs and laboratory values were extracted and then consolidated into 4-hour time 

intervals over the first 24 hours from admission. These features were selected because they reflect 

dynamic changes from measurement in the ICU; ICD codes and CPT codes associated with the 

encounters were not included since they are not available at the time of care provision and therefore 

not available in real time for prediction. Medications have different formulations, with no clear 

definition of relevant medication types or standardization across multiple centers and were not 

included as features for this analysis.    

Outcome Variable 

The predicted outcome measure was the transfusion of packed red blood cells, calculated as binary 

0 (no transfusion) or 1 (transfusion given). At the beginning of each 4-hour time interval, the model 

makes a prediction on whether a transfusion will be needed at the next 4-hour interval. 

Data Pre-Processing 

Each patient encounter was represented by a sequence of events with each 4-hour period 

containing information recorded in the vitals and laboratory values. Information for each patient 

encounter was encoded into 4-hour time intervals up to the first 24 hours. After excluding lab values 

with greater than 90% missingness, remaining lab values with greater than 50% missingness in the 

dataset were converted to missing indicator variables, with 1 as present and 0 as missing. To 

harmonize the input variables across patients, the first timepoint for each patient encounter was 

fixed at the first recording of heart rate, systolic blood pressure, and diastolic blood pressure. 

Consolidation of vital signs and laboratory values in each 4-hour interval was performed by taking 

the mean of each value. All continuous values were normalized and centered. Age was maintained 

as a continuous variable, with patients greater than 89 years old coded as 89 years old. After 

consolidation, 86% (1651/1923) of the encounters had information for every 4-hour interval in the 

full 24-hour period. For the training set 7% of the 4-hour periods (855/13167) were labeled as 

receiving a packed red blood cell transfusion, the test set 4% (134/3149), and the external 

validation set 2% (157/8414). In summary, each patient encounter has up to 6 predictions for a 
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total of 6*n predictions in the entire dataset, and we compute one ROC curve and associated AUC 

for this total. This ensures that the same threshold exists across every time period.  

Missing Values 

To examine the role of the data imputation method used, we compared 4 different imputation 

strategies. The first was imputation of the mean value for any missing value. The second was a 

carryforward approach, or using the previously recorded value if a value was present at a previous 

time point but no subsequent value was measured. This assumes that the laboratory value is 

constant until the next time point in clinical decision-making.137 The third was mean imputation with 

a new variable that served as a missingness indicator for every variable. The fourth was 

carryforward with a missingness indicator for every variable.  

LSTM Neural Network Model background 

Recurrent neural networks allow for processing of sequential information by storing information as 

internal states over multiple time points. Long short-term memory (LSTM) networks are a type of 

RNN that can be useful for clinical measurements because they carefully tune the information 

passed between subsequent time-iterations of the model (Figure 16).  

T represents the time in hours, X represents input data (vitals, laboratory values), Y represents the 

probability of needing transfusion, and FCN is a fully convolutional network that processes the 

information from the previous time period to generate the prediction. 
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Figure 16: Long-Short Term Memory (LSTM) Network Model Overview. Electronic Health Record 

data (vitals, laboratory values) is fed into the model, passed through the layers, transformed, and 

gives a probability of the outcome (transfusion of packed red blood cells). At the beginning of each 

4-hour interval the LSTM Network can generate a probability of needing transfusion.  

The LSTM has a single output that serves as a prediction and other hidden states that are then fed 

back into the neural network to adjust the final output. For the implementation of the model, we 

used the PyTorch deep learning library. Given a series of EHR data, 𝒙(𝟎),  𝒙(𝟏), … ,  𝒙(𝑻&𝟏), where  

𝒙(𝒕) represents the input variables for the  (𝑡 + 1)th 4-hour interval, at the beginning of each 4-hour 

interval our goal is to predict whether transfusion is needed in the next 4 hours. The output is a 

sequence of probability predictions 𝑦(()+ ,𝑦())+ ,… , 𝑦*+, where  𝑦(+)+ ∈ [0,1] is the prediction for whether 

transfusion is needed in the tth 4-hour interval. The LSTM model consists of 2 layers of 128 LSTM 

cells each, followed with a linear layer that maps from hidden state space to the prediction space. 

We obtain the log-probabilities by adding a LogSoftmax later in the last layer of the network. Thus, 

the output of the neural network is a sequence 𝒑(()+ ,𝒑())+ ,… , 𝒑(*)+ , where 𝒑(+)+  is the log-probability of 

𝑦1 being either of the target classes, and our decision rule is to administer transfusion if 𝒑(+)+ >

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, where the threshold is determined by desired sensitivity or specificity. We use the 

negative log likelihood for the output at each time of interest as the loss function. The model is 

trained for up to 100 epochs with hyperparameters corresponding to the lowest validation loss 

recorded and used to obtain testing accuracy. 

Discrete Time Logistic Regression and Regularized Regression 

 For comparison discrete-time regression approaches were employed to generate a new prediction 

using each 4-hour block of data to predict the need for transfusion for the next 4-hour block of data. 

We used both logistic regression and regularized regression with elastic net penalty using the 

glmnet package in R tuned by fivefold cross-validation on the training set (Figure 17).  
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Figure 17: Comparison of Imputation Strategies for Lambda Selection with Cross Validation. 

The training protocol was to take every 4-hour sequence and then using all the 4-hour sequences 

to train the regression models, since the model is designed to generate a prediction for any 4-hour 

Imputation Strategy Lambda Selection with Cross Validation 
Mean Imputation 

 
Carryforward 
Imputation 

 
Mean Imputation and 
Missing Indicators 
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sequence. The same covariates were used that were available for the LSTM neural network model 

at each 4-hour time interval, with no additional features used to train the model. The different 

imputation strategies as described previously were also employed.  

Statistical Analysis 

Two-tailed t tests and chi-squared test were used to compare baseline characteristics between the 

training and validation sets. We assessed model performance using the area under the curve 

(AUROC) and compared it to the performance of logistic regression using the nonparametric 

DeLong test.138 Confidence intervals were calculated with 2000 stratified bootstrap replicates. 

McNemar’s test was used to compare the optimal sensitivity and specificity threshold by the 

Youden Index.  

Results 

Demographics were similar between training and internal validation sets with the median age 69 

for both, proportion of men (41% in training, 39% on internal validation), and predominantly white 

(70% in training, 77% in internal validation). There was a similar percentage of patients with upper 

gastrointestinal bleeding (training 33% vs internal validation 41%), but the training set had more 

patients with gastrointestinal bleeding from an unspecified source (46% vs 26% P<0.01), while the 

internal validation set had more patients with lower gastrointestinal bleeding (33% vs 21% P=0.02). 

Vital signs and laboratory values were similar in the training and internal validation sets. (Table 17) 

The external validation set was significantly different from the training and internal validation with 

demographics notable for a generally younger population, increased patients with upper and lower 

gastrointestinal bleeding and less patients with an unidentified source. Furthermore, the transfusion 

rate was significantly lower (33% versus 76%;P<0.01), reflecting modern guidelines of restrictive 

transfusion strategy for the treatment of acute gastrointestinal bleeding.  Laboratory tests were 

notable for decreased hemoglobin and hematocrit, increased ALT, AST, alkaline phosphatase and 

total bilirubin, increased creatinine and decreased albumin. (Table 17).  
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The performance of the LSTM model on the four different imputation strategies were similar and all 

significantly better than the discrete time logistic regression model. (Table 18) The results we 

subsequently present are for the strategy with the highest AUROC (carryforward and missing 

indicators).   

Table 18: Comparison of the overall performance of Long-Short Term Memory network model 

compared to the Logistic Regression model with different imputation methods to address 

missingness in the first 24 hours after admission for all patients admitted to the Intensive Care Unit 

with Acute Gastrointestinal Bleeding. 

 

For the main analysis of all patients with acute gastrointestinal bleeding who were transferred to 

the ICU, the LSTM performed significantly better than both regression-based approaches. On 

internal validation, the LSTM outperformed LR (AUROC 0.81 CI 0.80-0.83 vs 0.75 CI 0.73-

0.77;P<0.001) and regularized regression (AUROC 0.81 CI 0.80-0.83 vs 0.75 CI 0.73-

0.78;P<0.001) in predicting packed red blood cell transfusion across the entire 24-hour period. For 

external validation, the LSTM outperformed LR (AUROC 0.65 CI 0.61-0.69 vs 0.56 0.51-

0.60;P<0.001) and regularized regression (AUROC 0.65 CI 0.61-0.69 vs 0.56 0.52-0.61;P<0.001). 

(Table 19, Figure 18) 

Table 19: Performance of the Long-Short Term Memory (LSTM) Model and the discrete time 

Logistic Regression (LR) model in Predicting Transfusion of Packed Red Blood Cells by 

 

External Validation Set 

 

LSTM 

AUROC 

95% CI 

Logistic Regression 

AUROC 

95% CI 

p-value Regularized 

Logistic 

Regression with 

Elastic Net 

AUROC 

95% CI 

p-value 

Mean Imputation 0.65 

(0.60-0.69) 

0.54 

(0.49-0.59) 

<0.001 0.55 

(0.50-0.60) 

<0.001 

Carryforward Imputation 0.66 

(0.62-0.70) 

0.56 

(0.51-0.60) 

<0.001 0.56 

(0.51-0.60) 

<0.001 

Mean Imputation and 

Missing Indicators 

0.64 

(0.60-0.68) 

0.54 

(0.49-0.59) 

<0.001 0.55 

(0.50-0.60) 

<0.001 

Carryforward Imputation 

and Missing Indicators 

0.65 

(0.60-0.69) 

0.56 

(0.51-0.60) 

<0.001 0.56 

(0.52-0.61) 

<0.001 
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Comparison of Area Under the Receiver Operating Curve (AUROC) for Internal Validation (N = 

492) and External Validation (N=1526). 

  

 Long-Short 
Term Memory 
Network Model 

AUROC 
95% 

Confidence 
Interval 

Logistic 
Regression 

AUROC 
95% Confidence 

Interval 

p-value Regularized 
Logistic 

Regression with 
Elastic Net 

AUROC 
95% CI 

p-value 

Internal 
Validation 

0.81 
(0.80-0.83) 

0.75 
(0.73-0.77) 

<0.001 0.75 
(0.73-0.78) 

<0.001 

External 
Validation 

0.65 
(0.61-0.69) 

0.56 
(0.51-0.60) 

<0.001 0.56 
(0.52-0.61) 

<0.001 
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Figure 18: Comparison on external validation of the overall Area Under the Receiver Operating 

Curve (AUROC) as a measure of performance of the Long-Short Term Memory (LSTM) Neural 

Network model and discrete time Logistic Regression (LR). 

Sensitivity and Specificity Cutoff 

The optimal sensitivity and specificity cutoff was obtained using Youden’s index and was found on 

external validation for the LSTM neural network to be 62% sensitivity and 64% specificity; the 

logistic regression optimal cutoff was 47% sensitivity and 65% specificity (P<0.001).  
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Sensitivity Analysis 

Sensitivity analysis was performed on the external validation dataset by gender, age, systolic blood 

pressure, blood urea nitrogen, and hemoglobin, variables commonly used in assessing risk for 

patients with acute gastrointestinal bleeding. When subset by gender the LSTM model still 

outperformed the LR model (0.64 vs 0.54, P=0.002) and the regularized regression model (0.64 vs 

0.49;P=0.02). In the subset of patients with age greater than 65, which was the mean of patients 

with acute gastrointestinal bleeding, the LSTM model outperformed the LR model (0.61 vs 0.54, 

P=0.008) and the regularized regression model (0.61 vs 0.56;P=0.01). For vital signs and 

laboratory values, cutoffs were derived from the Glasgow Blatchford Score: systolic blood pressure 

cutoff less than 110 mmHg, blood urea nitrogen greater than 18.2, and hemoglobin less than 10 

(similar risk category for both men and women). The LSTM model outperformed the LR and 

regularized regression models in all these analyses. (Table 20) Sensitivity analyses of the opposite 

group (men only, patients less than 65 years old, and the lower risk cutoff for vital signs and 

laboratory values) are provided. (Table 20) 

Table 20: Sensitivity Analyses for external validation eICU dataset. Systolic Blood Pressure, BUN, 

and hemoglobin cutoffs were derived from the Glasgow Blatchford Score. Hemoglobin cutoff was 

chosen due to the matched risk for both men and women. 

 

Total 
Encounters 
N=1526 

LSTM Neural 
Network 

 

Logistic 
Regression 

p-value Regularized Logistic 
Regression with Elastic 

Net 

p-value 

Female  
N=607 

0.64  
(0.57-0.71) 

0.54  
(0.46-0.62) 

0.002 0.49 
(0.42-0.56) 

0.02 

Age >65 
(mean)  
N=820 

0.61  
(0.55-0.67) 

0.54  
(0.47-0.60) 

0.008 0.56 
(0.50-0.61) 

0.01 

Systolic Blood 
Pressure 
<110 
N=849 

0.64  
(0.58-0.69) 

0.57  
(0.50-0.63) 

0.03 0.55 
(0.49-0.61) 

0.002 

BUN >18.2 
N=1110 

0.64  
(0.58-0.69) 

0.56  
(0.50-0.62) 

0.003 0.56 
(0.50-0.61) 

<0.001 

Hemoglobin 
<10 
N=1303 

0.64  
(0.60-0.69) 

0.56  
(0.51-0.62) 

0.001 0.56 
(0.51-0.61) 

<0.001 
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Discussion 

Predicting the need for transfusion of packed red blood cells has direct relevance to guiding the 

management of patients with acute gastrointestinal bleeding. This is the first study to show that a 

LSTM network model is able to predict the need for packed red blood cell transfusion for patients 

with severe acute gastrointestinal bleeding with superior performance to time-varying logistical 

regression with internal and external validation. By anticipating needs for transfusion, this is a first 

step towards personalizing treatment and tailoring appropriate resuscitation to reduce clinical 

decompensation and death for patients with severe acute gastrointestinal bleeding. While 

endoscopic evaluation is important, adequate resuscitation is an important part of management 

prior to endoscopy.9,139-141  

In this work we use a (one-directional) 2-layer LSTM with 128 hidden units in each layer. The LSTM 

setup is a commonly used variation of the LSTM which consists of the original LSTM architecture 

with added forget gates and full gradient backpropagation through time (BPTT) training.142,143 We 

use this model over a simple recurrent neural network (SRNN) as it addresses weaknesses 

inherent in SRNNs such as difficulty learning dependencies across multiple time steps and aberrant 

gradient flow. A comparative study of LSTM variants concluded that while many variations of 

LSTMs exist, much of the improved performance can be attributed to forget gates and the choice 

of activation function.144 Advantages of the LSTM over regression models include the ability to 

generate multiple predictions with the first data input and the ability to combine features in more 

complex ways to model changes over time. The trained architecture can be used to generate 

predictions for each time period using presenting data from the first 4 hours, whereas the regression 

models have fixed coefficients that can only generate predictions as data becomes available for 

each time period. For example, for a patient admitted to the ICU with data from the first 4 hours, 

the LSTM neural network can propagate the data through its architecture to predict need for 

transfusion at 8, 12, 16, 20, and 24 hours. Using regression models, it could only be used to predict 

the need for transfusion at the next time period.  While regression models weighted sums of 
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features are used with specific thresholds for prediction, neural networks can combine features in 

non-linear and more complex ways to generate predictions.  

Previous risk scores capture information from specific points in time at admission, and do not 

incorporate new clinical data over the course of hospitalization. Electronic health records contain 

longitudinal information on patients admitted to the hospital and reflect real-world practice, which 

can be used to develop risk prediction models.145 For patients who have severe disease requiring 

intensive care unit stay, mortality may be more due to end organ damage due to inadequate 

perfusion.121,146,147 Despite the significant computing requirements necessary to run neural 

networks, existing electronic health records are now deploying cloud computing infrastructure able 

to perform computationally intensive tasks. The emerging capabilities of cloud infrastructure in 

electronic health records, such as the Cognitive Computing platform for Epic Systems, make the 

deployment of neural networks for clinical care feasible.   

We envision the future of care for all patients to be enhanced by customized machine learning 

decision support tools that will provide both initial risk stratification and ongoing risk assessment to 

provide treatment at the right time for the right patient. Using a dynamic risk assessment, 

resuscitation needs could be estimated early and optimized in preparation for endoscopic 

evaluation and intervention.  This individualized decision-making potentially will minimize organ 

damage from inadequate resuscitation, which drives the risk for mortality in these patients.146  The 

LSTM model can be tuned for provider preference. Alert fatigue is particularly relevant in the ICU, 

since clinically irrelevant alerts can have an impact on patient safety.148 In order to minimize alert 

fatigue, a high specificity threshold could be set for the algorithm. However, if providers do not want 

to miss any time periods when patients need packed red blood cell transfusions, a high sensitivity 

threshold can be set to minimize false negatives. Although the LSTM network model is much better 

than a standard regression-based approach, it still falls short of optimal performance. More work 

will be needed to develop and validate neural network models. 

Interpretability is a key area of active research for neural network models, particularly in order to 

assess the trustworthiness of the prediction. Approaches attempt to elucidate the hidden states of 
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the network architecture, identify features important to prediction, and perform saliency analyses 

to identify input data most relevant to the model prediction.149-152 Another approach attempts to 

learn an interpretable model around the prediction, called Local Interpretable Model-agnostic 

Explanations (LIME).153 These approaches, however, should be filtered through the usefulness for 

a front-line clinician who has both prior knowledge about the application and the ability to reason 

through the available evidence after receiving the prediction. As professionals with authority due to 

training and experience, clinicians may benefit less from the “hidden states” and more from 

presenting the relative importance of input variables; the latter allows for clinicians to assess the 

prediction as plausible or due to confounding.154 Applying these techniques is outside the scope of 

this manuscript and will be explored in future work. 

Strengths of this study include external validation in a more recent ICU electronic health record 

dataset and modeling patients with severe illness requiring intensive care unit stay, which may 

benefit disproportionately from timely transfusion and resuscitation and the use of vital signs and 

laboratory tests that are standardized and can be easily mapped across electronic health record 

systems. Our comparison to regression models is stronger than currently used clinical scores such 

as the Glasgow-Blatchford Score or Oakland Score, which were developed to generate a static risk 

prediction with only data at presentation. 

Limitations include the absence of prospective and independent validation in other electronic health 

record-base datasets. Despite showing external validation on a temporally and geographically 

separate dataset of patients with acute gastrointestinal bleeding requiring ICU care, prospective 

validation and implementation into clinical practice is crucial to quantifying the benefit of such 

systems on patient outcomes. Additionally, the performance difference between test set and 

validation set may be due to the lower prevalence of packed red blood cell transfusions in the 

external validation set, which may indicate need for re-training of the model with more updated 

clinical data that reflect the decreased use of transfusions. The definition of ground truth is the 

receipt of a transfusion, and not on the judgment of whether they should have received a 

transfusion, which may not reflect the current standard of care and may not be applicable to 
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hospitals that are resource limited. The use of encounters as independent episodes rather than 

individual patients may lead to bias and information leak, particularly since there are around 708 

patients with more than one encounter for severe acute gastrointestinal bleeding requiring ICU 

care. However, the decision was made to include all encounters for these patients to reflect real 

world practice since the bias is tolerable from a clinical standpoint: patients with recurrent severe 

acute gastrointestinal bleeding requiring ICU care are the very patients who would stand to benefit 

from these predictions. We also control for information leak since all features except for age and 

sex and unique for each ICU encounter. Comparison with regression-based models may change if 

the models incorporate aggregated data available at time of predictions from previous time intervals 

(e.g., the mean and standard deviation) and should be explored in future studies. In addition, the 

segmentation into 4-hour segments may lead to distortions, since the same signal of transfusion 

can be administered immediately after bound of the 4-hour time interval or several hours afterwards 

(e.g., 5 minutes or 2 hours afterwards). Additionally, the proportion of missing data required 

imputation, which may introduce bias to the data. To quantify the difference, we compared different 

imputation strategies including carryforward and found no clear difference in the overall 

performance of the models.  

In summary, we present the first application of recurrent neural networks to dynamically predict 

need for packed red blood cell transfusion over time using electronic health record data. We report 

superior performance compared to a discrete time regression models. Our approach may lead to 

delivery of earlier resuscitation with packed red blood cells to minimize ischemic end organ damage 

in patients with severe acute gastrointestinal bleeding. Future directions include external validation 

of the model on other cohorts of high-risk patients with gastrointestinal bleeding, along with 

prospective implementation and deployment in the electronic health record system for high-risk 

patients with gastrointestinal bleeding.  
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Modeling Missingness in Clinical Data with Variables Missing-Not-At-Random with MURAL: 

An Unsupervised Random Forest-Based Embedding for Electronic Health Record Data 

Introduction 

Unsupervised nonlinear embedding methods have allowed for exploration manifold learning of big 

high dimensional datasets in many fields ranging from epidemiology, to biology, to physics. 

However, a major limitation of using unsupervised embeddings in healthcare data is the large 

amount of missingness in the data as well as the mixed modality of the variables collected. In a 

typical EHR or patient dataset the range of missing data range from 20% to 80%, varying across 

broad categories of possible fields such as demographics, laboratory values, and treatment 

information.155-157 Further there is a mix of real-valued, categorical and binary data which can be 

difficult to normalize or scale. This makes it difficult to compute distances and affinities between 

datapoints—the first step in nonlinear dimensionality reduction methods such as tSNE158, UMAP159, 

diffusion maps160 or PHATE161. Similar distance/affinity computations are also required for spectral 

clustering162, which operates on a graph Laplacian computed from the affinity matrix. Thus, data 

with missing values cannot be used, and if the values are MNAR they cannot be imputed. 

To tackle these issues, we propose to use an intermediary representation called the MURAL-forest, 

an unsupervised random forest in which tree distances between datapoints form an accurate 

measure of dissimilarity and can be used for data distance/affinity computation, as needed in 

methods specified above.159-161,163. MURAL creates a set of trees by splitting on any variable type 

(categorical, continuous, with or without missingness) using a marginal entropy criterion that is 

computed on other variables. Further, MURAL ensures that heterogeneity within categorical or 

MNAR variables is immediately broken down using low dimensional entropy to create 4-way splits 

at such levels. We test MURAL on ground truth data that the resulting tree distances result in 

accurate embeddings. 

While random forests are normally supervised and trained for prediction, there have been some 

efforts to learn random forests in an unsupervised manner.164 describes a method called manifold 

forests which effectively use a splitting criterion based on intra-versus-inter split affinity or density. 
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However, these and other methods often presuppose the ability to compute distances or affinities 

between high dimensional datapoints. By contrast, we use our MURAL unsupervised random 

forests in order to be able to compute an accurate distance between datapoints with missing and 

mixed-mode variables. 

We show the accuracy of our method by comparing the MURAL derived distances to known ground 

truth and recovering embeddings in a 5-dimensional Swiss roll. We then apply our method to a 

complete case subset of an intensive care unit dataset and of an international patient registry 

dataset of patients presenting with symptoms of upper gastrointestinal bleeding. We induce 

missingness in the complete case subsets in specific ranges of laboratory values and compare 

imputed values using mean imputation and multiple imputation with chained equations to the 

original ground truth. We then construct MURAL-embeddings on the full datasets with missingness. 

We show that MURAL-embeddings consistently display more structure and create separations that 

are more clinically meaningful than commonly used imputation methods. Finally, we show an 

application of our method in comparing entire cohorts of patients by computing a tree-based 

Wasserstein distance on the MURAL-forest, which can be used to quantify similarities or distances 

between patient cohorts. 

Background 

A. Manifold Learning, Dimensionality Reduction, Clustering 

Though there are many nonlinear dimensionality reduction and embedding methods, we focus our 

results on methods that can learn the data manifold or intrinsic low dimensional shape and structure 

of the data. We believe that this is useful in biomedical settings where many measurements of the 

patient reflect non-orthogonal aspects of the same underlying entity, essentially indicating the data 

in fact lies in a lower dimensional space. 

High dimensional data can often be modeled as a sampling  𝑍	 = 	 𝑧,,-(
. ⊂ 𝑀/ of a d dimensional 

manifold Md that is mapped to n dimensional observations 𝑋 = 𝑥(, … , 𝑥. ⊂ R0 via a nonlinear 

function 𝑥, 	= 	𝑓(𝑧,). Intuitively, although measurement strategies, modeled here via f, create high 
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dimensional observations, the intrinsic dimensionality, or degrees of freedom within the data, is 

relatively low. This manifold assumption is at the core of the vast field of manifold 

learning160,163,165,166, which leverages the intrinsic geometry of data, as modeled by a manifold, for 

exploring and understanding patterns, trends, and structure that displays significant nonlinearity. 

Diffusion maps were proposed as a robust way to capture intrinsic manifold geometry in data by 

eigendecomposing a powered diffusion operator. Using t-step random walks that aggregate local 

affinity is able to reveal nonlinear relations in data and allow their embedding in low dimensional 

coordinates. These local affinities are commonly constructed using a Gaussian kernel: 

 

where K forms an N ×N Gram matrix whose (i,j) entry is denoted by K(xi,xj). A diffusion operator is 

defined as the row-stochastic matrix P = D−1K where D is a diagonal matrix with D(xi,xi) = Pj K(xi,xj). 

The matrix P, or diffusion operator, defines single-step transition probabilities for a time-

homogeneous diffusion process, or a Markovian random walk, over the data. Furthermore, powers 

of this matrix Pt, for t > 0, can be used to simulate multi-step random walks over the data, helping 

understand multiscale organization of X, which can be interpreted geometrically when the manifold 

assumption is satisfied. P has been used in many downstream unsupervised learning tasks, 

eigendecomposition of P yields the popular diffusion map dimensionality reduction method that can 

be used as input to clustering. P is also used by the PHATE method for visualization. PHATE 

transforms the diffusion operator with a pointwise logarithm log(P), derives distances between 

points xi,xj as klog(Pi)−log(Pj)k2, and then embeds the resulting distances, known as potential 

distances, with metric MDS. 

Other methods for visualization such as tSNE and UMAP use K rather than P to focus on near 

neighbors rather than learning the entire data manifold. The diffusion operator P is related to the 

graph Laplacian that, depending on the normalization used, can be written as L = I − K or L = I − 

P. Thus the graph Laplacian has the same eigenvectors and eigenvalues that are in the opposite 
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order. Spectral clustering is often described in terms of the graph Laplacian, i.e., k-means over a 

graph Laplacian rather than data. 

B. Decision Trees 

A tree T is a connected directed acyclic graph T = (V,E) with vertices (or nodes) 𝑉	 = 	 𝑡(, 𝑡), . . . , 𝑡1 

and n−1 edges E such that every node has at most one incoming edge. A rooted tree has a root 

node t1 with no incoming edges, while ti, i > 1, all have exactly one incoming edge. A node tj ∈ 

children(ti) if and only if [ti,tj] ∈ E, i.e., there is a directed edge from ti to tj. A descendant(ti) is any 

node tk that is connected to ti by a directed path 𝑡, , … , 𝑡2	width a directed edge between each 

consecutive pair of nodes. 

Decision trees contain nodes that split on a variable to create partitions of the data such that 

datapoints on one side of the partition are more similar to each other in terms of the decision 

variable. Recursive splits create finer granularity branches where data points are similar with 

respect to all of the variables that have been split on the path to the node. A specific strength of 

decision tree is the ability to naturally split multiple types of data—binary, ordinal, and missing. 

C. Supervised Random Forests 

In classification tasks single decision trees can learn irregular patterns and overfit to data. As a way 

of addressing this, random forests average over sets of decision trees167 and are created by 

randomizing variable splits. The algorithm selects a random subset of features at each potential 

split, and chooses a threshold so as to optimize a local criterion such as the Gini impurity index or 

information gain. The Gini impurity index is an information theoretic measure that is based on 

Tsallis entropy.168 For C classes (given labels) with fractions 𝑃	 = 	𝑝(, 𝑝), . . . , 𝑝3 of observations in 

each class, the Gini impurity index is given by IG(P) = 1 − ∑,pi. Information gain is also an 

information theoretic measure which measures the difference in Shannon entropy between the 

parent node and child nodes. Shannon entropy of a probability distribution P is given by H(P) = − 

∑,pi log(pi). Information gain is defined as 
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Here P is the class distribution of the parent node, and Pa is the class distribution of the a-th child 

node, which receives |a| datapoints. The total number of datapoints split by the parent node is k. 

Note that these criteria are with respect to a classification label that is given in a supervised setting. 

The original random forest classifier used labeled data to randomly train an ensemble of decision 

trees with a majority vote aggregating the classifications. Decision trees are constructed through 

recursively partitioning the space occupied by data as observations travel from the tree’s root to its 

leaves, each nonterminal node containing a weak learner that chooses a splitting variable and 

threshold. These weak learners minimize an impurity function to ensure that each child node 

receives a “purer” cohort than its parent. Purity is determined by the proportion of labels; if all 

examples belong to the same class, the subset is considered pure. 

D. Unsupervised Random Forests 

Variants of decision trees have been used to cluster data in the absence of labels: random 

projection trees169,170, density forests164, PCA trees171, approximate principal direction trees172, and 

geodesic forests.173 These variants are often effective at learning the manifold of the data when the 

data variables are continuous and distances or Gaussian affinities can be defined between 

datapoints. However, for us this creates a chicken-and-egg problem. Our purpose in creating a 

random forest is to derive a meaningful distance in situations where there are missing values and 

categorical variables, where simple Euclidean distances are not meaningful. 

For example, Criminisi’s manifold forests use trees whose nodes minimize the following information 

gain measure when splitting 
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Here, Sj is the set of datapoints that node j partitions, SjL and SjR are the sets of datapoints from Sj 

that get sent to the left and right child of node j, respectively. The matrix Λ(S) is a set’s covariance 

matrix, which is undefined in our case with missing values. Furthermore, unless binary affinities are 

chosen, the affinity matrices defined using manifold forests depend on preexisting distances 

between datapoints. Thus we define a new type of tree that can tolerate missing values and 

mixtures of variables, which can itself be used to compute a new type of distance. 

E. Wasserstein Distance over Trees 

The 1-Wasserstein distance (also known as the earth mover’s distance) measures the total cost of 

moving shifting the mass from one probability distribution to another. For discrete probability 

distributions over a general metric space this can be computed exactly in O(n3) time using the 

Hungarian algorithm174, and approximated using entropic regularization in O(n2) time.175 However, 

for discrete probability distributions over a tree metric space the 1-Wasserstein distance can be 

computed exactly in linear time.176 Given two probability distributions µ,ν over a measurable space 

Ω with metric d(·,·), let Π(µ,ν) be the set of joint probability distributions π on the space Ω × Ω, 

where for any subset ω ⊂ Ω, π(ω × Ω) = µ(ω) and π(Ω × ω) = ν(ω). The 1-Wasserstein between µ 

and ν is defined as: 

 

Let k · kLρ denote the Lipschitz norm w.r.t. ρ, when Ω is separable w.r.t. ρ and µ,ν have bounded 

support, then the dual of equation 4, known as the Kantorovich-Rubinstein dual, can be expressed 

as: 

 

When d is a tree metric over a rooted tree T, for every pair of points x,y ∈ Ω, ρ(x,y) is the total 

weight of the (unique) path between nodes x and y in T. Denote the edge weight associated with 
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each node t as wt, and D(t,µ) as the sum of mass of µ at and below node t, then the Wasserstein 

distance between two distributions on T can be expressed as: 

 

Previous work in demonstrated unsupervised forest constructions that approximate the 

Wasserstein distance when ρ is the Euclidean ground metric over Ω ≡ Rd. In MURAL, we construct 

an unsupervised random forest over a high dimensional Ω that consists of continuous, categorical 

and missing variables. These trees subsequently define a distance on Ω, which in turn defines a 

Wasserstein distance between distributions on Ω, and because of the specific construction of 

MURAL trees, admits a simple feature importance measure described in IV-C. 

III. MURAL 

Next, we present the MURAL algorithm for building unsupervised random forests from continuous 

and categorical data with missing values on healthcare data. Our code is available at 

https://github.com/KrishnaswamyLab/MURAL. 

A. Problem Formulation 

Our goal is to build a distance matrix D whose (i,j)-th entry contains the distance d(xi,xj) between 

observations xi and xj. Desirable properties for D are that neighbors found using D have similar 

clinical manifestations, and moreover that D can be used in a nonlinear dimensionality reduction 

method to create nonlinear axes corresponding to largest patient variation, and clusters that group 

patients by overall similarities. 

B. Distinguishing Randomly versus Non-Randomly Missing Variables 

A key insight in MURAL is that healthcare data consists of variables that are intentionally missing, 

i.e., missing not at random (MNAR), that are a source of significant information since the data is 

related to unobserved patient characteristics (e.g. there appears to be higher levels of missing 
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values for reported income in individuals with higher income levels). However, patient data also 

often contains data that is missing completely at random (MCAR) or missing at random (MAR). 

MCAR data is when missingness does not depend on the observed or missing values, and MAR 

data is when missingness does not depend on the missing values but may depend on the observed 

values. MCAR or MAR data are usually the result of absence of documentation through the 

extraction, transformation and loading of clinical data.177,178 We note that MCAR or MAR variables 

can be imputed on the basis of informational redundancy with other variables using conditional 

probability modeling, regression or other techniques, with multiple imputation leading to the most 

unbiased results.179,180 However, MNAR variables cannot be imputed well as we show in Section 

IV. 

MURAL distinguishes between MCAR variables and MNAR features for continuous variables. We 

may or may not have prior knowledge about which continuous variables are MCAR vs. MNAR. If 

we do not, then we can distinguish between the two cases based on Little’s test181, which examines 

patterns of missingness for correlations with other variables. Little’s test gives each variable a 

significance value for rejecting the null hypothesis that says it is missing at random. If this 

significance value p ≤ 0.05 then we conclude that the variable is MNAR, otherwise we deem the 

variable to be MCAR. Next, for variables that are MNAR we use imputation to fill the values in as a 

preprocessing step using fully conditional specification (FCS) multi-variable imputation.180 After this 

step, all variables are either fully imputed or MNAR. 

C. Mixed-modality Variable Splitting Scheme 

MURAL incorporates multimodal variables into an unsupervised random forest framework by using 

a nuanced splitting scheme. Key aspects of the MURAL splitting scheme are as follows: 

• At each iteration MURAL chooses a variable vi to split on at random. 

• If the vi is MNAR for some observations then we create a preliminary binary split between 

observations where it is measured and observations where it is missing. 
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• For the branch where the variable is measured, we find a single threshold based on the 

unsupervised information gain criterion we define in the following section to create two child 

nodes. 

• For the branch where the variable is missing, we randomly select another variable vj with 

no missingness and create two child nodes based using the residual multidimensional entropy 

described in Equation 7. 

• If vi has no missingness then it is split into two child nodes again using the same information 

gain criterion. 

• The two-level splits described above are flattened into the same level to create four child 

nodes if the first split was missing/not-missing (see Figure 19). 

This scheme effectively creates four child nodes when a variable has MNAR since there are 

actually two variables worth of information, first variable describing the missingness, and second 

variable describing a further split. However, the reason for choosing an additional variable on the 

branch with missingness is to create a branch with controlled heterogeneity (entropy) instead of 

the forced split that comes with a naturally binary variable. 

A similar four-way splitting scheme can avoid fragmentation caused by the presence of binary 

variables. For a binary variable vb, we create two hidden nodes, one for the value of 0 and one for 

the value of 1, and choose a second, non-binary, variable vc for the hidden nodes to optimize binary 

splits on. The edges are weighted as in the case of missingness, resulting in a four-way split. 
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Figure 19. The decision to create the four-way split for variables missing not at random (MNAR) 

and to avoid splitting on MNAR variables at the root were based on empirical findings as shown 

above. For the 5-dimensional Swiss roll, in a) no four-way split and no condition to avoid splitting 

MNAR variables at the root node results in fragmentation. In b) addition of condition to avoid 

splitting MNAR variables at the root decreases fragmentation and c) introduction of four-way 

splitting results in clearer structure recovery. For the upper gastrointestinal bleeding dataset, in d) 

no four-way split and no-condition to avoid splitting MNAR variables at the root node results in 
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distorted structure e) addition of four-way splitting allows for structure recovery, and f) introduction 

of condition to avoid splitting MNAR variables at the root leads to clearer recovery 

D. Splitting with Residual Multidimensional Entropy 

When each variable without MNAR is chosen, we choose a threshold thres(vi) based on an 

unsupervised information gain criterion, which we term residual multidimensional entropy. Instead 

of choosing a split that maximizes the information gain in the class label, we choose a split that 

maximizes the residual entropy of the remaining variables. Since the remaining variables are not 

naturally discrete like class labels, we discretize the continuous variables. Thus for each node ti 

splitting on variable vi we compute the following summation: 

 

Where Si is the probability distribution of the classes (discretizations) of variable vi (not on the path 

from the root node to vi) among descendants(ti), and 𝑆,4 is the probability distribution of the classes 

of vi among only the descendants of child(ti,a) i.e. the ath child node. We discretize each variable 

into a number of bins which are determined by the Sturges method [30] (number of bins is dlog2 ne 

+ 1, where n is the number of datapoints). 

Here, we avoid using a high dimensional entropy or high dimensional density for ease of 

computation. We assume that we can approximate this entropy by a sum of marginal entropies or 

by the multidimensional entropy of a subset of the variables. In our experiments, we found that 

using three dimensional entropies calculated over randomly chosen subsets of variables resulted 

in the best embeddings of the Swiss roll dataset. For datasets with more dimensions (such as UGIB 

and eICU), three variables would cover only a small fraction of the information available, so we 

prefer the sum of marginal entropies. As noted before, we cannot directly use within-split affinity or 

density estimates as that is indeed the end result of MURAL. 

E. MURAL-derived Distances and Embeddings 
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For every tree Tk in a trained forest, we define the tree distance between two nodes to be 

 

where P is the index sequence of the edges in Tk on the unique undirected path (ti,...,tj) between ti 

and tj with no node repetition, and wtp is the weight of edge p. We opt for all edges having unit 

weights. 

Then we define distances between xi,xj by noting that nodes corresponding to leaves of the tree 

tl,1,tl,2,... each contain sets of datapoints, i.e., 𝑡5,( 	= 	 𝑥5,(, 𝑥5,)	. . . 𝑥5,7. Thus if xi ∈ tl,i and xj ∈ tl,j then 

dk(xi,xj) = dk(tl,i,tl,j) 

The constructed tree metrics can be averaged over the MURAL-forest, which results in composite 

MURAL distances. 

 

Here Dk is the matrix of pairwise distances of the kth tree, and DM the averaged distance matrix 

over all trees. 

This leads directly to a MURAL-based distance matrix, which can be converted into an affinity 

matrix using any kernel function. For embedding, the distance matrix can be passed as an input to 

a nonlinear dimensionality reduction algorithm such as PHATE [7], which we choose for its manifold 

affinity preservation capabilities. We call the resultant PHATE embedding using DM the MURAL-

embedding. 

Results 

A. Empirical Validation 
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In this section we induced missingness, i.e., MNAR, in datasets (or data subsets) where there was 

no missingness to validate the ability of MURAL to recover meaningful distances. We used 3 

datasets for this experiment: 

1) A synthetic Swiss roll constructed of 3,000 points embedded in a 5-dimensional space. 

2) A dataset of patients requiring intensive care unit stay (ICU) from the publicly available 

Phillips eICU Collaborative Research Database (eICU-CRD) of critical care units across the 

United States from 2014 to 2015.182,183 Patients with available data within the first 24 hours of 

ICU stay (148,532 unique patient encounters) had 10 variables selected: five laboratory 

values (bilirubin, blood urea nitrogen, creatinine, hematocrit, and albumin), age, 3 ordinal 

variables from nursing assessment of eye, motor, and verbal responses using the Glasgow 

Coma Scale, and binary variable of invasive mechanical ventilation within the first 24 hours. 

3) An international registry of consecutive, unselected patients presenting with symptoms of 

upper gastrointestinal bleeding between March 2014 and March 2015 from Yale–New Haven 

Hospital (United States), Glasgow Royal Infirmary (Scotland), Royal Cornwall Hospital Truro 

(England), Odense University Hospital (Denmark), Singapore General Hospital (Singapore), 

and Dunedin Hospital (New Zealand).184 7 variables were selected: 4 laboratory variables 

(hemoglobin, urea, albumin, INR), 1 vital sign (systolic blood pressure), 1 binary demographic 

variable (gender), and 1 ordinal variable (degree of liver disease). 

The eICU and UGIB datasets already have missingness in a significant portion of the entries. Thus, 

to create an artificial ground truth, we used only entries with all variables present. For the UGIB 

dataset, 2,761 patients with complete data were selected. For computational efficiency we 

subsampled the eICU dataset to 10,000 patient encounters with complete data across 10 variables. 

Using this subset of complete data as ground truth, we artificially induced missingness in order to 

test the ability of MURAL to recover meaningful distances. 

We induced missingness in the Swiss roll dataset in a similar way to what is observed in real clinical 

data, with one variable that has a pattern of missing values deemed to be missing not at random 
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by pairwise Little’s test, and two variables with random values dropped out. In the eICU dataset we 

induced missingness by dropping the values of bilirubin > 3, the threshold chosen since these are 

clearly physiologically abnormal values and thus would be missing not at random. In the UGIB 

dataset we induced missingness by dropping the values of INR > 3, also chosen since they are 

physiologically abnormal values and would be missing not at random. All datasets were 

standardized after missingness was induced but before they were used for constructing MURAL-

forests. 

To quantitatively compare the preservation of the underlying manifold structure of these datasets 

in the presence of missing values, we used the accuracy of a kNN graph derived from the 

embedding compared to the ground truth kNN graph from each of these graphs. We compared the 

performance to mean imputation, and to another standard tree-based imputation method, multiple 

imputation with chained equations (MICE) using classification and regression decision trees. We 

find that near neighbors are recovered in the MURAL-embedding with greater accuracy than 

baselines that first use imputation in this case where ground truth is known in IV-A. In the artificial 

Swiss roll dataset, the MURAL-forest with 100 trees outperformed mean imputation at 5, 10, and 

100 neighbors by 32%, 30%, and 22%, and outperformed MICE with CART at 5 and 10 neighbors 

by 6% and 3%. This reflects the specific nature of the Swiss roll dataset, since smaller 

neighborhoods were more likely to be perturbed due to the intrinsic coiled data structure manifold. 

For the eICU dataset and the UGIB dataset, the MURAL-forest with 100 trees outperformed mean 

imputation at 5, 10, and 100 neighbors by 7%, 10%, and 15%; MURAL-forest outperformed MICE 

with CART at 5, 10, and 100 neighbors by 15%, 15%, and 14%. (Table 21) 

Table 21. 𝜇 ± 𝜎 for P@5, 10, 100 metrics on three datasets over 5 runs. MURAL-embedding 

preserves neighborhoods for missing values better than mean imputation and MICE with CART.  
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B. Ablation Study 

Next, we carried out an ablation study using this Swiss roll dataset to investigate which parameter 

choices lead to the best embeddings. Results are shown in Table 22. For each parameter choice, 

we trained MURAL-forests with 5 different random initializations. In the run testing 100 trees of 

depth 10, we rejected one outlier forest that generated pathological distances. Generally we find 

that low-dimensional (3d) entropy works for our proposed residual multidimensional entropy from 

Equation 7. Surprisingly we found that splitting on a single residual variables works best for the 

discrete and MNAR case. An additional insight was that restricting MNAR variables to low levels in 

the tree worked best as they would have minimal effect on other distances in this scheme. Full 

results are seen in Table 2. 

Table 22. Ablation Study for MURAL-Embedding on the swiss roll embedded in 5 dimensions (𝜇 ±

𝜎) over 5 runs. BOLD represents best in each parameter. 
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C. Applications 

1) Embeddings: Our initial goal was to derive distances that provide a faithful representation of a 

dataset that contains different types of variable and missing values. In order to see if these 

distances facilitate embeddings that reveal structure and meaningful groupings in data, we fed the 

distance matrix into the PHATE nonlinear dimensionality reduction and visualization method. We 

chose to use PHATE due to its improved ability to preserve data manifold-affinities as quantified 

by the DeMAP metric. We note that PHATE contains similar information as a diffusion map, with 

information collected in low dimensions for visualization. The resultant embeddings, which we term 

as MURAL-embeddings are shown in Figure 20, Figure 21, Figure 22, Figure 23.  
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Figure 20. PHATE plots of the Swiss roll embedded in 5 dimensions. (I-1) Mean imputation. (I-2) 

MICE. (M-1) MURAL-embedding without any restrictions on choosing splits in variables with 

missing values. (M-2) MURAL-embedding with trees of depth 4. (M-3) MURAL-embedding with 

each node choosing the best split from among four variables. (M-4) MURAL-embedding with 100 

trees of depth 10, each node choosing the best split from only one variable, not splitting on variables 

with missing values in the first three levels. 
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Figure 21. MURAL-embedding preserves data structure and separation better than mean 

imputation and multiple imputation with chained equations using classification and regression trees 

(MICE with CART) after visualization with PHATE. MURAL-embedding separates groups of 

patients with clinically relevant subgroups: A) high risk (red) and low risk (blue) groups as defined 

by need for hospital-based intervention B) different age groups <30 years old (blue) versus >80 

years old (red) C) gender, male (red) versus female (blue) D) liver disease (yellow to red) versus 

no liver disease (blue). Spectral clustering (E) of the graph subsets the known groups including the 

group of men with liver disease (green), female patients (red), young males at low risk for hospital-

based intervention (purple), and older males at high risk for hospital-based intervention (blue). 
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Figure 22. MURAL-embedding better separates out patients in the intensive care unit at risk for in-

hospital mortality compared to mean imputation and MICE with CART on PHATE visualizations. 

MURAL-embedding separates patients who A) received invasive mechanical ventilation (red) 

versus not (blue) B) at high risk for in hospital mortality (red) versus not (light blue) C) presenting 

with admission diagnosis of acute coronary syndrome (red) versus other diagnosis (blue) D) 

nursing assessment (1 to 5, higher is healthier). Spectral clustering (E) of the graph subsets the 

groups of patients who required mechanical ventilation (blue), patients with slightly impaired verbal 

responses on nursing assessment (green), and patients with admission diagnosis of acute coronary 

syndrome with bilirubin measurement, reflecting concern about liver disease (purple) versus 

without bilirubin measurement (red), impairment of verbal responses (blue).  
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Figure 23. MURAL-embedding better separates out patients in the intensive care unit at risk for in-

hospital mortality compared to mean imputation and MICE with CART on PHATE visualizations 

even with 108 variables. MURAL-embedding separates patients who A) received invasive 

mechanical ventilation (red) versus not (blue) B) at high risk for in hospital mortality (red) versus 

not (light blue) C) presenting with admission diagnosis of acute coronary syndrome (red) versus 

other diagnosis (blue) D) nursing assessment (1 to 5, higher is healthier). Spectral clustering (E) of 

the graph subsets the group of patients who required mechanical ventilation (blue/green). 

By visual inspection we see that the MURAL-embeddings are much more structured than PHATE 

embeddings of the raw data with imputed values. Furthermore, visualization of several clinical 

variables on the embeddings show that the separations correspond to clinical groupings that are 

used in generating the embedding and also meaningful clinical groups not used to generate the 

MURAL-embeddings. In Figure 21 risk for hospital-based intervention (A) and age (B) were not 

used to generate the MURAL-embeddings, yet the MURAL-embeddings show separation into high 

risk and low risk groupings (A) and separation by age, in this case < 30 years old versus > 80 years 

old (B). For factors used to generate the MURAL embeddings, there are separations into two major 

structures horizontally based on gender (C) and minor structures based on liver disease status (D). 

By contrast, mean imputation mixes genders despite having the information, and MICE imputation 

overlaps the two disease cohorts. In Figure 22 risk for in-hospital mortality (B) and admission 
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diagnosis of acute coronary syndrome (C) were not used to generate the MURAL-embeddings, but 

the MURAL-embeddings show separation into low and high-risk groups for in-hospital mortality (B) 

and subgroup of patients with admission diagnosis of acute coronary syndrome (C) (red) and those 

with other diagnoses (blue). Need for mechanical ventilation (A) and nursing assessment of verbal 

response (D) were used to generate the MURAL-embedding; clear separations are found between 

patients with mechanical ventilation (A, red) and those who did not (A, blue), as well as patients 

with normal verbal response (D, light yellow), mildly impaired verbal response (D, orange), those 

with no verbal response (D, purple). These separations are not seen in the embedding methods on 

imputed data despite also containing these variables. These visual results suggest that these 

embeddings are useful and amenable to further quantitative analysis. The structures in the MURAL-

embedding are largely retained even after including 108 variables derived from the first 24 hours 

of patient stay in the ICU for the same patient cohort in the eICU dataset (Figure 23). 

2) Spectral Clustering: Spectral clustering [8] is a key unsupervised clustering method that 

follows the data manifold by operating on a data affinity matrix. We used k-means with k = 4 on the 

diffusion operator created by PHATE, which is equivalent to spectral clustering and compared it to 

similar clustering using imputed data. To evaluate the qualities of the clusters, we use the silhouette 

score and find that clustered MURAL-embedding has highest silhouette score in both datasets. 

(Table 23) 

Table 23. MURAL-Embedding on PHATE with spectral clusters K=4 shows superior silhouette 

scores compared to other imputation methods.  
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In addition, the resultant subgroups can be interpreted clinically. For example, the red cluster in 

Figure 21 corresponds to admission diagnosis of acute coronary syndrome who either have a 

bilirubin measured or not measured within 24 hours of ICU admission, which may suggest a 

concern for concurrent hepatobiliary dysfunction or injury. In Figure 21 the green cluster correspond 

to male patients with severe liver disease, which correspond to a specific type of gastrointestinal 

bleeding, portal hypertensive bleeding. 

3) Wasserstein Distance between cohorts: Seeing that groups of patients who differ in a 

clinically significant way form distinct clusters on the embeddings, we decided to quantitatively 

check whether MURAL-forests themselves separate dissimilar cohorts more than similar ones. This 

is directly relevant to the task of characterizing clusters within the data representations. For 

example, if clusters are two groups of patients with the same diagnosis, if there is a meaningful 

difference between their measured laboratory or clinical characteristics that could reflect risk for a 

poor clinical outcome. To that end, we calculated tree-sliced Wasserstein distances between the 

low risk and high-risk patient cohorts. For the eICU dataset, we defined this as patients who died 

in the hospital, and in the UGIB dataset we defined this as a need for hospital-based intervention 

(red blood cell transfusion, hemostatic intervention, or 30-day mortality). We then extract feature 

importances by aggregating the variables associated with nodes where the Wasserstein distances 

were most disparate. The feature importances in Figure 24 are consistent with the top two variables 

predictive of in-hospital mortality from supervised machine learning algorithms (regression models) 

trained and validated on the eICU dataset185, and the top three variables predictive of need for 

hospital based intervention from a high performing supervised machine learning algorithm (gradient 

boosted decision trees) trained and validated on the UGIB dataset.14 As a sanity check, we also 

compared tree-sliced Wasserstein distances between different age groups: first, a very different 

age group (< 30 years old versus > 80 years old) and a similar age group (< 30 years old versus 

30-40 years old). The similar age group had much lower TSWD compared to the group with different 

ages, and the TSWD from the MURAL-forest for high risk versus low risk was more distinct 

compared to the other imputation methods. (Table 24) More generally, we believe these types of 
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Wasserstein distances can be used to measure distances or similarities between treatments, 

diagnostic variants and other differences between sub-cohorts. 

 

Figure 24. TSWD on the MURAL-forest can be used to generate feature importance graphs that 

are consistent with feature importances in supervised approaches on the same data. For the eICU 

dataset, the first two factors were within the top 3 predictive factors in supervised models predicting 

mortality on the same dataset. For the UGIB dataset, the first 3 factors were identified as the top 3 

predictive factors in high-performing supervised models on the same dataset. 

Table 24. Tree Sliced Wasserstein Distances (TSWD) on the MURAL-forest compared to mean 

imputation and multiple imputation with chained equations using classification and regression trees 

(MICE with CART). TSWD on the MURAL-Forest appear to separate populations by clinically 

meaningful risk (either in-hospital mortality for patients in the ICU or need for hospital-based 

intervention for patients with UGIB) more definitively than the other approaches, with an increased 

ratio of Earth Mover’s Distance (EMD) of the two defined populations to EMD between random 

splits. Risk based on need for hospital-based intervention (UGIB) and in-hospital mortality (eICU). 
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Semi-Supervised Classification Using MURAL-Forest  

When utilizing the MURAL-forest trees in a semi-supervised task, the performance as measured 

by classification accuracy with kNN from randomly selected 10% to 90% random selection of 

labeled data. The performance is maintained with small neighborhoods to larger neighborhoods. 

 

Figure 25. MURAL-forest kNN semi-supervised performance is maintained at small and larger 

neighborhoods across the MURAL-forest.  

Future Work 

MURAL-forests and the MURAL-embedding could potentially be used for supervised tasks such 

as classification, as indicated by the separation of low and high-risk patients. A potential framework 

for ensuring fidelity of the MURAL-embedding is the use of geometry regularized autoencoders and 

selecting embeddings with the lowest reconstruction error, and then using the embedding in a semi-

supervised fashion as part of a feedforward neural network. This will be the focus of future efforts 

to use MURAL-embeddings for supervised tasks. 

Conclusion 
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We present MURAL, a random-forest based framework for deriving distances between patients 

using mixed-model electronic health record data. We showed that the resultant MURAL-

embeddings recapitulate the structure and heterogeneity of patient populations better than 

alternatives—thus paving the way for unsupervised learning to be used on clinical data. We note 

that most of the machine learning methods that are currently used for modeling clinical data require 

supervised training and large sets of annotated and labeled samples. However, by making clinical 

data amenable to unsupervised approaches, we can diminish this burden and even discover novel, 

clinical groupings of patients that could be meaningful for diagnosis, prognosis, or treatment.  
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Electronic Health Record Phenotyping Using Knowledge Graphs: Embedding Signals on 

Graph with Unbalanced Diffusion Earth Mover’s Distance 

Introduction 

The task of comparing probability distributions is applicable to a wide variety of machine learning 

problems, giving rise to popular φ-divergences such as the Kullback-Leibler (KL), Hellinger, or total 

variation (TV) divergences, which ignore the underlying geometry of their support. The Earth 

Mover’s Distance (EMD), also known as the Monge-Kantorovich or Wasserstein Distance, explicitly 

takes into account this underlying geometry via a domain-specific ground distance, which has many 

advantages on empirical probability distributions.174,186 Here, we show that earth mover’s distances 

are useful in a new domain: that of graph signals. In modern relational machine learning, we 

encounter large graphs that arise via interactions between entities in many domains.187,188 Features 

of such entities can be considered as signals on the graph. For such signals, which often tend to 

be noisy, we propose a new unbalanced graph earth mover’s distance, and use it to organize the 

signals and determine relationships between them. 

Since graphs can contain tens (Cora)187 to hundreds of thousands of nodes (SNOMED-CT)189, 

there is a great need for this measure to be computationally efficient. While the Wasserstein 

distance is intuitively attractive, it presents computational challenges. Here, based on the recent 

diffusion EMD method190, we show that an efficient unbalanced EMD between signals can be 

computed as the difference between graph convolutions of the signal with multiscale graph kernels. 

This unbalanced EMD can be computed in linear time with convergence guarantees and without 

solving an optimization problem. We call our distance unbalanced diffusion earth mover’s distance 

(UDEMD). 

While previous work on Wasserstein distance embedding mostly focused on its relation to the 

balanced optimal transport problem176,191-194, we propose an unbalanced Wasserstein embedding 

approach between large number of distributions defined as signals on graphs. Since graph signals 

tend to be noisy, an unbalanced transport, which can choose not to transport parts of the data 

space when it is inefficient to do so, leads to more robust distances between graph distributions 

that are less sensitive to outliers in the signal. 
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We apply UDEMD to medical knowledge graphs using Systemized Nomenclature of Medicine - 

Clinical Terms (SNOMED-CT).188 We show that unbalanced diffusion EMD can be used to find 

meaningful distances between patients which successfully clusters patients into different diagnosis 

categories, and allows us to find relationships between patient features. We also apply UDEMD to 

single cell RNA sequencing data where we can model both cells as signals on gene interaction 

graphs or genes as signals on cell-similarity graphs. In cases where the gene regulatory network 

is well known, researchers have shown that affinity between cells can be computed as an earth 

mover’s distance.195,196 We show that UDEMD runs orders of magnitude faster than the Sinkhorn 

and network simplex methods used in those works, while maintaining accuracy. In cases where 

the gene regulatory network is not well known, we model the transposed problem, deriving 

groupings of genes that function similarly by modeling genes as expression values over single cells. 

Here, we show that the UDEMD provides robust distances that recapitulate ground truth gene 

groupings in single cell data from peripheral blood mononuclear cells (PBMCs). 

PRELIMINARIES 

In this section we review the Wasserstein metric, embedding based methods for approximating it, 

and unbalanced optimal transport. 

The Wasserstein metric is a notion of distance between two measures µ,ν on a measurable space 

Ω endowed with a metric d(·,·) known as the ground distance. The primal formulation of the 

Wasserstein distance Wd, also known as the earth mover’s distance, is defined as: 

where Π(µ,ν) is the set of joint probability distributions π on the space Ω × Ω, such that for any 

subset ω ⊂ Ω, π(ω × Ω) = µ(ω) and π(Ω × ω) = ν(ω). Also of interest is the entropy regularized 

Wasserstein distance175, which reduces the computation to O(n2). This algorithm is extremely 

parallelizable, and works quite well even for a small number of iterations186, and there are many 

works investigating how to scale this to larger problems. 
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However, when comparing a large number of signals (say m), we must solve the optimization for 

each pair of signals, i.e. O(m2) optimizations. For this reason, we turn to methods that approximate 

the dual of the Wasserstein metric, also known as the Kantorovich-Rubenstein dual formulation, 

which relies on witness functions. Many works optimize the cost over a modified family of witness 

functions such as functions parameterized by neural networks197-199, functions defined over 

trees190,200, and wavelet bases193,194. An efficient algorithm recently proposed is Diffusion EMD191, 

it is based on a multi-scale representation of the signals. Indeed, it can be seen as a weighted 

average of the L1 distances between two signals at different scales. 

There are numerous formulations of unbalanced optimal transport both to accommodate problems 

with unequal masses and to provide robustness to outlier points.174,201. In general these can be 

formulated as a mixture between a pure optimal transport problem and a φ-divergence. We focus 

on the formulation using the total variation, referred to as the TV-unbalanced problem: 

where λ	 = 	min(λµ, λν)	and λµ,λν control the relative cost of mass creation / destruction compared 

to transportation. Intuitively, we can think of Eq. 2 as minimizing over the “teleporting” mass s, that 

is too costly to transport. 

In the unbalanced optimal transport literature, most often considered is the KL-divergence 

formulation which can be solved efficiently in the case of entropic regularized problem202-204, but is 

difficult to optimize stochastically as is possible in the balanced case, limiting scalability.205,206 The 

TV-unbalanced problem (Eq. 2) can be solved by adding a “dummy point” that is connected to 

every point with equal cost.207,208 However, adding a dummy point removes the metric structure 

necessary for dual-based Wasserstein distances. It is not immediately obvious that Eq. 2 is 

efficiently computable while maintaining this structure. To address this issue, Mukherjee et al 

showed that the TV-unbalanced problem can be solved through cost truncation.209 Following their 

work, we will show that there is an embedding of distributions to vectors where the L1 distance 

between vectors is equivalent to the TV-UW between the distributions. 

UNBALANCED DIFFUSION EARTH MOVER’S DISTANCE 



 

 
 

141 

While Diffusion EMD can provide an earth mover’s distance between graph signals, its formulation 

is not motivated by considering noisy signals on graphs or outliers, but rather geared to avoid high 

dimensional density estimation.191 Here, we focus on utilizing EMD to organize graph signals. 

Therefore, we are interested in distances that are immune to outlier spikes in the signals. While the 

multiscale smoothing proposed is effective in handling noisy perturbation of the signals, it is less 

effective at dealing with outlier vertex components of the signal. However, as we show here, the 

construction can be adapted to consider unbalanced transport, which is essentially based on the 

idea that a more faithful earth mover’s distance is given by a transport in which we ignore some of 

the mass – particularly, mass that requires large transport costs. To incorporate this idea, we modify 

the formulation by only considering certain scales. This yields the Unbalanced Diffusion EMD 

(UDEMD), which is topologically equivalent to the total variation unbalanced Wasserstein distance. 

Definition 1. The Unbalanced Diffusion Earth Mover’s Distance (UDEMD) between two signals µ,ν 

is 

 

where 0 < α < 1/2 is a meta-parameter used to balance long- and short-range distances, and 

where µ(t) is short for µ  and K is the maximum scale considered. 

The scale K relates to the unbalancing threshold (see Fig. 1 and discussion in Sec. 3.1). In practice, 

α is set close to 1/2, hence we drop the subscript and use the notation UDEMDK. 

3.1. Equivalence to (unbalanced) Wasserstein distance 

In Pele et al, it was shown that truncated-cost optimal transport distances were equivalent to 

unbalanced Wasserstein distances, and that they are useful in outlier detection. 208  However, there 

the proposed implementation used a truncated matrix with the standard Sinkhorn algorithm.175 Here 

we show a similar result for the Unbalanced Diffusion EMD from Def. 1, i.e., showing that with scale 
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truncation it is equivalent to an unbalanced Wasserstein distance. We first adapt Theorem 3.1 from 

Mukherjee et al in the following Lemma 1, which will in turn be combined with Lemma 2 to yield this 

result. .209 

 

Lemma 1. The Wasserstein distance with a truncated ground distance dλ(x,y) = min(λ,d(x,y)) for 

some constant λ and distance d is equivalent to a total variation unbalanced Wasserstein distance 

for some constant λ, i.e., Wdλ(µ,ν) = TV-UWd(µ,ν). 

 

The theory developed in Tong et al. assumed that the support of the considered distributions was 

a closed Riemannian manifold.191 In such a case, Diffusion EMD will converge to a distance that is 

equivalent to the Wasserstein distance defined with the geodesic on the manifold. 

The following Lemma extends this theory to show that UDEMD (Def. 1) will converge to a 

Wasserstein distance where the ground distance is a thresholded geodesic. 

 

Lemma 2. UDEMDK(µ,ν) approximates a metric equivalent to the Wasserstein distance Wdλ(µ,ν), 

defined as in Lemma 1, with the ground distance being a truncated geodesic distance on the 

manifold, i.e., dλ(x,y) = min(λ,ρ(x,y)) for λ > 0. 

 

Proof. We present a proof sketch here; the main part of the proof follows the same lines as in 

Corollary 3.1.191 In Def. 1, an anisotropic kernel P is used, which can be shown to converge to the 

heat kernel on a Riemannian manifold (Prop. 3).210 In Leeb and Coifman, it is shown that the 

construction of Def. 1 using the Heat Kernel will converge to a metric that is equivalent to the 

Wasserstein with ground distance min(1,ρ(x,y)2α), where ρ is the geodesic on the manifold.211 

Because the metrics min(1,ρ(x,y)2α) and min(λ,ρ(x,y)2α) are equivalent for λ > 0, the Wasserstein 

distances induced by these metrics are also equivalent.   
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Figure 26: On a ring graph n = 500 compares the UDEMD to the thresholded ground distance, this 

suggests that UDEMD closely approximates the thresholded ground distance with λ ≈ 2K.  

By combining Lemmas 1 and 2, we have that the UDEMD from Def. 1 approximates a metric 

equivalent to an unbalanced optimal transport metric. Formally, using the equivalence notation 

from, we have UDEMDK(µ,ν) ' TV-UWd(µ,ν). We note that while our result here establishes a 

relation between these two metrics, it does not directly quantify the relation between the λ and K. 

We leave careful theoretical and rigorous study of this relation to future work, but mention here that 

we observe empirically, as shown in Fig. 1, the choice of K indeed acts in a similar way to the 

threshold λ on the ground distance. 
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To compute the UDEMD defined in Def. 1, we present Alg. 1 with time complexity O(2Km|E|), which 

is similar to algorithms used in graph neural networks. Our algorithm scales well with the size of 

the graph, the number of distributions m and number of points n, but poorly with the maximum scale 

K. We note that the maximum scale considered for Diffusion EMD was of order O(log|V |), derived 

from the convergence of the heat kernel to its steady state. Here, on the other hand, we decouple 

the tuning of K and find that a much smaller maximum scale suffices, and in fact (as discussed in 

Sec. 3.1) corresponds to a well characterized unbalanced earth mover’s distance on the underlying 

geometry of the graph. This leads to Alg. 1 emphasizing preferable scaling properties for small K, 

and easily accelerated by computation on GPUs. 

Results 

In this section, we show that UDEMD is an efficient and robust method for measuring distances 

between graph signals and then using the distances to find embeddings and organization of the 

signals (often entities such as patients). We compare UDEMD to a GPU implementation of 

numerically stabilized Sinkhorn optimization that includes minibatching of sets of distributions. 

However, despite this, this method runs out of memory when there are beyond 10,000 nodes in the 
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graph. We note that all methods of this type require solving m2 optimizations, even when looking 

for nearest neighbors. Unless otherwise noted, we set K = 4 and α = 1/2. 

Spherical data test case  

To test the speed and robustness of UDEMD we begin with a dataset where we have knowledge 

of the intrinsic ground distances and can vary the number of points and distributions. For this 

dataset we sample m Gaussian distributions with means distributed uniformly on the unit sphere 

with 10 points each for a total of n = 10m points. We add a random noise spike at a uniformly 

random location on the sphere to check robustness to this type of noise. The goal is to predict the 

neighboring distributions on the sphere. We find that UDEMD is significantly more scalable and find 

that there is a sweet spot in terms of K at K = 4 for this dataset. The UDEMD with K = 4 performs 

significantly better than the balanced Diffusion EMD case with this type of noise. This supports the 

claim that setting is beneficial in real world datasets. UDEMD also outperforms the graph-TV 

distance as it is both faster and more accurate at K = 1, and more accurate overall. (Figure 26) 

Figure 27: UDEMD is more scalable than Sinkhorn-OT and performs better than graph total 

variation. (left) Shows performance as measured by P@100, the fraction of the 100 nearest 
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neighbors predicted correctly, against problem size. (middle) Shows time against problem size, and 

(right) shows performance vs. time on a problem size of n = 2000 for different choices of K. 

Single-cell data with cells as signals over gene graphs  

We consider 206 cells from the K562 human lymphoblast cell line as signals over a known 10000-

node gene graph in single-cell RNA seq data [27]. We measure the distance between cells based 

on their transport on this gene graph. This was recently independently proposed by [10] and [11], 

who showed that OT over the gene graph can provide better distances between cells than 

Euclidean measures. We measure the performance of these methods based on how well the 

resulting distance matrix between cells matches the clusters according to four scores: Silhouette 

score, the adjusted rand index (ARI), the normalized mutual information (NMI), and the adjusted 

mutual information (AMI). In Fig. 3, we see that UDEMD performs almost as well as Sinkhorn-OT, 

and much better than the Euclidean and total variation distances that do not take into account the 

gene graph as well as much faster than Sinkhorn-OT, scaling almost as well as Euclidean distances 

due to the embedding. Note however, that using balanced transport (see Fig. 2 right) degrades the 

accuracy. The balanced transport compared here is the original Diffusion EMD from [5] which is 

not a thresholded distance, and thus noise in the data are able to perturb the accuracy of the 

distances. (Figure 27) 

Figure 28: UDEMD achieves better clustering than Euclidean and total variation (TV) distances, 

and performs similarly well to Sinkhorn-OT but is much more scalable with similar scalability to 



 

 
 

147 

Euclidean and TV distances. (a) performance in terms of Silhouette score, ARI, NMI, and AMI (b) 

computation time vs. problem size. 

Single-cell data with genes as signals over cell graphs  

Next we applied our approach to 4,360 peripheral blood mononuclear cells measured via single 

cell RNAseq publicly available on the 10X platform. We consider three curated gene sets that are 

explanatory for this dataset. We compare the distances between genes using UDEMD, Euclidean, 

total variation and Sinkhorn-OT distances. We can see that the genes canonical for monocytes 

(orange), T cells (green) and B cells (blue) all appear to be closely positioned to one another and 

separate between the groups in our embedding in contrast to a Euclidean distance embedding of 

the genes where the clusters are less clear (Fig. 4a). Visualizing the UDEMD distance between our 

46 genes in a heatmap, we can identify the three clusters as dark blocks of low distance (Fig. 4b). 

This result is quantified in (Fig. 4c), where UDEMD performs the best on 3/4 metrics. Last, we tried 

to see how diffusion time scale impacted silhouette score, identifying that score maximized at a 

timescale of K = 10 and did not improve with higher scales. (Figure 28) 

 

Figure 29: (a) Visualization of gene graphs of 46 genes canonical for different cell types using 

UDEMD and Euclidean ground distances (blue for B cells, orange for monocytes and green for T 

cells), (b) heat map of gene distances (c) clustering performance (d) silhouette score vs. maximum 

diffusion scale K. 

A Patient Concept Knowledge Graph  
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We consider a knowledge graph constructed from medical concepts captured in clinical 

documentation and reporting. SNOMED-CT is a widely used collection of terms and concepts with 

defined relationships considered to be an international standard for medical concepts captured 

from the electronic health record. SNOMED-CT has a pre-defined knowledge graph with concept-

relation-concept triplets, which we subset to the Clinical Findings concept model (version 3/2021). 

We used 52,150 discharge summaries from MIMIC-III, which contain all information about a 

patient’s hospital course and extracted concepts using MetaMap (version 2018) [28]. These 

medical concepts were then used as signals on the SNOMED-CT knowledge graph, which link all 

relevant concepts together. The metadata used to label patients included primary diagnosis, a 

physician-designated diagnosis which was stored separately in the MIMIC-III database. 

One of the advantages of the UDEMD-based embedding is the identification of clinically meaningful 

overlaps that may not be apparent from the single primary diagnosis recorded in the database. 

Patients with a primary diagnosis of intracranial bleeding (bleeding in the brain) can also have 

primary brain masses and tumors. Compared to the spurious fragmentation of patients with the 

same diagnosis of intracranial bleeding into several clusters in the TV embedding, UDEMD 

consolidated patients with the same diagnosis of intracranial bleeding and specifically grouped 

those that may have had bleeding due to a primary brain mass or tumor (See Figure 29B). 

Interestingly, UDEMD also identified patients who were predicted to have intracranial bleeding to 

have the diagnosis of stroke with higher accuracy, reflecting consistency with the fact that a subtype 

of stroke (hemorrhagic) is due to intracranial bleeding (Figure 29D). 
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Figure 30: Embeddings of patients modeled as signals over the SNOMED-CT graph using TV 

distance (a top) and using UDEMD distance (a bottom), colored by patient diagnosis. UDEMD 

better organizes the space as noted by selected terms in (b), difference of confusion matrices in 

(c) and k-nearest neighbors classification accuracy on the diagnosis in (d). In (b) note that the TV 

embedding (top) creates a spurious separation (due to noise in the signal) between subsets of 

patients who display intracranial bleeding that is not distinguished by diagnosis. On the other hand, 

the UDEMD embedding (bottom) shows a continuum of patients with this diagnosis. The same 

holds for patients with brain mass or tumor shown in green. 

Conclusion 

In this work we explored the use of earth mover’s distance to organize signals on large graphs. We 

presented an unbalanced extension of Diffusion EMD, which we showed approximates a distance 

equivalent to the total variation unbalanced Wasserstein distance between signals on a graph. We 

showed how to compute nearest neighbors in this space in time log-linear in the number of nodes 

in the graph and the number of signals. Finally, we demonstrated how this can be applied to entities 

which can be modeled as signals on graphs between genes, cells, and biomedical concepts. 
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Data Access, Bias, and Equity in Machine Learning Interventions 

Introduction 

All data are not created equal. The ideal for data is to reflect reality, or what is actually happening. 

Algorithms are well-defined procedures for carrying out computational tasks. Algorithms are the 

main vehicle for machine learning interventions, which may aim to provide a diagnosis or give a 

prediction to guide clinical decision-making. The underlying data used to train and validate these 

tools must be carefully considered. Data access, data bias, and data equity are three areas that 

directly impact the use of and trust in machine learning interventions. Data access refers to the 

unrestricted ability of a designated party to view, test, and manipulate the raw data used to train 

machine learning algorithms and can be a proxy indicator for the responsible party when 

algorithms err. Data bias identifies areas in the data that may not reflect best ethical or clinical 

practice, and thus settings or populations where machine learning interventions should be 

interpreted with caution. Data equity involves the concept of algorithmic fairness, which could 

ultimately impact provider trust in machine learning interventions. For providers using machine 

learning algorithms, data access provides a reference for who should be accountable for poor 

performance, while data bias and data equity help providers interpret and trust algorithmic output 

when applied across different settings in clinical care. 

The majority of data used for clinical and translational machine learning tools can be captured in 

the electronic health record as part of routine clinical care. However, additional sources of data 

such as patient-generated data through wearables, mobile applications, and ambient sensors are 

increasingly prevalent in the healthcare data ecosystem.  While the specific relevance of access, 

bias, and equity may differ across these different data modalities, there are also shared general 

principles when using health-related data.  

Data Access 

Healthcare data is sensitive and subject to special restrictions to ensure security and privacy. On 

a high level, the governance structure for “big data” or “artificial intelligence” is important in 
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understanding the parameters of data access across societies. For clinical providers using 

machine learning interventions, data access refers to the entity with the permission to examine 

the underlying raw data used to train the algorithm. As such, if a decrease in performance is 

noted with errors, the entity with access to the underlying data is thus responsible for identifying 

the root cause of the error.   

While governance encompasses the entire life cycle of machine learning-based tools, the way 

that governance is structured directly impacts data access. Industry self-governance differs from 

government conceptions, which may vary by level (national government, supragovernmental 

organizations) and region.212-214 While there is limited information about the consensus to data 

access across the different settings, a representative publication about industry self-governance 

does not mention data access specifically but assents to the best practice of data transparency 

and reporting. For U.S. governmental FDA guidance, no explicit reference is given to data access 

but rather voluntary collaboration when piloting machine learning-based interventions to assess 

real-world performance. A paper written by Chinese authors proposed a framework for big data 

governance for health information networks does not explicitly address data access, but in a 

series of guidelines suggests centralization and integration on a national scale in conjunction with 

the healthcare industry. In contrast, the European Union Proposal for Regulation Laying Down 

Harmonized Rules on Artificial Intelligence clearly articulates the data access for training, 

validation, and testing dataset to be given to market surveillance authorities.  

For clinical providers in different regions of the world, it may be instructive to consider that issues 

with performance requiring access to the underlying data may lay with industry firms in the United 

States, the market regulatory authority in Europe, and the central government agency in China.  

Security and Privacy 

Data access is balanced by the need for security and privacy, particularly for healthcare data. The 

Health Insurance Portability and Accountability Act (HIPAA) applies specific requirements to all 

projects that are considered human subjects research, and the EU Data Privacy Regulation 
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(GDPR) is a broader set of regulatory guidance that has specific protections for personal data. 

HIPAA-related data protections include informed consent (or an explicit waiver with justification) 

and deidentification with safe harbor (removal of 18 specified personal identifiers) and expert 

determination. In light of these requirements and concerns about the risk of re-identification, 

measures to maintain data security and personal privacy are an essential part of granting data 

access. One framework has been proposed by the National Institute of Standards and 

Technology (NIST) at the U.S. Department of Commerce to manage the risk of healthcare data: 

Identify, Protect, Detect, Respond, and Recover. To ensure that only persons or entities with 

adequate training and credentials have access to sensitive data, it is important to identify data, 

personnel, devices, systems, and facilities pertaining to health-related data. By cataloging, 

maintaining an inventory and mapping data flows as well as the roles and responsibilities for the 

workforce healthcare organizations can steward access and manage the risk of a data breach or 

unauthorized access.  Equally important is the role of protecting access using identity 

management, authentication and access control enabled by security protocols and contingency 

planning. When a breach of privacy occurs, whether through inadequate deidentification or 

adversarial attack, detecting the incident through continuous monitoring and planned, coordinated 

responses with mitigation strategies are key in containing the damage. Finally, recovery of data 

and planning to incorporate lessons learned into the existing infrastructure can help safeguard the 

system from future incidents. For special populations, such as veterans receiving care through 

the Veterans Affairs Department of the United States, the challenge of using sensitive data to 

drive innovations that may improve care delivery may have additional barriers to data access.  

Data Access for Research Endeavors 

While data access is generally relevant to practitioners as users of machine learning 

interventions, researchers also seek data access for algorithmic development or independent 

validation. While access to institution-specific datasets or publicly available deidentified datasets 

is possible, researchers may seek more representative datasets that are not limited to a specific 

center of health system. Two datasets that have well-defined security protocols and rich 
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longitudinal data include the All of Us Research Program, an initiative by the National Institutes of 

Health, and the UK Biobank are high profile efforts to build a diverse health database 

representative of modern U.S. and U.K. society, respectively. When thinking through data access, 

the mission of All of Us encompasses not only university researchers, but also citizen scientists 

and administrators interested in quality improvement initiatives. The UK Biobank furthers the 

access to specifically include those in low-middle income countries who do not traditionally have 

the capability of acquiring such large-scale and in-depth data. 

Data bias 

As the relationship between patients and physicians persists beyond the initial meeting and 

diagnoses, the data framework should go from thinking about data just for initial model 

development and validation to encompass the product lifecycle.215 A key question that should be 

asked throughout the lifecycle is the following: do choices made about the data that is measured 

or captured during the lifecycle worsen or perpetuate existing health inequalities?216 As the 

Oslerian ideal of equanimity, or mental equilibrium, motivates providers to consider clinical 

findings above and beyond the temptation to fall into specific cognitive biases, this question 

should motivate physicians, researchers, and data analysts to go from focusing on getting as 

much data as possible to critically considering the characteristics and deficiencies of the data 

being used.   

Electronic Health Record Data 

Data collected in the electronic health record or as part of routine clinical care is generated in the 

context of clinical medicine, where the patient-physician relationship should be considered as a 

framework for understanding bias. In this framework, the patient may not tell the physician all the 

relevant information, may seek care with other physicians, and may not have the means to 

undergo the recommended testing. The physician may have a unique diagnostic or treatment 

style and may perceive patient reports through the lens of their experience and perception. 
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Finally, the historical practice of medicine has incorporated race explicitly in ways that purposely 

bias calculations of clinically significant measures.  

Missing data  

Missing data can be a source of bias, but is only addressed or accounted for in 54% of predictive 

algorithmic studies using electronic health record data.24 Missingness could be due to absence of 

provider entry into the health record, an error of omission, or secondary to lack of access to 

diagnostic tests or procedures.216,217 Lack of access has been documented in surgical care and 

endoscopic access, particularly impacting patients identifying as Black.70,218 Fragmentation of 

care without systemic interoperability can contribute to data missingness, particularly if they are 

linked to other societal factors such as low socioeconomical status, psychosocial issues, or 

immigration status.219,220 In particular, demographic and socioeconomic data are often 

incomplete, with an estimated one-third of commercial insurance plans reporting complete or 

partially complete data on race.220  

Variation in Practice Patterns 

Since practice may change across different providers and health systems, differential care 

patterns can lead to misclassification and measurement error.216 This may be seen across 

teaching and non-teaching settings, or across urban and rural areas and correspond with 

uninsured patients or patients on Medicaid, which has been well documented in the Emergency 

Department setting.221  

Provider Bias When Interpreting Patient Reported Symptoms 

Patient language is usually communicated and filtered through providers who then enter the 

information into the electronic health record. As such, the physician may selectively record 

information according to their clinical experience, and unfortunately sometimes their bias. In 

Psychiatry, where patient-reported data is exclusively filtered through providers, this has been 

seen as potentially problematic in the stage between the expression of data by the patient and 

the interpretation of data by the provider; data captured by the provider and then analyzed by a  
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machine learning algorithm to predict an outcome can magnify the bias.222 For example, if 

providers prescribe higher doses of psychiatric medications to patients with minority race 

backgrounds despite having similar reported symptoms, an algorithm could then be biased to 

predict higher doses of necessary medication by race. Another example can be that since women 

are more likely to receive personality disorder diagnoses compared to men when presenting with 

the same symptoms of trauma, an algorithm may perpetuate this diagnostic pattern as predicted 

diagnoses.223-225  

Explicit Racial Correction in Clinical Tools 

Corrections in definitions of organ performance, such as the glomerular filtration rate, heart failure 

mortality risk, and pulmonary function tests, may be based on race. For example, Vyas et al 

recently identified 13 clinical algorithms in which race was explicitly used to modulate risk and 

determine courses of treatment.226   

Other Data Sources: Patient Wearables and Ambient Sensors 

Data captured from electronic health records is primarily filtered through provider entry and health 

system priorities, whereas wearable and app-captured data reflect direct patient input and 

ambient sensors’ monitoring of physical environments. However, the issue of bias can also 

impact these data sources along similar lines of resource access due to socioeconomic status 

and optimization of these devices for specific populations. In digital behavior change interventions 

to increase physical activity, the devices appear to have greater effectiveness for people with 

higher socioeconomic status.227 For wearables tracking health-related information (e.g., heart 

rhythms, sleep patterns), the challenge of the sensor technology for maintaining accuracy across 

skin pigmentation tones as well as absence of diverse representation in validation studies may 

lead to differential effectiveness by race and ethnicity.228  

For ambient sensors in health settings, the measurement or capture of data on multiple 

participants in different contexts can have the potential for reinforcing existing biases. Behavior 

between participants in a certain context may have a specific interpretation that may bias the 
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interpretation of algorithms trained on this setting when transferred to another setting.229 For 

example, an sensor-based algorithm trained to identify provider activity in an intensive care unit 

may not be directly applicable to a psychiatric ward or maternity care unit.  

Data equity 

Fairness for algorithms has been defined by three pillars: transparency, impartiality, and 

inclusion.230 Practical categories such as geographic region, socioeconomic strata, gender, and 

race/ethnicity can be used as a starting point for thinking about overall fairness. Explicitly 

addressing these categories may provide a basis for provider trust in the applicability of these 

tools in practice.  

Transparency includes interpretability, explainability, and accountability. While interpretability can 

be included in basic standards set by regulatory bodies, interpretability for providers may include 

specific aspects of which data elements are used for the algorithmic output can be relevant for 

providers using machine learning interventions. In particular, explainability can put those data 

elements in the specific context from which the data is generated, which can give providers 

additional information about the relevance of the algorithmic output. By understanding the setting 

from which training data is drawn, then the factors used to generate the prediction can be taken 

into account by providers using the tool. For example, a machine learning intervention to predict 

outcomes for patients with myocardial infarctions may be influenced by the presence of disparity 

in survival for women compared to men when presenting with myocardial infarctions; additionally, 

another intervention to predict perinatal mortality may amplify the bias of mortality for Black 

women due to the underlying data trend increased perinatal mortality for Black women in the 

US.231-233 Finally, accountability is crucial, since the question of responsibility in the event of an 

adverse outcome must be defined to mitigate the risk to providers using these tools. When 

thinking through accountability in healthcare, it may be useful to think of the machine learning 

intervention in terms of a consultation to access additional information or expertise they cannot 

otherwise access. In this context, a particular challenge is navigating the presence of deep 

expertise held by providers, who may have specific concerns or questions. There should be a 
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clear designation of responsibility in the event of an error, so that providers know who to consult 

to ensure that the error is not repeated.  

Impartiality includes provenance (the origins and characteristics of the data) and implementation. 

The starting point is clinical relevance in the specific setting of use, to ensure that the patient 

population in the intended setting is represented by the data used to train the machine learning 

intervention.234 Then, during implementation the anticipated harms should be considered to 

evaluate if there is disproportionate impact on specific populations. This process should include 

evaluation of discriminatory practices that arise or are exacerbated by the integration of the 

machine learning intervention. For example, in a modeling analysis machine learning based 

predictive tools for medical appointment scheduling may amplify the higher no-show probability 

for black versus non-black patients and lead to wait times up to 30% longer than non-black 

patients due to recommendations for overbooking.235 

Inclusion encompasses data completeness and utilization of traditionally excluded data sources, 

such as patient-reported or community-reported data. Data completeness should consider 

geographic distribution and representativeness, which is currently skewed in machine learning 

applications for clinical medicine to disproportionately use cohorts from California, 

Massachusetts, and New York.236 Race-based differences may be more relevant in societies with 

historical policies of purposely disadvantaging specific racial groups, though other categories may 

better reflect the specific historical disparities of each society.  

Algorithmic Stewardship as a Framework for Mitigation Strategy Against Bias and Inequity 

The essential part of strategies to identify and address issues with algorithmic bias is the human 

in the loop. While data access is essential for any mitigation strategy, the study and monitoring of 

real-world effectiveness of algorithmic machine learning interventions is arguably more important 

in identifying areas of adverse effect possibly attributed to bias or inequity. Algorithmic 

stewardship is a useful framework to encompass necessary practices to mitigate bias and test for 

inequity.237 Algorithmovigilance, which refers to methods for evaluation, monitoring, 
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understanding, and preventing adverse effects of healthcare algorithms, is a useful framework for 

the development and deployment of informatics-based methods for debiasing algorithms.238 The 

main parts of stewardship include creation and maintenance of algorithm inventories, an auditing 

process prior to deployment, and periodic review by a group with oversight responsibility. While 

this can be thought of at a health-system level, it is likely that governmental or supragovernmental 

support may be necessary due to the limited expertise available at a health system level to 

understand and evaluate algorithmic performance with clinical relevance. The need for an 

interdisciplinary approach, including sociological and ethics expertise, is critical, since algorithms 

are typically designed to maximize performance and efficiency and not to reflect human values. 

Imposing human values can be directly at the cost of efficiency and be applied judiciously when 

the benefit outweighs the cost.216  
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Future Challenges for Development and Application of Machine Learning Models to Clinical 

Care 

Introduction 

Clinical management of gastrointestinal diseases span the spectrum from acute to ongoing chronic 

care and use multiple types of information including endoscopic video, radiologic imaging, 

manometric readings, and genomic data. With recent advances in artificial intelligence to process 

imaging, text and genomic data, there is great promise for AI-assisted tools to advance the care of 

patients with gastrointestinal diseases. However, given the complexity of clinical care, there are 

significant logistic, regulatory, and ethical challenges in determining appropriate and optimal use of 

the technology.  

The Potential of Artificial Intelligence and Machine Learning in Analyzing “Big Data” 

Artificial intelligence is a field that has advanced rapidly in the age of increased computational 

power, algorithmic sophistication, and availability of data. There is a distinction between general 

artificial intelligence and narrow artificial intelligence. General artificial intelligence is theoretically 

identical to human intelligence and is not restricted to specific tasks. General artificial intelligence 

currently does not exist, but there are prototypes in natural language processing that appear to be 

a promising step in that direction (a new language generator called GPT-3 recently released by 

OpenAI in June 2020). 

Machine learning, a subset of artificial intelligence, is a set of computational tools used in narrow 

AI applications, where the algorithms are trained to perform well for very specific tasks (e.g. 

identifying polyps on screening and surveillance colonoscopies). The advantage of machine 

learning over conventional statistical tools is the ability to analyze “big data”, defined as datasets 

that are large (volume), complex (variety), and constantly updating (velocity). For medicine, the 

explosion of available data has been estimated as a doubling every 73 days, and machine learning 

tools are suited for analyzing the data to be used for diagnostic and prognostic purposes.239  

Challenges facing AI implementation in Medicine 
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Machine learning is, first and foremost, a tool to be used in clinical care. Like any tool, the purpose 

must be judiciously and thoughtfully considered prior its use. Machine learning tools depend heavily 

on the data used in training and development, and may include mathematical and statistical 

assumptions that are unfamiliar to most clinicians. Logistic challenges can be categorized into 

understanding the care delivery process, data management, and algorithmic understanding. 

However, the overall environment for integrating AI-assisted tools needs more development to 

promote wider uptake. This includes regulatory guidance, standardized payment, and ethical 

challenges in data privacy, equity, and fairness.  

Challenge 1: Understanding the Care Delivery Process 

Before any machine learning tool is considered, a deep understanding of the problem and 

associated care delivery process is the key to any application of artificial intelligence to clinical care. 

The starting point to apply machine learning to clinical care should follow the framework suggested 

by Isaac Kohane: is the task simple or complex?240,241 The task includes the clinical question, but 

also defines specific areas of the clinical process that can be optimized. By defining specific areas 

of the clinical process that can be optimized using artificial intelligence as a tool, the maximal benefit 

and value can be achieved for patient care and provider satisfaction. On a practical level, 

depending on the specific clinical problem and care process, the type of algorithm can be selected 

according to the required level of performance and amount of data available. 

There is a growing recognition of the critical role of implementation into the clinical process for 

artificial intelligence tools, with the goal to “design the best possible care delivery system for a given 

problem.” 242,243,244 This is usually an iterative process that goes through the delivery process 

before, during, and after implementation with the AI tool and focuses on designing and improving 

user interfaces.  

Challenge 2: Data Management  

Data management is critical for artificial intelligence, because as the name machine learning 

suggests, models must have robust data to successfully learn the relevant patterns.  
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The first challenge that must be addressed is the availability of high quality data that is readily 

captured and accessible and can be generated with each iteration.240 The principle “Garbage in, 

Garbage out” captures the core concept of ensuring that high quality data is used to train and test 

algorithmic performance. While advances in algorithmic development may help, the basis of most 

algorithms rest on the data itself.132 The implications for data management does not end after 

training and testing; once the algorithms are trained and tested on high quality data, there should 

be a pipeline of consistently labeled data that can be used to continuously train the model in the 

“virtuous cycle” of the data ecosystem. To address this, many healthcare systems have worked 

towards data standardization and interoperability across platforms to ensure that imaging and 

clinical data can be pooled and used to generate consistent results.  

Another challenge is data bias, or errors, that can lead to predictions that worsen incorrect practice 

patterns and may unintentionally contribute to worsening disparities in clinical care. For example, 

if an algorithm to predict risk of hospital-based intervention for patients presenting with overt 

gastrointestinal bleeding is trained in a setting where there is the wrong practice of overtransfusion, 

the algorithm may recommend admission for patients who could be discharged for outpatient care. 

Also, if a clinical dataset have gaps in data from vulnerable or underserved populations, unfair 

attitudes and practices may contribute to disparities in the output of the algorithm.216 Although the 

potential for bias will always exist, rigorous validation can mitigate its effect on algorithmic 

performance. Ideally, the study designs for validation should include internal validation, external 

validation, calibration, and appropriate statistical testing that compares model performance with a 

control. External validation in particular is critical for both clinical data and imaging data, since the 

bias can be mitigated when data is pooled from multiple patient populations, centers, contexts, and 

manufacturers.  

Prospective studies of deployed AI tools with iterative feedback and monitoring can identify areas 

of bias that can then be corrected. Clinical trial designs for artificial intelligence tools have been 

proposed based on the type of task, including randomized controlled trials, random tandem trials, 

A/B testing, and QI experimental designs.245 Currently, new guidelines have been proposed for 
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clinical trial protocols (SPIRIT-AI) and randomized controlled trials (CONSORT-AI) for AI 

interventions that can be used to design rigorous, high-quality studies.245,246 

Finally, ongoing data maintenance is important to ensure that changes in patient populations or 

clinical care do not affect performance of the AI-assisted tool. Monitoring performance and re-

training should be considered from the beginning, since there may be difference in data trends 

reflecting differences in patient outcomes due to dataset shift (practices, populations evolve over 

time), new therapies, or evolving epidemiology. Algorithmic stewardship is a new concept on a 

systems level that includes maintaining an inventory of existing algorithms, having regular audits 

of safety and fairness, and constant performance monitoring to prevent degradation over time.154,247 

As new data updates the AI, it will learn according to the input data and outcomes observed. As it 

optimizes to learn the pattern of data that predicts the outcome, it is possible that the performance 

will either improve in learning the actual predictors or deteriorate due to biases in the data leading 

to misclassification. Ongoing expert surveillance is key in troubleshooting the issue as either due 

to poor-quality input data or algorithmic error. With re-training and careful 

algorithmic monitoring the model should have equal if not better performance over time. The 

burden of maintenance and monitoring should ideally not be on the medical institutions or users, 

but rather the third-party vendor who should take responsibility for setting up the datastreams for 

regular updates, perform checks for algorithmic maintenance, and have protocols to investigate 

when an algorithm misfires. Furthermore, cost effectiveness should be assessed at both the 

institution level and across national and international boundaries. For AI-enhanced polyp leave-in 

strategy compared to resect-all-polyps strategy, one cost effectiveness study estimated savings 

of 18.9% and US$149.2 million in Japan, 6.9% and US$12.3 million in England, 7.6% and US$1.1 

million in Norway, and 10.9% and US$85.2 million in the United States.248 However, this study does 

not include a comprehensive evaluation of the cost of implementation of process changes including 

increased time for each procedure and actual real-world pattern of endoscopists using the tool.  

Challenge 3: Algorithmic Understanding 
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Algorithmic interpretability is particularly important in clinical care, where providers have developed 

a deep expertise that can take into account factors that may not be captured by the machine 

learning model.154 In gastroenterology, practitioners are specialists who are experts in the field 

should have the ability to verify the system performance. Use of the AI tools must consider the 

balance of power, in particular how the AI tools may impinge on professional authority for 

clinicians.243 Furthermore, by understanding how the prediction is made, practitioners would be 

able to assess if the prediction is being generated from actual signal or is being distorted by 

confounding variables. Finally, the generated patterns can be tested and integrated into current 

scientific understanding to advance clinical care more generally.   

Challenge 4: Algorithmic Adversarial Attacks  

Adversarial attacks that exploit weaknesses in current algorithms by manipulating the input data is 

an emerging challenge that has particular importance for healthcare.249 Currently the most active 

area in the United States is regarding insurance claims approvals via billing codes, since insurance 

companies deploy machine learning models for classifying certain claims. In particular interest for 

gastroenterologists, however, is the potential for visually imperceptible “adversarial noise” added 

to images that can cause deep learning models deployed on imaging to misdiagnose or miss 

pathology. Proposed measures to defend against attacks include backups that provide a 

“fingerprint” of data to be extracted and stored immediately after capture. This can then be used to 

compare to the image used for analysis to evaluate for data tampering and also be used to build 

resiliency in algorithms during real time deployment.  

Challenge 5: Regulatory Guidance  

Regulatory guidance is underdeveloped globally. Despite strong efforts on a national, regional, and 

international level to develop frameworks to ensure quality control and patient safety, there is still 

a high amount of uncertainty regarding the requirements that will be enacted.250 Quality control 

through regulation is being developed through the International Medical Device Regulators Forum 

(IMDRF), the United States has proposed a new regulatory framework of Software as Medical 
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Device (SaMD) through the Food and Drug Administration, the European Union has proposed 

General Data Protection and Regulation (GDPR), and the China State Council has proposed a 

development plan for artificial intelligence.250  

Challenge 6: Liability and Legal responsibility   

Due to the regulatory ambiguity above, liability and reimbursement is not clearly defined. The issue 

of liability is critical for both firms developing AI-assisted tools and for medical provider end-users. 

If patients experience an adverse event based on clinical decisions made with AI-assisted tools, 

who is accountable? As a “black box” tool, the liability of adverse events to patients based on 

decisions made using AI-assisted tools may be shouldered by the manufacturer. If the output is 

sufficiently interpretable, however, the liability would likely be borne by the medical provider who 

made the clinical decision. Reimbursement should ideally compensate whichever party shoulders 

the risk; however, AI-specific reimbursement is notably absent from national healthcare systems 

and private payors. Currently, there is only one instance of payment specifically for use of an AI 

tool through the Centers for Medicare and Medicaid under the framework of new technology add-

on payments, upcoming for fiscal year 2022. No other system-wide payment mechanism currently 

exists for reimbursement for AI tools, particularly for endoscopic enhancement.  

Challenge 7: Ethical issues  

Ethical challenges concern the interaction of these algorithms with human health and the 

safeguards that should be put in place to mitigate the potential adverse effects of these algorithms. 

Challenges include defining the role of informed consent in data utilization, maintaining privacy 

compliance across the spectrum of data users, returning results from analyses using patient data, 

and addressing equity in algorithmic development. Informed consent is a cornerstone of medical 

research, which recognizes the autonomy of patients and their right over their medical data. 

However, a challenge that should be considered in AI is the potential for using the same patient 

data for both specific conditions (e.g. inflammatory bowel disease), and also in aggregate (e.g. if 

the data is sent for epidemiological purposes).251 Privacy is also challenging to maintain when AI 
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may include a host of third party partners, including vendors, software developers, data scientists, 

and other systems. In particular, the United States requires HIPAA compliance across the spectrum 

of data users, and thus it is important to consider how to deidentify data and maintain a secure 

dataflow.251 One specific area where this is important is when considering how and to whom results 

of the AI tool should be returned. This has implications for shared decision-making for patients and 

providers, since the findings may impact how the patient thinks about the next step in their treatment 

plan. By considering who should have access, what should be shared, and which threshold should 

be used to share specific findings, the patient and provider can hopefully use the AI tool to assist 

in planning further care and avoid miscommunication. Finally, equitable access to both the training 

and deployment of AI tools should be considered as the technology develops. Recently a study 

found severe disparity in geographic distribution of deep learning algorithms in clinical applications, 

with patient cohort data predominantly coming from three states: California, New York, and 

Massachusetts.236 Representation is key, since patient outcomes and clinical care may vary across 

geography, ethnicity, and socioeconomic status. If these aspects are considered, modifications can 

be made to decrease the risk of health inequities such as race correction in clinical algorithms.226  

The Future 

The hype for AI is not new; in the history of artificial intelligence, there was a tremendous 

enthusiasm for AI that has led to several “AI winters” in the 1970’s and 1980’s, leading to periods 

of reduced funding and profound disillusionment. The current hype seems to mirror historical 

trends, particularly with claims of outperformance of deep learning tools versus clinicians in a recent 

systematic review.241  

This time, however, things may be different. We have emerging clear frameworks to guide best 

practice and weigh claims of machine learning studies, there is an abundance of infrastructure for 

data storage, and the revolution of computational processing expands the capacity to handle ever-

increasing amounts of data. More importantly, there is a multidisciplinary democratization of open-

source machine learning tools through programming languages with pre-written, readily available 

software packages, such as TensorFlow, Scikit-Learn and PyTorch. The rapid emergence of a 
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multidisciplinary approach and awareness of AI tools holds promise for the use of AI-assisted tools 

to guide and enhance our clinical practice.  

Currently the role envisioned for machine learning tools is primarily to assist clinicians in making 

decisions for patient care. In the future, it is conceivable that integration of multimodal streams of 

data could frame the significance of findings, making decisions at a higher level than the clinician. 

When and if this occurs, the role for clinicians could change from gathering and analyzing 

information to spending time with patients helping them navigate their disease experience. Eric 

Topol of Scripps Research Institute, a leading thinker for AI and medicine, has emphasized the 

idea that when AI is able to deliver similar or superior results than humans, it still cannot replace 

the human side of empathetically being with patients.252 The opportunity lies with reduced time 

burden in collating patient data and performing preliminary analyses, and instead spending the time 

interpreting results and managing patient expectations to help them cope as they progress through 

the treatment plan.  

From optical biopsies and enhanced routine colonoscopies to selecting the optimal 

immunomodulator drug for inflammatory bowel disease, AI tools will potentially transform our 

practice by leveraging massive amounts of data to personalize care to the right patient, in the right 

amount, at the right time. 

Key Challenges to EHR-based tools for Acute GIB 

Challenges to electronic health record data are significant. EHR data is collected for clinical care, 

and not explicitly for research purposes. The data is reflective of “real world data” that may 

incorporate significant biases based on caregivers, patient population, and social context and is 

noisy, heterogeneous, and sparse.91,253  In order to utilize machine learning appropriately and 

robustly for assisting management in acute gastrointestinal bleeding, one must consider issues 

under the broad framework of infrastructure and implementation.  

The informatics infrastructure must have the capability for capturing, storing, and accessing data 

in a format that can be automatically extracted. This includes the type of electronic health record, 
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as well as adequate data warehousing. There must be secure, adequate analytic platforms that 

can be used to deploy machine learning models in real time, which could include cloud computing. 

Finally, the healthcare system must have adequate expertise in algorithmic robustness. This 

includes understanding the risk of bias, interpretability, loss of performance over time, and impact 

of missingness and heterogeneity of EHR data.254  

Implementation considerations are critical to understand how the tool fits into existing workflows 

and can be used to enhance care without introducing new burdens. Provider trust and usability is 

key, and it is important to consider principles of user-oriented design, qualitative evaluation of the 

intervention impact, and critical feedback. Furthermore, consideration of legal frameworks for 

liability and contingency plans for systemic errors are critical in ensuring patient safety.  For 

example, if the machine learning score incorrectly classifies a patient as “very low risk” and the 

provider makes a decision using that information to discharge the patient, it is unclear what liability 

is attributable to the algorithm in the event of an adverse patient outcome.  

Future Directions 

The vision of an integrated machine learning-driven care pathway for patients with acute GIB 

begins with automated identification of patients using an NLP-based phenotype generated from a 

combination of text processing from provider notes and structured triage datafields. The 

identification would trigger a machine learning model to generate an initial risk assessment once 

the initial vital sign and laboratory measurements are made. At this point, the majority of very low 

risk patients at a high sensitivity threshold of >99% could be considered for outpatient management. 

Finally, for patients who are not very low risk, a dynamic risk assessment would estimate 

resuscitation needs for each 4–6-hour period to minimize organ damage from inadequate 

resuscitation and to optimize patients for endoscopic intervention. Implementation of this workflow 

into the electronic health record with a subsequent randomized controlled trial would be an 

important step to evaluate the efficacy of these systems in impacting the discharge rate of low-risk 

patients from the ED.  
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