6,324 research outputs found

    Boolean Operations, Joins, and the Extended Low Hierarchy

    Get PDF
    We prove that the join of two sets may actually fall into a lower level of the extended low hierarchy than either of the sets. In particular, there exist sets that are not in the second level of the extended low hierarchy, EL_2, yet their join is in EL_2. That is, in terms of extended lowness, the join operator can lower complexity. Since in a strong intuitive sense the join does not lower complexity, our result suggests that the extended low hierarchy is unnatural as a complexity measure. We also study the closure properties of EL_ and prove that EL_2 is not closed under certain Boolean operations. To this end, we establish the first known (and optimal) EL_2 lower bounds for certain notions generalizing Selman's P-selectivity, which may be regarded as an interesting result in its own right.Comment: 12 page

    Lower Bounds on Query Complexity for Testing Bounded-Degree CSPs

    Full text link
    In this paper, we consider lower bounds on the query complexity for testing CSPs in the bounded-degree model. First, for any ``symmetric'' predicate P:0,1k0,1P:{0,1}^{k} \to {0,1} except \equ where k3k\geq 3, we show that every (randomized) algorithm that distinguishes satisfiable instances of CSP(P) from instances (P1(0)/2kϵ)(|P^{-1}(0)|/2^k-\epsilon)-far from satisfiability requires Ω(n1/2+δ)\Omega(n^{1/2+\delta}) queries where nn is the number of variables and δ>0\delta>0 is a constant that depends on PP and ϵ\epsilon. This breaks a natural lower bound Ω(n1/2)\Omega(n^{1/2}), which is obtained by the birthday paradox. We also show that every one-sided error tester requires Ω(n)\Omega(n) queries for such PP. These results are hereditary in the sense that the same results hold for any predicate QQ such that P1(1)Q1(1)P^{-1}(1) \subseteq Q^{-1}(1). For EQU, we give a one-sided error tester whose query complexity is O~(n1/2)\tilde{O}(n^{1/2}). Also, for 2-XOR (or, equivalently E2LIN2), we show an Ω(n1/2+δ)\Omega(n^{1/2+\delta}) lower bound for distinguishing instances between ϵ\epsilon-close to and (1/2ϵ)(1/2-\epsilon)-far from satisfiability. Next, for the general k-CSP over the binary domain, we show that every algorithm that distinguishes satisfiable instances from instances (12k/2kϵ)(1-2k/2^k-\epsilon)-far from satisfiability requires Ω(n)\Omega(n) queries. The matching NP-hardness is not known, even assuming the Unique Games Conjecture or the dd-to-11 Conjecture. As a corollary, for Maximum Independent Set on graphs with nn vertices and a degree bound dd, we show that every approximation algorithm within a factor d/\poly\log d and an additive error of ϵn\epsilon n requires Ω(n)\Omega(n) queries. Previously, only super-constant lower bounds were known

    A Birthday Repetition Theorem and Complexity of Approximating Dense CSPs

    Get PDF
    A (k×l)(k \times l)-birthday repetition Gk×l\mathcal{G}^{k \times l} of a two-prover game G\mathcal{G} is a game in which the two provers are sent random sets of questions from G\mathcal{G} of sizes kk and ll respectively. These two sets are sampled independently uniformly among all sets of questions of those particular sizes. We prove the following birthday repetition theorem: when G\mathcal{G} satisfies some mild conditions, val(Gk×l)val(\mathcal{G}^{k \times l}) decreases exponentially in Ω(kl/n)\Omega(kl/n) where nn is the total number of questions. Our result positively resolves an open question posted by Aaronson, Impagliazzo and Moshkovitz (CCC 2014). As an application of our birthday repetition theorem, we obtain new fine-grained hardness of approximation results for dense CSPs. Specifically, we establish a tight trade-off between running time and approximation ratio for dense CSPs by showing conditional lower bounds, integrality gaps and approximation algorithms. In particular, for any sufficiently large ii and for every k2k \geq 2, we show the following results: - We exhibit an O(q1/i)O(q^{1/i})-approximation algorithm for dense Max kk-CSPs with alphabet size qq via Ok(i)O_k(i)-level of Sherali-Adams relaxation. - Through our birthday repetition theorem, we obtain an integrality gap of q1/iq^{1/i} for Ω~k(i)\tilde\Omega_k(i)-level Lasserre relaxation for fully-dense Max kk-CSP. - Assuming that there is a constant ϵ>0\epsilon > 0 such that Max 3SAT cannot be approximated to within (1ϵ)(1-\epsilon) of the optimal in sub-exponential time, our birthday repetition theorem implies that any algorithm that approximates fully-dense Max kk-CSP to within a q1/iq^{1/i} factor takes (nq)Ω~k(i)(nq)^{\tilde \Omega_k(i)} time, almost tightly matching the algorithmic result based on Sherali-Adams relaxation.Comment: 45 page

    Exponential Lower Bounds for Polytopes in Combinatorial Optimization

    Get PDF
    We solve a 20-year old problem posed by Yannakakis and prove that there exists no polynomial-size linear program (LP) whose associated polytope projects to the traveling salesman polytope, even if the LP is not required to be symmetric. Moreover, we prove that this holds also for the cut polytope and the stable set polytope. These results were discovered through a new connection that we make between one-way quantum communication protocols and semidefinite programming reformulations of LPs.Comment: 19 pages, 4 figures. This version of the paper will appear in the Journal of the ACM. The earlier conference version in STOC'12 had the title "Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds

    Dura

    Get PDF
    The reactive event processing language, that is developed in the context of this project, has been called DEAL in previous documents. When we chose this name for our language it has not been used by other authors working in the same research area (complex event processing). However, in the meantime it appears in publications of other authors and because we have not used the name in publications yet we cannot claim that we were the first to use it. In order to avoid ambiguities and name conflicts in future publications we decided to rename our language to Dura which stands for “Declarative uniform reactive event processing language”. Therefore the title of this deliverable has been updated to “Dura – Concepts and Examples”

    A real-time proximity querying algorithm for haptic-based molecular docking

    Get PDF
    Intermolecular binding underlies every metabolic and regulatory processes of the cell, and the therapeutic and pharmacological properties of drugs. Molecular docking systems model and simulate these interactions in silico and allow us to study the binding process. Haptic-based docking provides an immersive virtual docking environment where the user can interact with and guide the molecules to their binding pose. Moreover, it allows human perception, intuition and knowledge to assist and accelerate the docking process, and reduces incorrect binding poses. Crucial for interactive docking is the real-time calculation of interaction forces. For smooth and accurate haptic exploration and manipulation, force-feedback cues have to be updated at a rate of 1 kHz. Hence, force calculations must be performed within 1ms. To achieve this, modern haptic-based docking approaches often utilize pre-computed force grids and linear interpolation. However, such grids are time-consuming to pre-compute (especially for large molecules), memory hungry, can induce rough force transitions at cell boundaries and cannot be applied to flexible docking. Here we propose an efficient proximity querying method for computing intermolecular forces in real time. Our motivation is the eventual development of a haptic-based docking solution that can model molecular flexibility. Uniquely in a haptics application we use octrees to decompose the 3D search space in order to identify the set of interacting atoms within a cut-off distance. Force calculations are then performed on this set in real time. The implementation constructs the trees dynamically, and computes the interaction forces of large molecular structures (i.e. consisting of thousands of atoms) within haptic refresh rates. We have implemented this method in an immersive, haptic-based, rigid-body, molecular docking application called Haptimol_RD. The user can use the haptic device to orientate the molecules in space, sense the interaction forces on the device, and guide the molecules to their binding pose. Haptimol_RD is designed to run on consumer level hardware, i.e. there is no need for specialized/proprietary hardware

    Neural Distributed Autoassociative Memories: A Survey

    Full text link
    Introduction. Neural network models of autoassociative, distributed memory allow storage and retrieval of many items (vectors) where the number of stored items can exceed the vector dimension (the number of neurons in the network). This opens the possibility of a sublinear time search (in the number of stored items) for approximate nearest neighbors among vectors of high dimension. The purpose of this paper is to review models of autoassociative, distributed memory that can be naturally implemented by neural networks (mainly with local learning rules and iterative dynamics based on information locally available to neurons). Scope. The survey is focused mainly on the networks of Hopfield, Willshaw and Potts, that have connections between pairs of neurons and operate on sparse binary vectors. We discuss not only autoassociative memory, but also the generalization properties of these networks. We also consider neural networks with higher-order connections and networks with a bipartite graph structure for non-binary data with linear constraints. Conclusions. In conclusion we discuss the relations to similarity search, advantages and drawbacks of these techniques, and topics for further research. An interesting and still not completely resolved question is whether neural autoassociative memories can search for approximate nearest neighbors faster than other index structures for similarity search, in particular for the case of very high dimensional vectors.Comment: 31 page
    corecore