

SEVENTH FRAMEWORK PROGRAMME
THEME SECURITY
FP7-SEC-2009-1

Project acronym: EMILI
Project full title: Emergency Management in Large Infrastructures
Grant agreement no.: 242438

D4.3

Dura – Concepts and Examples

Due date of deliverable: 31/12/2010
Actual submission date: 28/02/2011

Revision: Version 1.1

Ludwig-Maximilians University Munich (LMU)

Project co-funded by the European Commission within the Seventh Framework Programme (2007–2013)

Dissemination Level
PU Public X
PP Restricted to other programme participants (including the Commission Services)
RE Restricted to a group specified by the consortium (including the Commission Services)
CO Confidential, only for members of the consortium (including the Commission Services)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/12175106?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Project EMILI FP7-SEC-2009-1

Author(s) Steffen Hausmann,
Simon Brodt,
François Bry

Contributor(s)

Project EMILI FP7-SEC-2009-1

Preface

The reactive event processing language, that is developed in the context of this project, has
been called DEAL in previous documents. When we chose this name for our language it has
not been used by other authors working in the same research area (complex event processing).
However, in the meantime it appears in publications of other authors and because we have not
used the name in publications yet we cannot claim that we were the first to use it.

In order to avoid ambiguities and name conflicts in future publications we decided to re-
name our language to Dura which stands for “Declarative uniform reactive event processing
language”. Therefore the title of this deliverable has been updated to “Dura – Concepts and
Examples”.

D4.3 Dura– Concepts and Examples • Page 3 of 58

Project EMILI FP7-SEC-2009-1

Index

1. Introduction 6

2. Reactive Emergency Management in a Nutshell 7

3. Events 9
3.1. Properties of Events . 9
3.2. Complex Event Query Dimensions . 10
3.3. Querying Simple Events . 12
3.4. Deductive Rules for Events . 13
3.5. Hierarchies of Events . 14
3.6. Event Composition . 15
3.7. Temporal (and other) Relationships . 17
3.8. Event Accumulation . 19
3.9. Provenance . 22

4. Data Cleansing 24
4.1. Data Cleansing with Dura . 24
4.2. Advanced Data Cleansing Methods . 26

5. States 27
5.1. States vs. Stateful Objects . 27
5.2. Properties of Stateful Objects . 28
5.3. Querying States and Stateful Objects . 30
5.4. Modifying Stateful Objects . 31
5.5. Querying State Changes . 33
5.6. States for Modularization . 34
5.7. Reasoning on Stateful Objects . 35
5.8. Accumulation of Stateful Objects . 36

6. Actions 38
6.1. Properties of Actions . 39
6.2. Dimensions of Complex Actions . 39
6.3. Atomic Actions . 40
6.4. Reactive Rules (Event-Condition-Action Rules) 40
6.5. Events Entailed by Actions . 41
6.6. Action Composition . 43
6.7. Temporal Relations . 44
6.8. Complex Action Specification . 45
6.9. Conditional Actions . 46

7. Related Work and Conclusion 47
7.1. Related Work . 47

D4.3 Dura– Concepts and Examples • Page 4 of 58

Project EMILI FP7-SEC-2009-1

7.2. Conclusion . 48

A. Dura EBNF Grammar 50

D4.3 Dura– Concepts and Examples • Page 5 of 58

Project EMILI FP7-SEC-2009-1

1. Introduction

The following text combines an informal (none the less precise) introduction to Dura, a re-
active event processing language tailored to reactive emergency management, and a formal
language description that is intended for computer science experts. The text introduces the
language Dura and its main concepts on the basis of practically relevant but simplified exam-
ples which are inspired by the three use cases [30, 34, 29, 11, 32].

Emergency management typically includes the assessment of situations and based thereon the
execution of emergency procedures either as direct responses to an emergency or as counter-
actions to a yet emerging, or possibly emerging, emergency. These days, the knowledge about
situation assessment and emergency procedures is written in manuals or is the (not necessarily
conceptualized) expertise of emergency professionals.

Dura is a contribution towards a greater automation of emergency management. Therefore,
Dura has been designed to provide means for the specification of this kind of emergency man-
agement related knowledge. The programming paradigm retained for Dura is that of declara-
tive and reactive rules which enables an automatic situation assessment and even (semi)automatic
reactions to (emerging) emergencies.

Dura combines event queries, queries to stateful objects and the specification of complex
actions in a homogeneous and integrated fashion. All these three concepts (events, stateful
objects, and actions) are highly desirable for modern emergency management systems in order
to obtain a reactive and dynamic behavior [6, 5]. Complex event queries detect situations,
stateful objects model states and properties of physical or virtual objects, and actions modify
components of the infrastructure according to the detected situations and its state.

A core principle of Dura is a strict separation of query dimensions for both, complex event
queries and complex actions. Approaches which mix several dimensions into single operators
loose expressiveness [10]. While operators which are covering multiple dimensions are well
suited for specific purposes, queries based on these operators are getting longish and compli-
cated in more general cases. However, since emergency management often deals with very
complicated circumstances, rather simple approaches which are interleaving several query di-
mensions are undesirable in this context.

The following description of Dura is divided into three main parts which are dealing with the
three major concepts of Dura. The situation assessment is covered by means of complex event
queries which are introduced in Section 3. Section 5 addresses states and stateful objects.
And finally, the execution of actions and specification of emergency procedures is covered in
Section 6. Moreover, section 4 covers the data cleansing capabilities of Dura and appendix A
contains a formal description of the language.

D4.3 Dura– Concepts and Examples • Page 6 of 58

Project EMILI FP7-SEC-2009-1

2. Reactive Emergency Management in a Nutshell

Reactive emergency management integrates several components which need to interact in or-
der to achieve a reactive behaviour which is highly desirable for a modern emergency man-
agement. Sensors spread all over the infrastructure collect data and monitor the condition of
the infrastructure and its devices [30]. SCADA systems offer access to the information of
entire subsystems and enable the remote operation of certain devices. Simulators predict the
development of scenarios which requires a proper initialization of boundary conditions and
the distribution of results to other components [31]. The event engine is evaluating Dura pro-
grams. It receives measurements from sensors and simulators in form of events, interprets the
information, and derives an abstraction of the state of the infrastructure for further processing
and presentation purposes. A graphical user interface supports operators by visualizing the
state of the infrastructure. Moreover, it serves as an interface between the operators and the
equipment of the infrastructure [33]. A trainings environment called SITE is used to enable
the qualification and preparation of operators [33].

Figure 1: Overview of the architecture [35].

Most of the components cover only certain aspects required for reactive emergency manage-
ment and cannot be used to operate a critical infrastructure on their own.1 Therefore, it is
crucial to provide a generic communication interface that distributes the information that is
required by each component in an easy and efficient manner.

1SCADA systems are actually capable of operating critical infrastructures. However, even modern SCADA
systems cover only certain aspects of the innovations of EMILI. Complex events and complex actions, inte-
gration of simulations, semantic information models, etc. are only partially supported.

D4.3 Dura– Concepts and Examples • Page 7 of 58

Project EMILI FP7-SEC-2009-1

[35] describes in detail how a communication layer suitable for the specific requirements of
a reactive emergency management can be efficiently realized by a publish/subscribe architec-
ture. Therefore, components connected to the communication layer publish which kind of
messages they provides and subscribe to messages they are interested in. The communication
layer then takes care that messages are distributed among connected components in the right
way.

An alternative approach that stores events coming from a SCADA system inside a MonetDB
database is described in [16]. Both approaches have certain advantages and are employed in
parallel. Therefore it can be assumed that all kinds of events are distributed over the commu-
nication layer and are as wells stored in a MonetDB database.

The properties of the communication layer has a substantial impact on how components of
the infrastructure interact. Messages are always sent from producers, such as sensors, to con-
sumers, such as the SITE GUI. Querying and retrieval of information from other components
is only indirectly possible. Note that components can be producers and consumers at the same
time. SCADA systems, for instance, send sensor readings in form of event messages and are
subscribed to commands from the GUI and the event processing system.

The event processing engine is a central element for situation assessment and reactive be-
haviour. It interacts with many components in order to achieve its task. Several components
provide input for its computations. Sensors and SCADA systems describe the current condi-
tions and incidents of the infrastructure in form of events. Furthermore, simulators provide
events which are likely to happen in the future.

The engine evaluates Dura programs which describe how events and other informations are
combined to a more abstract representation of incidents and the infrastructure’s condition.
Based on the input events that are stored in the MonetDB database and other semantic infor-
mation, such as spatial relationships of sensors, the event engine derives new events, according
to the Dura program. The derived events are then sent to other components that rely on these
events (and are therefore subscribed to them).

Derived events are furthermore used to trigger actions that affect the actuators of the infras-
tructure. For executing actions, the event processing system issues an action request over the
communication layer. Actuators which are capable of executing the command are subscribed
to the according message and therefore are informed to execute the action. If information
about the execution status of the command is available, it is sent back to the event engine via
the communication layer.

In order to consider information coming from simulators, the event engine starts a simulation
by sending an according action to the simulator. The simulator reads the required boundary
conditions from the database and sends the result back to the event processing engine in form
of events.

In certain conditions, the event engine needs input from the operator before drawing further
conclusions or initiate actions. In order to get the desired feedback from the operator, the
event engine initiates an action that is sent to the GUI and causes it to request the required
information from the operator. The result is then sent back to the event engine in form of an

D4.3 Dura– Concepts and Examples • Page 8 of 58

Project EMILI FP7-SEC-2009-1

event.

Furthermore, the GUI provides a graphical overview of the infrastructures condition. Derived
events (and events coming from sensors) that are related to the conditions of the infrastructure
are thus used to adapt the graphical representation.

Note that this short overview is mainly considering interactions between the event processing
engine and other components of the system. There are of cause further dependencies between
components that have not been fully considered.

3. Events

The main task of emergency management is dealing with risk and risk avoidance [17]. Indeed,
“in oder to provide proper emergency management, critical situations and risks have to be
assessed” [30]. This includes the assessment of situations before and during an emergency
and interventions of the emergency managers to either avoid a possible emergency or to get
an emergency under control as quickly as possible.

This section deals with the assessment and interpretation of situations, that is, the collection
of information coming from sensors and the subsequent derivation of higher level knowledge
which represents the condition of the infrastructure in a more aggregated and abstract view.

The information coming from sensors is considered as a stream of events. In general an event
is a message indicating that something of interest happens or is contemplated as happening (or
not happening) [21]. This can be for instance a message of a smoke sensor that has detected
smoke or the message of a temperature sensor which repeatedly communicates the current
temperature at its location. Every events is associated with a time point or time interval which
indicates when it actually occurred.2 Having a notion of time is highly desirable for an event
processing systems, since it enables to reason about temporal dependencies between the events
of the event stream. Emergency management in general requires a notion of time and time-
consciousness. It is therefore natural and requisite to consider events with a notion of time in
emergency management.

3.1. Properties of Events

Event Messages Events are represented in Dura by XML-like semi-structured data of a
restricted kind. Restricted means that the schema of each event type must provide bounds
for the width and depth of valid event messages. Thus, recursive definitions, definitions using
alternatives and unlimited repetitions of tags are not allowed in the schema of event definitions.

These restrictions of the schema are required to enable a simple and efficient mapping of
event messages to flat tuples inside a database. Indeed, more generic event messages are
not necessary for the implementation of the use cases and would significantly complicate the
language and its processing.

2Time points can be seen as time intervals with the same lower and upper bound.

D4.3 Dura– Concepts and Examples • Page 9 of 58

Project EMILI FP7-SEC-2009-1

Not allowing structured event messages of an arbitrary form surely is no restriction for appli-
cations: In practice, there is a finite number of distinct types of events which can be specified
as the application is designed.

Occurrence Time Every event is associated with its occurrence time. The occurrence time
is represented in Dura by a closed and connected time interval t = [b, e]. For events which
happen at a time point, the interval degenerates to a single time point t = [b, b].
Events are denoted in the following et where e is the event message and t = [b, e] its occur-
rence time.3 Furthermore, b is called the beginning and e the end of the event. For convenience,
given an occurrence time t = [b, e], begin(t) denotes b and end(t) denotes e.

Further Times of Events Events may be associated with other times than the occurrence
time. For instance, events which are coming from a simulator have an occurrence time which
indicates when the data required for the simulation was actually available. It thus indicates
how current the simulation events are.4 Furthermore, a simulation event is associated with a
semantic time which indicates when the event is deemed to occur according to the simulation.
Likely, the semantic time will be after the occurrence time since the simulation is used to
predict which events will occur in the future.

More times might be needed in some applications, even in some emergency management
applications. Dura provides a framework for expressing such times. For the sake of simplicity
and readability, this issue is not further addressed in this presentation of the language. So far,
the three use cases [34, 29, 11] require only the two above mentioned times: time of occurrence
in real life and time of occurrence according to a simulation. The necessary extension for
accommodating more than these two times will be presented in more details if, in the future,
the primary usage of Dura, the use cases, make it necessary.

3.2. Complex Event Query Dimensions

In general, event queries access the payload of events, that is, the data events carry, detect pat-
terns composed of multiple events, consider temporal and other relationships between events,
accumulate events for negation and aggregation, and consider the provenance and spatial as-
pects of events.

Four of these dimensions have been described in [7], namely, data extraction, event compo-
sition, temporal relationships, and accumulation. The provenance of events and spatial rela-
tionships are two further aspects which are especially important for emergency management
in large infrastructures.

For an easy-to-use, high level event query language the strict separation of query dimensions is
desirable. A language which mixes multiple query dimensions in single operators may lead to

3The notation et is not part of Dura but of the meta-language used here for describing Dura.
4This is useful, for instance, to distinguish simulation events of several simulation runs with different initial

conditions that are based on observations which are getting more and more accurate over time.

D4.3 Dura– Concepts and Examples • Page 10 of 58

Project EMILI FP7-SEC-2009-1

complicated queries that are hard to maintain, since simple semantic modifications of queries
can result in large syntactical changes [6]. Although operators which are combining several
query dimensions are well suited for very specific situations, a generic language requires more
general operators which are independent of each other to gain high expressiveness.

In the following, the query dimensions are briefly introduced. They are described in more
detail in Section 3.3, 3.6, 3.7, 3.8, and 3.9.

Data Extraction Events carry data, the so-called payload, which affects the further reac-
tions of the system and the interpretation of events. Therefore, the data needs to be extracted
from events and bound to variables in order to provide the data for further processing. The
processing includes tests on the bound values, or comparisons of the data of multiple events.

Provenance Provenance of events in general is the explanation how an event has been de-
rived, that is, the base events and rules which have (directly or indirectly) contributed to the
derivation of an event. However, such a generic (and thus in terms of time and space efficiency
exhausting) form of provenance is so far not required by the use cases [34, 29, 11]. For the
use cases it is rather necessary to distinguish between events which have been derived from
simulation events and events which are based on real-life data.

Since this form of provenance is application dependant, there is no specific mean to address
the provenance of events in Dura. However, provenance is supported by including so-called
provenance marks in the payload of events. The programmer is responsible for writing rules
which are passing the marks from one event or action to another in the right way.

If it is required by the use cases then a more generic form of provenance, such as an easy
access to the complete derivation history of events, could be included in the language in the
future. But so far it seems to be sufficient to consider provenance as a special form of data
extraction.

Spatial Relationships Spatial information that is carried by events can be used to check
spatial relationships between events. Based on the spatial information, a confirmed alarm can
be generated for example only if there are two alarm events that are emitted by sensors which
are near each other.

Spatial relationships can be implemented by including for instance GPS coordinates or similar
position information in the payload of events which is then interpreted by appropriate complex
event queries.

If it is required by the use cases, a more generic form of spatial relations could be included in
the language in the future. But for now spatial relations are considered as a special form of
data extraction, because they are extremely application dependent. Note that, so far a generic
approach for spatial relations is not required by the use cases [34, 29, 11].

D4.3 Dura– Concepts and Examples • Page 11 of 58

Project EMILI FP7-SEC-2009-1

Event Composition Complex events are derived by complex event queries which specify
patterns of events. To express how events are combined in order to match a query, composi-
tion operators, such as conjunction and disjunction, are required. In Dura these operators are
denoted and and or. Negation, also provided by Dura, is mentioned below under “Accumula-
tion”.

Due to the strict separation of query dimensions, no further composition operators are nec-
essary. For example, a query for a sequence of events is expressed using the combination of
multiple query dimensions, namely event composition and temporal relationships.

Temporal Relationships Event queries must be able to express temporal relationships be-
tween events such as “event A occurs before event B” or “events A and B occur within 2
minutes”. In addition to that, further comparisons on the payload of events, such as a test if
two alarms occurred in the same area, and spatial relations between objects are needed.

Often used temporal relations are before, after, during, while, at and within. Further relations
are given in Section 3.7.

Accumulation Accumulation is required for several reasons. First of all, accumulation can
be used for collecting events in a given time window and to combine the data of the collected
events, for instance by computing the average of some of their values. Furthermore, accumu-
lation is needed to express negation, that is, recognizing the absence of events, or to query the
existence of events during a given time window.

3.3. Querying Simple Events

A pattern-based approach is used to query (simple or atomic) events and to extract data from
their payload. That means that queries are specified in form of patterns which closely resemble
the actually queried data. This gives rise to an intuitive and easy-to-use way of data extraction,
since queries can be easily developed from the data which is actually queried.

Example Consider a sensor that emits temperature events which carry the id of the sensor,
the measured temperature and the unit of the temperature measurement in the payload of the
event. The following event message is an example of such an event which is emitted at time
11 and reports the temperature of 27◦C from sensor 0x5.

temp{ id{ "0 x5" }, temperature { 27 }, unit{ " centigrade" } }[11,11]

In order to extract values from these kind of temperature events, the pattern of the event’s
data is repeated and values that will be extracted are substituted by variables. Furthermore the
keyword event and an event identifier are prefixed to the query in order to distinguish it from
queries of stateful objects which are introduced in Section 5.

D4.3 Dura– Concepts and Examples • Page 12 of 58

Project EMILI FP7-SEC-2009-1

To extract for instance temperature values of sensor 0x5 which are given in centigrade, the
variable T is used in the query pattern instead of the actual temperature value.

event e: temp{ id{ "0 x5" },
temperature { var T }, unit{ " centigrade" } }

It is not necessary to repeat the complete data pattern for every query, values one is not in-
terested in can be dropped from the pattern. Furthermore, event identifiers are not mandatory
and can be skipped from the event query as well.

An incomplete query pattern is used in the following to query temp events and to extract the
measured temperature, regardless of the sensor id or the unit of the measurement.

event: temp{ temperature { var T } }

Event Identifier For now, event identifier seem to be redundant since they do not further
restrict the event message and are not used in another part of the query. However, event
identifiers will be used later for complex event queries which are querying multiple events.
Furthermore, event identifiers can be included in the payload of derived events in order to
provide provenance information in form of references to events.

3.4. Deductive Rules for Events

Complex event queries are deductive rules which detect new events based on the incoming
simple (or atomic) events of the event stream(s). In general these rules have the form DETECT <
derived event> ON <event query> END. The derived event part of a query is also referred
to as rule head, the event query part as rule body.

When the event query finds a match on the events of the stream, the event specified in the rule
head is derived and can be subsequently processed by other rules. Note that events which are
contributing to a match of an event query are not consumed in any sense; they can contribute
to an arbitrary number of event queries. It can even be assumed, that all events of the event
stream are stored in the event engine forever.5

Deductive rules which query a single event can also be used to transform the representation
of events. They can be used to harmonize the format of events which are carrying the same
information in different representations. Having a harmonized representation of events is
beneficial for the development and maintenance of further rules. Rules which are based on
events of a certain type do not need to deal with the different representations of the same
information. They can instead query the harmonized events which carry the information in a
standardized way.

5Internally events are indeed deleted. However, only events which can no longer contribute to any complex
event query, and are thus not relevant anymore, might be deleted.

D4.3 Dura– Concepts and Examples • Page 13 of 58

Project EMILI FP7-SEC-2009-1

Example Deductive rules are useful to unify the representations of events that are sent by
sensors from different manufacturers. The first kind of sensors emits measurement events
which state the temperature in degree Celsius whereas another kind of sensors emits sensor
-reading events which state the temperature in degree Fahrenheit. The following rules are
used to derive temp events of a unified form, representing the temperature consistently in
degree Celsius.

DETECT
temp{ id{ var Id }, temperature { var C } }

ON
event: measurement { sensor { var Id },

temperature { var C }, unit{ " centigrade" } }
END

DETECT
temp{ id{ var Id }, temperature { (var F - 32) * 5/9 } }

ON
event: sensor-reading { id{ var Id }, type{ "e3" },

value-t3 { var F } }
END

Occurrence Time The occurrence time of derived events depends on the time of the events
it was derived from. If the body of a rule contains only a single event, the occurrence time
of the derived event coincides with the occurrence time of the event which matches the rule
body. If the rule body contains multiple events, the occurrence time of the derived event is
determined by the smallest time interval that covers the occurrence time of all events matched
by the rule body. Thus, the occurrence time of a derived event is not the time of its detection.

Recursive Queries In order to enable an efficient evaluation of complex event queries, re-
cursive definitions of rules are not permitted in Dura. Thus, recursive queries, such as DETECT
temp{ ... } ON event: temp{ ... } END, cannot be specified in a Dura program.

This restriction is quite common in the field of complex event processing. It enables an ef-
ficient evaluation of complex event queries whereas the general expressiveness of queries is
reduced. However, recursive queries can often be avoided in concrete applications. Indeed,
complex event queries are designed to detect situations based on the occurrence of events and
not to compute generic functions (which would actually require recursive rules). Moreover,
none of the three use cases seems to require recursive deductive rules so far [34, 29, 11].

3.5. Hierarchies of Events

Deductive rules can also be used to define a hierarchy, or even a directed acyclic graph, for
events. A hierarchy may express for instance that an event of type A is also of type B. This
allows for programs that consist of few generic rules which react on abstract rules instead of
multiple very specialized rules.

D4.3 Dura– Concepts and Examples • Page 14 of 58

Project EMILI FP7-SEC-2009-1

Example On a platform of a metro station the occurrence of smoke and an unusually high
temperature is classified as an uncertain fire alarm. Moreover, an uncertain fire alarm as well
as the usage of an SOS telephone is an uncertain alarm. Whenever an uncertain alarm occurs
on a platform, the emergency operator is requested to verify or to revoke the alarm in order to
trigger appropriate reactions.

Such a behaviour can be realized in two different ways. First of all, one could create different
rules which request a confirmation from the emergency operator when smoke, high tempera-
ture or a SOS call is detected. These rules are highly redundant since they basically request
the same confirmation message, only the bodies of the queries differ since the relationships
between the events are not represented in the program.

A second and more generic approach uses the preceding rules to model the relationships be-
tween the events. Therefore, a single rule which requests a confirmation message in case an
uncertain alarm occurs is sufficient, since, for instance, a smoke event automatically causes an
uncertain alarm event.

DETECT
uncertain-alarm { area{ var A } }

ON
event: uncertain-fire-alarm { area{ var A } }

END

DETECT
uncertain-fire-alarm { id{ var Id }, area{ var A } }

ON
event: smoke{ id{ var Id }, area{ var A } }

END

DETECT
uncertain-fire-alarm { id{ var Id }, area{ var A } }

ON
event: high-temp { id{ var Id }, area{ var A } }

END

DETECT
uncertain-alarm { area{ var A } }

ON
event: sos-call { area{ var A } }

END

3.6. Event Composition

So far, only rules with a single event query in their bodies have been considered. However,
most incidents that are relevant for emergency management cannot be detected by considering
only single events. The occurrence (or absence) of multiple events needs to be combined in
order to represent a reasonable assessment of the situation.

Indeed, the integration of different emergency related systems is one of the major goals Dura

D4.3 Dura– Concepts and Examples • Page 15 of 58

Project EMILI FP7-SEC-2009-1

has been designed to contribute to. Current systems are insufficient for a reactive emergency
management in many aspects. They are lacking capabilities of interacting with the physical
world, have no notion of states do not support the timing of actions [5]. However, incidents of
the past have shown that a lack of integration can lead to fatalities which could have been pre-
vented by incorporating the information of different systems [12, 9]. Furthermore, a require-
ment of the use cases is the “integration of information from different subsystems, correlation
of events and automatic response to relevant events, whenever feasible” [30].

In Dura, several event queries can be combined using either conjunction (and), disjunction
(or) or negation (not, understood as expressing an absence). Both and and or can have two or
more event queries as arguments and can be nested arbitrarily.

Example In the last example, the operator was requested to confirm every uncertain alarm.
However, if smoke occurs in an area and the temperature in the same area is unusually high, the
confirmation from the operator can be skipped and a certain alarm can be derived immediately
because it is very unlikely that the two independent sensors are malfunctioning at the same
time.

DETECT
certain-alarm { area{ var A } }

ON
and{

event i: high-temp { area{ var A } },
event j: smoke{ area{ var A } }

}
END

Note that specifying the variable var A twice enforces that the are attributes of both events are
equal. In addition, event identifiers, namely i and j, are added to the queries which can be
used in combination with temporal relations to reference the occurrence time of the matched
events.

Example Event composition also allows for a more compact and simple representation of
several rules which are compound of the same sub-queries and have the same head. For
instance, the four rules of the example in Section 3.4 can be rewritten to the following two
equivalent, even so more compact, rules.

D4.3 Dura– Concepts and Examples • Page 16 of 58

Project EMILI FP7-SEC-2009-1

DETECT
uncertain-alarm { area{ var A } }

ON
or{

event: uncertain-fire-alarm { area{ var A } },
event: sos-call { area{ var A } }

}
END

DETECT
uncertain-fire-alarm { id{ var Id }, area{ var A } }

ON
or{

event: smoke{ id{ var Id }, area{ var A } },
event: high-temp { id{ var Id }, area{ var A } }

}
END

3.7. Temporal (and other) Relationships

Temporal relationships play an important role in queries involving multiple events. They
specify temporal dependencies between occurrence times of events, for instance a query only
matches if a certain event occurs after some other event. Besides temporal relationships,
constraints on the extracted data can be specified, such as the value of a variable binding must
be greater than a certain value.

Temporal relations are used to constrain the occurrence time of events. They are specified in
the where part of a query, that can be attached at the end of any conjunction and disjunction.
There are two different types of temporal relations: qualitative relations which restrict the
order and quantitative relations which restrict the duration of events.

Temporal Relations for Time Intervals Allen’s thirteen relations [2] are a well-established
convenient mean to express qualitative temporal relations between time intervals. The thirteen
relations include before, meets, overlaps, starts, during, finishes, the corresponding inverses
and equals.

In Dura, these relations can be used to compare time intervals of events, such as the occurrence
time of events, which are given by the respective event identifiers. For instance, given two
event identifiers i and j, the expression i before j guarantees that the occurrence time of
the event i has ended before the occurrence time of the event j has started, that is end(i) <
begin(j). The precise semantics of all relations are given in [10, p. 179].

In addition to Allen’s thirteen relations, Dura supports two more quantitative temporal rela-
tions, namely while and at. The expression i while j guarantees that the occurrence time of
i is contained in that of j, that is, begin(j) ≤ begin(i) and end(i) ≤ end(j).6 The relation at

6Note that contains is defined similarly but requires strict containment of the time intervals.

D4.3 Dura– Concepts and Examples • Page 17 of 58

Project EMILI FP7-SEC-2009-1

takes an interval and a time point as parameters and checks whether the time point lies in the
time interval, that is, i at t guarantees that begin(i) ≤ t and t ≤ end(i).
Furthermore, there are two quantitative or metric temporal relations, namely within and apart
. Given event identifiers ik and a duration d, the expression {i1, . . . , in} within d guarantees
that min{begin(i1), . . . , begin(in)} − max{end(i1), . . . , end(in)} ≤ d holds for the occur-
rence times of the according events. The relation apart is defined similarly with≥ substituted
for ≤.

Temporal Relations for Time Points Temporal relations between time points can be spec-
ified using expressions of the form t1 − t2 ≤ d and t1 − t2 < d, where d is a duration and t1
and t2 are time points, such as begin(i) and end(i) for an event identifier i.

Note that the given qualitative and quantitative temporal relations for time intervals can be
easily transformed to expressions comparing the beginning and ending of time intervals. How-
ever, the transformation of one relation comparing time intervals may result in several expres-
sions comparing time points. For instance, i during j becomes begin(j)< begin(i) and
end(i) < begin(j).

For convenience, the programmer can choose between both kinds of relations: temporal re-
lations for time intervals or time points. Depending on the temporal constraints, one kind of
temporal relations can be better suited than the other. Thus, having the choice between both
kinds of relations is desirable.

Relations on Event Data Beside temporal relations, there are further relations which can
be used in combination with variables. = and != test whether the values of two variables are
(un)equal. If the variables are bound to numbers, the additional relations <, <=, >, and >= can
be used to compare the bounded values.

Example The following example is a generalization of the first example of Section 3.6.
Instead of deriving a certain-alarm event on the occurrence of specific sensor signals, a
certain alarm is derived whenever at least two uncertain alarms occur in the same area within
2 minutes.

Two conditions, one temporal condition and one condition on the data of the events, are added
to the where part of the query. The first condition restricts the time interval in which both
events can to occur to at most 2 minutes. The second one requires the ids of both events to be
different.

D4.3 Dura– Concepts and Examples • Page 18 of 58

Project EMILI FP7-SEC-2009-1

DETECT
certain-alarm { area{ var A } }

ON
and{

event i: uncertain-alarm { area{ var A } },
event j: uncertain-alarm { area{ var A } }

} where { {i,j} within 2 min, event i != event j }
END

Note that, in this example, there are always two certain alarms derived, if two uncertain alarms
occur. Because both queries in the body of the rule are equal, they are matching the same
events. Therefore, each of the two uncertain-alarm events can be matched by either the first
or the second query and thus two certain alarms are derived by the rule.

If this behaviour is undesirable, other means that are introduced in Section 5.5 can be used to
prevent the derivation of multiple uncertain alarms. However, these means require a somewhat
different modeling of the systems.

Time Interval Operators If desired, new time intervals can be computed based on the oc-
currence time of events by means of the following functions. These time intervals can then
be used in combination with Allen’s thirteen relations to (indirectly) specify time constraints
between events. Below, e is an event identifier, d a duration and t the resulting time interval.

• extend(e, d): extends the time interval of e at its end by the duration d, i.e., begin(t) =
begin(e) and end(t) = end(e) + d.

• shift-forward(e, d): the time interval of e is shifted forward in time by the duration
d, i.e. begin(t) = begin(e) + d and end(t) = end(e) + d.

• from-start(e, d): extends the time interval of e from its start by the duration d, i.e.
begin(t) = begin(e), end(t) = begin(e) + d.

Further functions include shorten, extend-begin, shorten-begin, shift-backward, from-
end, from-end-backward and from-start-backward. Their precise semantics are given in
[10, p. 105]. Since event identifiers are used to refer to time intervals of events, the given
functions can be specified wherever an event identifier can be specified. In particular, nesting
of several functions is possible.

Note that these functions are not required if temporal relationships between events are spec-
ified using expressions of the form t1 − t2 ≤ d. The extension and shifting of time intervals
can be easily incorporated into these kind of expressions by adapting the value of d.

3.8. Event Accumulation

Time interval operators are often used in combination with event accumulation to enable non-
monotonic queries, such as negation and aggregation. Non-monotonic queries are queries for
which it cannot be guaranteed that they still match the stream of events when new events occur.

D4.3 Dura– Concepts and Examples • Page 19 of 58

Project EMILI FP7-SEC-2009-1

For example, the query not event: e{} only matches the event stream as long as no e event
occurs.

In common databases, non-monotonic queries can be easily evaluated since the complete
dataset is stored in the database. However, in the field of complex event processing, events
arrive over time from a conceptually infinite stream of events which makes the evaluation of
non-monotonic queries with respect to the whole stream impossible. For instance, for evalu-
ating a negated query, one would have to wait until all events have arrived in the system, that
is, possibly forever.

Therefore, means are provided to collect events in a finite time window and evaluate queries
on the collected events of the given time window.

Negation Negation is expressed as a prefix operator not. The time during which the negated
event query should not match needs to be constrained to a bounded time window. This can be
accomplished by using temporal relations in combination with a relative time interval.

Example Temperature sensors in a metro station report the current temperature in regular
intervals, for instance every 10 seconds. Therefore, one can conclude that a sensor is broken
if 12 seconds after the last measurement no further temperature event is received from the
sensor.

DETECT
sensor-broken { id{ var Id } }

ON
and{

event i: temp{ id{ var Id } },
not event j: temp{ id{ var Id } }

} where { j during extend (i, 12 sec) }
END

The condition j during extend(i, 12 sec) ensures that only temperature events match the
non negated part of the second query which occur at most 12 seconds after the temperature
event matched by the first query. And since the second query is negated, the complete event
query matches only if no such temperature event occurs.

The evaluation of the query is feasible since the negated part of the query is limited to a finite
time window. If a temperature event occurs, further temperature events need to be regarded
for the next 12 seconds only in order to answer the query. Without any time constraints on the
negated part of the query one would need to wait forever to give a correct answer to the query
which is certainly impossible.

Aggregation Aggregation is used to combine the values from several events which have
been collected within a certain time interval. Collection and aggregation are expressed in
different parts of the query. The collection of events and the extraction of data is done in the

D4.3 Dura– Concepts and Examples • Page 20 of 58

Project EMILI FP7-SEC-2009-1

body of a query whereas the aggregation is specified in the query head where derived events
are constructed.

In order to group together several values which have been extracted from events all and group
-by are used. group-by specifies according to which attributes events are separated into groups
and all collects all values of a group in order to pass them to one of the provided aggregation
functions sum, min, max, and mean.

Example Since sensors suffer from inaccuracies and measurement errors [6] it is necessary
to perform data cleansing in order to obtain reliable measurements and to avoid false alarms.

So far we got the feedback from the use case partners that very simple filters are sufficient
for the implementation of the use cases. Therefore data cleansing of the sensor signals can
be either done by the sensors itself, the SCADA system or, if the latter two options are not
available, by appropriate complex event queries.

The following rule uses event aggregation and grouping to derive the average temperatures of
all areas within the last five minutes whenever a temperature event is detected.

DETECT
avg-temp { area{ var A },

temperature { avg(var C) } } group-by {event i, var A}
ON

and{
event i: temp{ },
event j: temp{ area{ var A }, temperature { var C } }

} where { j during from-begin-backward (i, 5 min) }
END

Existential Queries In general, event queries of a rule may match multiple events of the
event stream and thus the rule may derive multiple events as well. However, sometimes one is
only interested whether there is at least one event that matches a query instead of every event
that matches it. To this end queries can be existentially quantified by adding the keyword
exists in front of them.

Example For instance, a high temperature should only be detected if the temperature ex-
ceeds 80◦C and the average temperature has exceeded 50◦C in the sensor’s area within the last
30 seconds.

D4.3 Dura– Concepts and Examples • Page 21 of 58

Project EMILI FP7-SEC-2009-1

DETECT
high-temp { id{ var Id }, area{ var A } }

ON
and{

event i: temp{
id{ var Id },
area{ var A },
temperature { var T1 } },

exists event j: avg-temp {
area{ var A },
temperature { var T2 } }

} where { j during from-begin-backward (i, 30 sec),
var T1 >= 80, var T2 >= 50 }

END

If the existential quantification is dropped from the second query, a high-temp event is derived
every time the average temperature has exceeded its limit. However, the query is intended to
check whether the average temperature was too high at least once and thus the existential
quantification is needed to derive only a single high-temp event.

3.9. Provenance

One of the major innovations of the EMILI project is the use of fast-computed simulation
to improve the management of emergencies in large infrastructures. Simulators are used to
predict the development of a certain scenario, such as fire in a station, and to enable appropriate
reactions ahead of time.

When a simulation is triggered, for instance by the detection of fire, the results of the simu-
lation are sent to the event processing system in form of events. However, if both kinds of
events, simulation as well as real-life events, are present in the event processing system, one
needs to make sure that events of different types can be distinguished, since they need to be
treated differently.

To this end, the provenance information of an event, that is, whether it is the output of a
simulator or a real-world sensor, can be included in the payload of the event in the form of
provenance marks. Events coming from sensors are marked with real-life whereas events
coming from a simulator are marked with simulation.

Example In order to properly deal with the provenance information of events, the queries of
Section 3.6 need to be adapted. The provenance mark of events is just passed over from the
base to the derived event.

D4.3 Dura– Concepts and Examples • Page 22 of 58

Project EMILI FP7-SEC-2009-1

DETECT
uncertain-fire-alarm {

id{ var Id }, area{ var A }, provenance { var P } }
ON

or{
event: smoke{ id{ var Id },

area{ var A }, provenance { var P } },
event: high-temp { id{ var Id },

area{ var A }, provenance { var P } }
}

END

Example In the example of Section 3.7, a certain alarm is derived when two uncertain alarms
occur within a certain time window. But since the queries does not distinguish between simu-
lated and real-life events, a certain alarm can be derived by simulated smoke events which is
highly undesirable; emergency operators can be easily confused and distracted by such events.

Thus, the rule needs to be adapted to derive only certain fire alarms if they are based on
real-life events. For this purpose, the query is extended in order to consider the provenance
information of the events.

DETECT
certain-alarm { area{ var A }, provenance { " real-life" } }

ON
and{

event i: uncertain-alarm {
area{ var A }, provenance { " real-life" } },

event j: uncertain-alarm {
area{ var A }, provenance { " real-life" } }

} where { {i,j} within 2 min, event i != event j }
END

In the preceding two examples the provenance mark of an event is the same for the base
events of a query and the derived event. Either they are both real-life events or simulation
events. However, this does not always hold as the next example shows.

Example When fire is detected in a metro station, a simulation is started in order to get a first
impression of the likely development of the scenario. If the outcome of the simulation suggests
that there will be smoke in a certain area, the emergency operator needs to be informed in form
of a smoke-threat event in order to involve this information in the selection of the escape
paths.

Note that although the smoke event is a simulation event, the derived smoke-threat event is
marked as a real-life event, since the threat of persons in the area is indeed real.

D4.3 Dura– Concepts and Examples • Page 23 of 58

Project EMILI FP7-SEC-2009-1

DETECT
smoke-threat { area{ var A }, provenance { " real-life" } }

ON
and{

event: certain-alarm { },
event: smoke{ area{ var A }, provenance { " simulation" } }

}
END

4. Data Cleansing

In deliverable D4.1 [6] we identified three orthogonal dimensions of data cleansing, namely
noise reduction and smoothing, filtering, and generation. These dimensions of data cleansing
are mostly independent of each other and cover certain aspects of the general term data cleans-
ing. Noise reduction and smoothing encompasses methods that deal with stochastic noise and
noise caused by interferences from other activities in the infrastructure. Filtering identifies
and removes faulty data that occurred cause of sensor failures and human errors. Last but not
least, generation tries to fill gaps in the data due to missing sensors or transmission errors.

Because all three dimensions are orthogonal, they require different approaches and methods to
be adequately covered. Moreover, the approaches required for each single dimension as well
as the demands to the dimensions differ from use case to use case depending on, for instance,
the capabilities of the underlying SCADA systems.

4.1. Data Cleansing with Dura

Dura comes with several different capabilities to express data cleansing withing the event
processing system. The available methods can be classified according to the three dimensions
of data cleansing.

Noise Reduction and Smoothing Noise reduction and smoothing is by far the most basic
kind of data cleansing, as it is often carried out by the SCADA system or even by the sensors
itself. However, Dura makes it as well possible to express noise reduction and smoothing
filters by means of declarative rules.

The following two rules implement a moving average smoothing filter. Whenever a new tem-
perature measurement is detected, the moving average of temperature measurements in the
same area and from the same sensor that occurred in the last two minutes is computed.

D4.3 Dura– Concepts and Examples • Page 24 of 58

Project EMILI FP7-SEC-2009-1

DETECT
avg-sensor-temp { id{var Id},

temperature {avg(var C)} } group-by {event i}
ON

and{
event i: temp{ id{var Id} },
event j: temp{ id{var Id}, temperature {var C} }

} where { j during from-begin-backward (i, 2 min) }
END

DETECT
avg-area-temp { area{var A},

temperature {avg(var C)} } group-by {event i}
ON

and{
event i: temp{ area{var A} },
event j: temp{ area{var A}, temperature {var C} }

} where { j during from-begin-backward (i, 2 min) }
END

Filtering Faulty data due to sensor failures or human errors can often be recognized by
cross-checking information from different sources. This can be realized, for instance, by
correlating the information of different sensor types to detect fire, instead of relying on a single
sensor or sensors of the same type which have the same (physically induced) deficiencies.

DETECT
fire{ area{var A} }

ON
and{

event i: smoke{ area{var A} },
event j: temp{ area{var A}, temperature {var T} }

} where { {i,j} within 2 min, var T >= 50 }
END

Another way of filtering sensor data is to incorporate expert knowledge or information from
physical models to identify impossible or rather very unlikely sensor readings. For example,
temperature values above 200 degree are very unlikely in a metro station under normal con-
ditions. Therefore one can drop temperature readings above a certain threshold if the average
temperature that has been reported by the sensor within the last two minutes is significantly
lower.

D4.3 Dura– Concepts and Examples • Page 25 of 58

Project EMILI FP7-SEC-2009-1

DETECT
filtered-temp { id{var Id}, temperature {var T} }

ON
and{

event i: temp{ area{var A}, temperature {var T} },
event j: avg-sensor-temp {

area{var A}, temperature {var Avg} }
} where { i finishes j,

or{var T <= 200, var T <= var Avg *5} }
END

Generation The physical models that are currently elaborated for the use cases can be used
to fill gaps caused by missing or lost sensor data. To this end, missing values are substituted
by values coming from a simulator.

The following rule uses simulated values to fill potential gaps of temperature sensor readings.
Every 10 seconds, a sensor sends its current measurement to the event processing system.
Thus, whenever a sensor reading is missing, that is, 12 seconds after the last temperature event
there is still no new measurement, the simulated temperature value of the sensor is considered
as if it came from the actual sensor.7

DETECT
filtered-temp { id{var Id}, temperature {var T} }

ON
and{

event i: temp{ id{var Id}, provenance {" real-life" } },
event j: temp{ id{var Id},

temperature {var T}, provenance {" simulation" } },
not event k: temp{ id{var Id}, provenance {" real-life" } }

} where { {j,k} within extend (shift-forward (i, 8 sec), 4 sec) }
END

4.2. Advanced Data Cleansing Methods

Dura has some basic yet powerful means to implement data cleansing methods for each of the
three dimensions of data cleansing. Particularly being able to write generic rules that express
expert knowledge and takes properties of the infrastructure into account is a powerful tool for
implementing data cleansing with Dura.

In the literature more advanced and very sophisticated approaches for data cleansing are de-
scribed [28, 18, 23, 13, 14, 22, 20, 1]. Especially for the first dimension, noise reduction and
smoothing, there exists a myriad of different approaches. However, we got the feedback from
our use case partners, that the way how data cleansing is realized in Dura is sufficient for the
implementation of their use cases because most of the required data cleansing functionality is

7Note that this rule can be rewritten so that simulated values are only computed if required.

D4.3 Dura– Concepts and Examples • Page 26 of 58

Project EMILI FP7-SEC-2009-1

already provided by their SCADA systems. Missing functionality can be implemented with
more or less elaborated rules in the fashion of the rules that were given in the last section.

Therefore, no powerful library for sensor data cleansing is incorporated into the language.
The current capabilities of Dura are sufficient and more powerful approaches are not required
for the implementation of the use cases, and as data cleansing is highly use case dependent
providing a library for data cleansing which is not backed by concrete use case requirements
makes little sense.

5. States

States are a desirable mean for reactive behaviour in emergency management. The reaction to
a detected event might differ depending on the current state of the infrastructure.

For instance, if a bathroom light breaks in metro station an appropriate event is automatically
sent to the system. Under normal operation conditions this information is presented to the
operator who informs the facility manager responsible for the station. However, if there is fire
in the station, there are way more important tasks to be taken care of. Every information that
is not directly related to the emergency is a potential distraction for the operator. Thus, infor-
mation about broken bathroom lights are not presented to the operator during an emergency.

This example illustrates how the state of a station has an impact on the behavior of the system,
i.e., the information of the broken bathroom light is only displayed to the operator if the station
is in the state “normal operation mode”.

5.1. States vs. Stateful Objects

Stateful Objects The notion of stateful objects is a generic concept which is well suited to
model physical or abstract objects which are changing their state over time, as for example
a platform of a metro station where people are continuously entering or leaving, trains are
arriving, etc., or an escalators that can be running upwards, downwards or being stopped.
Furthermore, stateful objects can be used to store information for arbitrary time, in contrast to
events which are inherently volatile.

A stateful object is represented by terms of semi-structured data which are associated with a
valid time. The valid time describes when the data that is associated with a stateful object is
(or was) actually valid. The notion of valid time is often used in temporal databases [19, 24]
and enables to query not only the current content of a database but also its history.

Example For a certain scenario it might be necessary to keep track of persons on the plat-
form and the safety condition of the platform. Initially the platform is empty and its safety
condition is safe. Subsequently, sensors report that there are 11 and, some moments later, 23
persons on the platform. Finally, fire is detected on the platform and thus the safety conditions
of the platform are set to unsafe.

D4.3 Dura– Concepts and Examples • Page 27 of 58

Project EMILI FP7-SEC-2009-1

This scenario is represented by the following set of data terms which are characteristics of the
same stateful object at different times. In the following o[t1,t2[denotes a data term o which is
valid from time t1 to t2. The time point uc reads until changed and has the meaning that this
data term is representing the properties of the respective stateful object until it is updated or
terminated.

platform { id{ "a" }, person-count { 0 }, safety { "safe" } }[0,5[

platform { id{ "a" }, person-count { 11 }, safety { "safe" } }[5,13[

platform { id{ "a" }, person-count { 23 }, safety { "safe" } }[13,31[

platform { id{ "a" }, person-count { 23 }, safety { " unsafe" } }[31,uc[

To deal with changing attributes of stateful objects, queries can contain temporal relations in
order to get the characteristics of a stateful object during a certain time interval or at a certain
time point. For instance, one can query the attribute person-count of the stateful object
platform-a which has been observed at time 7. Given the preceding representation of the
stateful object, the answer to the query is 11.

States The notion of stateful objects can also be used to model states. States are a concept
of the semantic level which are mainly used to represent situations, such as, the operation
mode of a station or the execution state of a workflow. They are an abstraction of the observed
events.

States can be used to enable (or disable) certain rules of the program depending on the current
state of the system. Furthermore, states can be used to group together semantically related
rules and thus provide a mean for the structuring of a program.

Example In the example given in the motivation of this section, the metro station could be
either in the state normal or emergency.8 Thus, the succeeding set of data terms represents
that the state of the station is normal from time point 0 to 31 and then the state changes to
emergency.

operation-mode { " normal" }[0,31[

operation-mode { " emergency" }[31,uc[

5.2. Properties of Stateful Objects

Although stateful objects and events look quite similar at the first sight, they do have quite
different properties. While events can be regarded as messages which inform about changes
of a physical or abstract object’s properties, stateful object are rather means to keep track of a
physical or abstract object’s properties.

8Depending on the requirements of the scenario, one could easily introduce further states.

D4.3 Dura– Concepts and Examples • Page 28 of 58

Project EMILI FP7-SEC-2009-1

Payload Similar to events, stateful objects carry XML-like semi-structured data of a re-
stricted kind, the so-called payload. It needs to comply to the same restrictions as the payload
of events does, that is, recursive definitions, definitions using alternatives, and unlimited rep-
etitions of tags are not allowed.

But in contrast to events, the payload of stateful objects can be modified. Therefore, stateful
objects are well suited to keep track of the properties of physical or abstract objects which are
changing over time.

Valid Time Because the properties of physical and abstract objects change over time, the
properties of the respective stateful object needs to change over time as well. Therefore,
a stateful object is represented by a set of data terms that are associated with a right open
time interval [b, e[, the so-called valid time.9 The valid time indicates when each data term is
actually reflecting the properties of the stateful object. Usually one of the terms has a valid
time with an unknown ending, i.e., the ending is set to uc.

Modifying Stateful Objects When a stateful object is updated, the set of data terms that is
representing the stateful object is updated respectively. Therefore, the ending of the currently
valid data term is changed from uc to now and a new data term with the updated values is
added to the respective stateful object’s set of data terms.

Example In the preceding examples, the state of the metro station is normal from time point
0 to 31 and is then updated to emergency. However, initially only one data term with the
associated valid time [0, uc[is representing the stateful object, since it is unknown until time
31 that the state will be updated to emergency.

operation-mode { " normal" }[0,uc[

Eventually, at time 31 fire is detected at one of the station’s platforms and subsequently the
state of the station is updated. Therefore, the ending of the currently valid data term operation
-mode{ "normal" }[0,uc[is set to 31 and a new data term with the updated values is added to
the set of data terms which is representing the stateful object of the station’s state.

operation-mode { " normal" }[0,31[

operation-mode { " emergency" }[31,uc[

Detection of Stateful Objects Events can be detected only when they have occurred, i.e.,
when their ending is earlier or equal to now. In contrast, stateful objects can be “detected” as
soon as they have been created. Thus, states can be queried before they have ended, further-
more they can even be queried before it is actually known when they will end.

9Note that closed intervals would be sufficient if a discrete time model was used. However, considering a con-
tinuous time model makes neither the usage of the language nor the evaluation of queries more complicated.

D4.3 Dura– Concepts and Examples • Page 29 of 58

Project EMILI FP7-SEC-2009-1

Similar to events, temporal constraints and conditions on the data of stateful objects can be
added to the where part of queries in order to restrict the valid time and the content of the
matching stateful objects.

5.3. Querying States and Stateful Objects

Event queries and queries of stateful objects can be easily combined into a single query, as
opposed to event-condition-action (ECA) rules [27] which strictly separate queries of event
and static data.10 Combining both kinds of queries allows for much more sophisticated and
flexible queries (including queries with the semantics of ECA rules).

Event queries are denoted by the keyword event whereas queries of stateful objects are de-
noted by state. Both kinds of queries can be combined by the composition operators and,
or and not (understood as expressing an absence and discussed below). Additionally, further
temporal constraints on events and states can be added to the where part of any query.

Example Reconsider the example in the motivation of this section. When a bathroom light
breaks, a maintenance-required event is only derived if the station is in the state normal.
Otherwise, no further events are derived and consequently the information is not presented to
the operator. This behavior is implemented by the following rule.

DETECT
maintenance-required {

type{ " broken light" }, area{ var A } }
ON

and{
event e: light-broken { id{ var I }, area{ var A } },
state s: operation-mode { " normal" }

} where { s at end(e) }
END

Note that in this example the valid time of the stateful object is constrained in the where part
of the query. Any matching stateful object is constrained to be valid at the end of the light-
broken event.11 If the temporal constraint is dropped, a maintenance-required event will be
derived, every time the metro station has been or even will be in the state normal.

Identifiers of Stateful Objects Identifiers of stateful objects are similar to event identifiers.
They are used in the where part of a query to establish relationships between events and other
stateful objects. Furthermore, they can be included in the payload of derived events and state-
ful objects in order to provide provenance information.

10Static data, as queried by the condition part or Event-Condition-Action rules, is represented in Dura by stateful
objects which are always valid and never modified.

11Note that this semantic is equivalent to the semantic of the respective ECA rule.

D4.3 Dura– Concepts and Examples • Page 30 of 58

Project EMILI FP7-SEC-2009-1

Temporal Relations The temporal relations and interval operations which have been given
in Section 3.7 are reused for constraining the valid time of stateful objects. In this context,
event identifiers and identifiers of stateful objects can both be regarded as references to time
intervals, that is, the occurrence time of events and the valid time of stateful objects, respec-
tively.

Occurrence Time The occurrence time of the detected event is independent of the valid
time of the queried stateful objects. The occurrence time of an event describes when the base
events which lead to the detection of the event have been observed. In contrast, queries of
stateful object are used to test whether certain conditions of physical or abstract objects are
satisfied. Therefore the valid time is not considered for the determination of event occurrence
times.

5.4. Modifying Stateful Objects

Stateful objects can be created, terminated and (indirectly) updated by means of the system
operators create-object, terminate-object and update-object.

The actions create-object and terminate-object are used to create new or terminate ex-
isting stateful objects. Therefore, they require as an argument either the payload and type
of the stateful object that is to be created or a reference to the stateful object that should be
terminated.

To actually trigger these actions, reactive rules of the form ON <event query> DO <action>
END are used. One main difference between reactive rules and rules which have been discussed
so far is that reactive rules have side effects, as for instance in the following examples, they
modify stateful objects. Reactive rules are discussed in more detail in Section 6.

Example In the metro use case only a single station and the tunnels directly connected to
this station are regarded [29, p. 64]. Thus, only objects which are located in the physical
boundaries of the use case are actually considered. This restricted view also applies for trains
which are therefore suddenly appearing at the end of a tunnel, heading to a platform of the
station, and then disappear at the other end of the tunnel. What happens to trains that are not
inside the boundaries of the use case is not known to the system and not further regarded.
Consequently, a stateful object train which is representing an actual train, such as “train 23”,
is created when it enters the boundaries of the use case, that is, appears in the tunnel, and is
terminated again when it leaves the tunnel.

D4.3 Dura– Concepts and Examples • Page 31 of 58

Project EMILI FP7-SEC-2009-1

ON
event: train-enter { id{ var T }, position { var P } }

DO
action: create-object {

object { train{ id { var T }, position { var P } } } }
END

ON
and{

event e: train-leave { id{ var T } },
state s: train{ id{ var T } }

} where { s at end(e) }
DO

action: terminate-object { ref{ state s } }
END

The second of these queries can be written in a more compact manner by passing a query for
stateful objects rather than its reference to the terminate-object action. Thereby all stateful
object which are matching the given query are terminated. The same abbreviation can be used
for the update-object action.

ON
event e: train-leave { id{ var T } }

DO
action: terminate-object { query{ train{ id{ var T } } } }

END

Furthermore, the payload of stateful objects can be updated by means of the update-object
action. It takes a reference to the stateful object that is to be modified and a set of values that
should be updated.

Example The location of trains is observed by sensors which are spread across the entire
metro system. Whenever a train passes a sensor the id and position of the train is reported to
the system in form of events. These event are then used to update the stateful object of the
respective train.

ON
and{

event e: train-passed {
train-id { var T }, location { var P } },

state s: train{ id{ var T } }
} where { s at end(e) }

DO
action: update-object {

ref{ state s }, values { position { var P } } }
END

D4.3 Dura– Concepts and Examples • Page 32 of 58

Project EMILI FP7-SEC-2009-1

5.5. Querying State Changes

When stateful objects are modified, events that inform about the update are derived by the
event engine. These events can be queried in other rules in order to react to the modified
conditions.

There are three different event types reporting about the modification of stateful objects:
object-created, object-terminated, and object-updated. The former two event types
carry the reference, the name, and the values of the stateful object that was created or ter-
minated in their payload. The latter event type carries the reference of the modified stateful
object and its values before and after the update.

Example In the last section stateful object was created (and subsequently terminated) for
each train that appeared in a part of the metro system that is modeled by the use case. Thus,
one can derive that if a stateful object for a train is created, the train is approaching a station.12

DETECT
train-approaching { id{ var Id } }

ON
and{

event e: object-created { ref{ var T } },
state s: train{ id{ var Id } }

} where { s at end(e), state s = var T }
END

Because the object-created event carries the data of the created stateful object in addition to
the reference to the stateful object in its payload, the query can also be written in the following
way. However, depending on further aspects of the query one of the two variants can be more
appropriate or even required.

DETECT
train-approaching { id{ var Id } }

ON
event: object-created { object { train { var T } } }

END

Example Events that are caused by the creation of stateful objects can be further used to
implement (simple) filters. For instance, fire on a platform will be detected by a large amount
of sensors. Therefore a high number of events are derived which are all reporting about the
same incident. Nevertheless, the evacuation of the platform should only be initiated once.
However, the operation mode of the station is set only once to emergency. Therefore, the
event reporting about the modification of the operation mode to emergency is queried and thus
the evacuation of the station is triggered only once.

12Of course, this can also be derived directly from the train-enter enter event that triggers the creation of the
stateful object.

D4.3 Dura– Concepts and Examples • Page 33 of 58

Project EMILI FP7-SEC-2009-1

ON
object-updated { new{ operation-mode { " emergency" } } }

DO
action: evacuate-station { }

END

Note that actions, such as evacuate-station, are addressed in detail in Section 6. For now
it suffices to know that on the occurrence of the object-updated event, a yet to be defined
action called evacuate-station is executed.

5.6. States for Modularization

Rules which are relying on the same state and are thus semantically related can be grouped to-
gether by the WHILE <state query> LET <rules> END statement. Whenever the state query
matches the currently valid stateful objects, the embodied rules of the while statement are ac-
tivated. If the state subsequently changes and thus the state query does not match anymore,
the rules are deactivated again.

While statement can be arbitrarily nested which enables the modularization and structuring of
rules not only by states but also by sub-states.

Example The rule given in Section 5.3 derives a maintenance request for a broken bathroom
light only if the station is in normal operation mode. It can be rewritten using a while state-
ment. To this end the query of the stateful object is moved to the WHILE part of the statement.

WHILE
state: operation-mode { " normal" }

LET
DETECT

maintenance-required {
type{ " broken light" }, area{ var A } }

ON
event: light-broken { id{ var I }, area{ var A } }

END
END

Note that the two versions of the query are indeed equivalent. The temporal conditions on
the valid time in the where part of the original query are implicitly represented by the while
statement.

However, the version of the query with the while statement is preferable to the first version.
Further rules can be easily added to the while statement whereas the query of the stateful
object does not need to be repeated in the queries that are added. In general, redundant queries
which are used in several rules should be avoided, since redundancies in the rules can easily
lead to copy-and-paste errors and inconsistencies when single rules are adapted.

D4.3 Dura– Concepts and Examples • Page 34 of 58

Project EMILI FP7-SEC-2009-1

5.7. Reasoning on Stateful Objects

Similar to reasoning on events, reasoning on stateful objects is a declarative way of deriving
new stateful objects based on a set of currently valid stateful objects. In Dura these rules have
the form DERIVE <stateful object> FROM <state query> END.

These kind of rules can be considered as database-like views on stateful objects. When the
state query matches the currently valid stateful objects, the stateful object specified in
the head of the query is derived. If the stateful objects matched by the rule’s body change
over time and thus the state query does not match any more, the derived stateful object is
automatically terminated again.

Valid Time The valid time of the derived stateful object is determined by the valid time of
all stateful objects it is based on. More precisely, the derived valid time is an interval ranging
from the maximum starting to the minimum ending of all stateful objects matched by the
query’s body. If the valid times of all to a query contributing stateful objects are overlapping,
the derived valid time is equal to the intersection of all those valid times.

Example In the metro use case there are three different kinds of operation modes, namely
normal, exceptional, and emergency [29, p. 42]. However, for some scenarios one would
like to have a finer granularity of states. For instance, when fire breaks out or a station is
flooded, the operation mode of the station is in both cases emergency. Depending on the more
specific state, that is fire or flooded, there might be different emergency procedures required.
The evacuation of the station might for instance differ for fire and a flooding, whereas trains
heading to the station are redirected in both cases.

To realize the described dependencies of states, a deductive rule is used to express that the
operation mode fire implies the operation mode emergency. Therefore, rules or emergency
procedures which are applied in any emergency situation can query the operation mode emer-
gency, whereas rules which are specific for a fire can query the operation mode fire.

DERIVE
emergency { }

FROM
state: fire{ }

END

Recursive Rules For the same reasons as for events, recursive definitions of deductive rules
on stateful objects are not permitted in Dura. Therefore, recursive rules such as DERIVE
operation-mode{ "emergency" } FROM operation-mode{ "fire" } END cannot be speci-
fied in a Dura program.

However, the same effect of such a rule is achieved by the following two non-recursive rules
in combination with the rule from above.

D4.3 Dura– Concepts and Examples • Page 35 of 58

Project EMILI FP7-SEC-2009-1

DERIVE
operation-mode { " emergency" }

FROM
state: emergency { }

END

DERIVE
operation-mode { "fire" }

FROM
state: fire{ }

END

5.8. Accumulation of Stateful Objects

During query evaluation it might occur that multiple stateful objects are representing the same
physical object. This can be desirable, for instance, if several sensors are estimating the num-
ber of persons in an area and one wants to keep track of all measurements by storing each of
them in a stateful object. However, having multiple stateful objects can also be undesirable,
for instance if the same stateful object is derived multiple times by reasoning on states, just
because of different justifications.

Accumulation of stateful objects is intended for merging several stateful objects into a single
stateful object. It works similar to event accumulation. Stateful objects are queried, grouped
together and finally an aggregation function is applied to select a single representative aggre-
gate.

Thus, by choosing an appropriate aggregation function, accumulation can either be used to
derive a more abstract representation of currently valid stateful objects or to derive an unam-
biguous representation of the currently valid stateful objects.

Example The following rule computes the average number of persons based on the currently
valid stateful objects of all areas.

DERIVE
aggregated-area { person-count { avg(all var P) } }

FROM
state s: area{ person-count { var P } }

END

Grouping of stateful objects is only possible for queries which guarantee that the number of
data terms remains finite in each group. This can basically be achieved by specifying a finite
time window in which grouping is carried out. To this end, the matching stateful objects,
more precisely, the matching data terms of stateful objects, are implicitly separated into groups
based on their valid time. The groups are determined in such a way that for the duration of
each group no matching stateful object is updated, created or terminated.

For instance, the preceding data terms (abbreviated by o1 and o2) of two stateful objects are

D4.3 Dura– Concepts and Examples • Page 36 of 58

Project EMILI FP7-SEC-2009-1

separated into three groups. The first group contains o1 and has the duration [0, 2[, since at
time 2 a stateful object, represented by the data term o2, is created. The second group contains
o1 and o2 and last from time 2, which is the ending of the first group, up till time 7, which is
the time point when the stateful object represented by o1 is terminated. The last group has the
duration [7, 11[and contains o2.

o1: area{ id{ "2 x3" }, person-count { 7 } }[0,7[

o2: area{ id{ "7a" }, person-count { 13 } }[2,11[

During aggregation, the number of persons of each group’s entries are collected and their aver-
age is computed. Finally, the resulting stateful objects, which is represented by the following
data terms, is derived.13

aggregated-area { person-count { 7 } }[0,2[

aggregated-area { person-count { 10 } }[2,7[

aggregated-area { person-count { 13 } }[7,11[

Note that the three data terms are representing the same stateful object. Moreover, the valid
times of the data terms are pairwise distinct. Thus, aggregation of stateful objects merges
several stateful object into a single stateful object, nevertheless the number of data terms may
increase during aggregation.

Example In the example of Section 5.7 a deductive rule is used to express that fire implies
emergency. Consequently, when fire is detected, two stateful objects representing the oper-
ation mode of the station are derived, namely operation-mode{ "fire" } and operation-
mode{ "emergency" }.

Although it is desirable to derive two stateful objects in order to facilitate the development
of generic rules, operators can be easily distracted by a large number of operation modes
which are valid at the same time. Therefore, only one representative, and thus unambiguous,
operation mode should be selected and presented to the emergency manager.

For instance, consider the following set of data term of the stateful object operation-mode.

operation-mode { " emergency" }[5,17[

operation-mode { " exceptional" }[5,15[

operation-mode { " exceptional" }[7,17[

The subsequent rule combines all those terms into a single stateful object of the type unique
-operation-mode that has a unique value for every point in time. To this end, the operation
mode which deserves the most attention, in this example the operation mode emergency, is
selected by the aggregation function max.14

13Note that this example only demonstrates what the overall result of the query is. Indeed, intermediate results
are derived in a stepwise manner while the stateful objects are changing over time.

14Note that for the selection of the most relevant operation mode a total ordering of the (finitely many) operation
modes is required.

D4.3 Dura– Concepts and Examples • Page 37 of 58

Project EMILI FP7-SEC-2009-1

DERIVE
unique-operation-mode { max(all var M) }

FROM
state: operation-mode { var M }

END

Note that, although the operation mode of the station is continuously set to emergency from
time 5 to 17, the derived stateful object unique-operation-mode is represented by three data
terms with associated valid time intervals. The creation of three data term instead of one is
caused by the implicit separation of the data terms into finite groups.

However, for each point in time at most one data term of the stateful object unique-operation
-mode is valid. Thus, the derived stateful object unique-operation-mode is indeed unambigu-
ous whereas the stateful object operation-mode is not.

unique-operation-mode { " emergency" }[5,7[

unique-operation-mode { " emergency" }[7,15[

unique-operation-mode { " emergency" }[15,17[

If required, further means to join the three valid time intervals into a single time interval can
be investigated in the future. However, if only temporal relation that constrain stateful objects
to be valid at certain time points, such as s at end(e), are used in a program, having three
associated time intervals or one connected time interval does not make any difference. Indeed,
so far only queries constraining time points of stateful objects are required in the use cases.

6. Actions

Actions enable reactive behaviour which is highly desirable for modern emergency manage-
ment. Based on the occurrence of events and the conditions of stateful objects, actions can be
triggered to control the equipment of the infrastructure, change properties of stateful objects,
and to cause state changes.

Similar to events, there are two types of actions: atomic and complex actions. Atomic actions
are simple commands which cannot be further decomposed and are thus directly executed
either inside the event engine or externally by the equipment of the infrastructure. In contrast,
complex actions are composed of several (atomic or complex) actions which may be further
constrained, for instance, on their execution order or execution time.

Actions are triggered by reactive rules. In contrast to declarative rules on events and stateful
objects, which do not have any side effects and can be seen as views known from database sys-
tems, reactive rules effect “the outside world” or the internal state of the system by modifying
stateful objects, that is, they are not declarative.

D4.3 Dura– Concepts and Examples • Page 38 of 58

Project EMILI FP7-SEC-2009-1

6.1. Properties of Actions

Payload Actions have a payload which can be set on their initiation. In this way it is possible
to pass different parameters to actions which influences their execution. For instance, to turn
on a specific light on a platform the id of the light can be included in the payload of the action.

Occurrence Time The occurrence time of an action is the smallest interval which includes
the beginning of the action, i.e., when it was actually executed, and its ending, i.e., when the
action finally succeeded. In the following, actions will be denoted at where a is the action
itself and t its occurrence time.

Internal vs. External Actions Actions can be classified into two different categories: in-
ternal and external actions. Internal actions are directly executed by the event engine, such
as the modification of stateful objects. In contrast, external actions are intended to influence
the equipment of the infrastructure and thus they cannot be executed by the event processing
system directly. Therefore, each device that should be able to execute an external action needs
to be connected to the event processing system by an adaptor and needs to be subscribed to
all kinds of actions it can execute. Thereby, the corresponding actions of a device are initiated
inside the event engine and subsequently sent to the device, where they are finally executed.

6.2. Dimensions of Complex Actions

For each of the complex event query dimensions there is a corresponding dimension of com-
plex actions. A complex action has several parameters, is itself composed of sub-actions and
specifies time constraints on the execution of its sub-actions. Furthermore, the cause of the
execution of an action is described by its provenance.

Data Injection Data injection in actions corresponds to data extraction in event queries. Ac-
tions have parameters which have an impact on their execution. Instead of extracting data, as
in case of event queries, values are passed to actions in order to set the value of the parameters.
A parameter of an action can for instance specify the updated value of a stateful object or the
intensity of the air flow generated by a ventilator of the infrastructure.

Provenance The provenance of an action explains why an action has been executed. The
execution of an action is triggered either directly by an event or by another action. Thus
there is always an event which (indirectly) triggers the execution of an action. Therefore, the
provenance of an action may not only comprises the actions which have (directly or indirectly)
triggered the execution of an action, but also the provenance of the events which caused its
execution.

D4.3 Dura– Concepts and Examples • Page 39 of 58

Project EMILI FP7-SEC-2009-1

Action Composition An action can be composed of several (basic) actions. This allows to
split complicated actions into several simple actions. Furthermore, an action can be easily
reused among different rules.

Temporal Relationships Temporal relationships are required to specify temporal dependen-
cies between several actions. For instance, one might specify that action A is to be executed
after action B. Furthermore, time windows are used to declare how long the execution of a
sequence of actions should require at most. If the given time is exceeded, the execution of the
composed action is considered as failed.

Accumulation In contrast to events where accumulation groups together several events, ac-
cumulation of actions is required to specify the execution of an arbitrary number of actions.
In contrast to the composition of actions, the number of actions may not be known in advance
and depends on the parameters of an action. An action which requires accumulation is, for
instance, “turn on the lights in all areas of the evacuation route X”.

6.3. Atomic Actions

Atomic actions are similar to base events of event queries. They are (simple) commands
which cannot be further decomposed and can be directly performed either externally by the
equipment of the infrastructure, such as “turn on the light with the id 2x3”, or internally by
the event engine, such as “create a new stateful object”.

Example In case of a fire alarm on a metro station’s platform, people should be able to
quickly leave the platform. To this end, there are emergency lights pointing to the emergency
exits of each station. Each of the lights is connected to the SCADA system of the metro station
and thus can be remotely turned on and off.

The SCADA system is in turn connected to the event processing system by means of an ap-
propriate adaptor. It is further subscribed to turn-on-light actions and therefore, if a turn-
on-light action is initiated in the event processing system, the action is sent to the SCADA
where it is actually executed.

For instance, the initiation of the following action will cause the SCADA system to turn on
the emergency light with the id 0x23e.

action: turn-on-light { id{ "0 x23e" } }

6.4. Reactive Rules (Event-Condition-Action Rules)

Reactive rules integrate declarative queries for events and stateful objects and the execution
of imperative actions. In Dura, reactive rules are of the form ON <query> DO <action> END.

D4.3 Dura– Concepts and Examples • Page 40 of 58

Project EMILI FP7-SEC-2009-1

Whenever the query matches the specified events and stateful objects, the execution of the
action is triggered. Thus, reactive rules are the connection between declarative rules and
non-declarative actions.

Event-Condition-Action (ECA) rules have been extensively studied in the field of active data-
bases [8, 36, 26]. However, the available systems are not convenient for out purposes. They
are lacking capabilities of interacting with the physical world, have a limited notion of states,
and do not support the timing of actions [5, pp. 26-29].

In contrast, reactive rules in Dura offer a homogeneous and time aware approach for querying
complex events, static and dynamic objects and the execution of internal and external complex
actions. Therefore, they are a generalization of ECA rules which are only considering basic
events, static relations and the execution of internal actions without any notion of time.

Example Emergency lights are represented in this example by stateful objects with an id,
the area and further dynamic information, such as the current state of the light (on or off).

Whenever a confirmed alarm is detected in an area, all emergency lights of this area are
switched on. To this end, a query of stateful objects is used to obtain all emergency light
ids of the particular area. Then a reactive rule is used to trigger a turn-on-light action for
each light which is subsequently sent to the SCADA system where it is finally executed.

Depending on further aspects, such as the simulated smoke propagation on escape paths, one
could even turn on certain emergency lights only. However, for the sake of simplicity, this is
not considered in the example.

ON
and{

event e: confirmed-alarm { area{ var A } },
state s: emergency-light { area{ var A }, id{ var Id } }

} where { s at end(e) }
DO

action a: turn-on-light { id{ var Id } }
END

6.5. Events Entailed by Actions

When an (internal or external) action is executed, it cannot be known in advance how long
it will take to execute the action or whether it will be executed successfully or not. There-
fore, whenever the execution of an action is triggered by a reactive rule, several events which
provide further information on the progress of the action are generated.

There are three event types which are caused by the execution of an action, namely action-
initiated, action-succeeded, and action-failed. Events of the former type occur when-
ever the execution of an action begins, whereas only one event of the latter two types occurs,
depending on whether the execution of the action was successful or not.

D4.3 Dura– Concepts and Examples • Page 41 of 58

Project EMILI FP7-SEC-2009-1

These events take a special role during the execution of actions, because actions cannot be
queried in Dura. Actions are just initiated by reactive rules which are in turn triggered by
events. However, because it is necessary to observe whether an initiated action has been
executed successfully or not, the progress of an action is indicated by the occurrence (or
absence) of the respective events that are described above. These events can be in turn queried
in the body of (reactive) rules and initiate the execution of actions, such as the initiation of a
compensating action on the occurrence of an action-failed event.

All three event types carry additional information about the name, action reference and pay-
load of the executed action. They can be queried by further rules, for instance to execute
additional actions if the execution of a certain action fails.

Example Reconsider the last example, when a confirmed-alarm{ area{ 42 } }[3,11] oc-
curs and at the same time there is a stateful object emergency-light{ area{ 42 }, id{ "0
x23e" }, state{ "off" } }[0,uc[the conditions of the query are fulfilled and the turn-on-
light action is executed with 0x23e substituted for var Id. When the execution of the action
begins, the following event is derived by the event engine.

action-initiated {
ref{ 352f }, action{ turn-on-light { id{ "0 x23e" } } } }[11,11]

When the light is finally reported to be turned on by the SCADA system which actually carried
out the action, an action-succeeded event follows. However, if the light could not be turned
on for some reasons, a similar action-failed event is generated instead.

action-succeeded {
ref{ 352f }, action{ turn-on-light { id{ "0 x23e" } } } }[12,12]

Events Entailed by External Action For the generation of action-succeeded and action
-failed events, the device, or more precisely the adaptor connected to the device, needs to
propagate the information whether the action has been executed successfully or not back to
the event processing engine.

However, this information is is not always available because some devices are not capable of
observing the progress of an executed action. Therefore, the execution status of the action can
only be determined by sensors that verify the execution indirectly by measuring parameters
which are affected by the execution of the action.

This problem can be addressed by explicitly specifying when an action is regarded as being
executed successfully. This is done by including an event query in an action specification:
DO <action> SUCCEEDES ON <query> END. The query needs to be timely bounded but does
not have any further restrictions. If it matches the events on the event stream an appropriate
action-succeeded event is derived. Alternatively, an action-failed event is derived if the

D4.3 Dura– Concepts and Examples • Page 42 of 58

Project EMILI FP7-SEC-2009-1

query does not match the events on the stream during the given time window.15

Example Basically all safety relevant actuators of the infrastructure are equipped with sen-
sors that monitor their state. For instance, fire dampers are connected to a SCADA system and
can be opened and closed by sending action requests to the SCADA. Contact sensor monitor
the actual position of the fire damper. When an action is triggered, these sensors give infor-
mation on whether the action has been executed successfully. Thus, events coming from the
contact sensors can be used to derive action-succeeded and (if they are absent within a given
time frame) action-failed events.

ON
...

DO
action a: open-damper { id{ var Id } }

SUCCEEDES ON
event e: damper-position { id{ var Id }, position { "open" } }
where { {begin(a), e} within 30 sec }

END

Events Entailed by State Changes Events that are caused by changes of stateful objects
(cf. Section 5.5) are basically just action-succeeded events. The modification of a stateful
object is triggered by a reactive rule, such as ON ... DO action: update-object{ ... }
END. When the update action succeeds a action-succeeded event occurs and because the
stateful object has been modified an object-modified event is derived as well. However,
both events are basically giving the same information, they just differ in their representation.

6.6. Action Composition

In analogy to events, actions can be composed of multiple actions which are connected by
either a conjunction (and) or a disjunction (or). Both operators can have two or more actions
as arguments and can be arbitrarily nested.

Note that conjunctions and disjunctions only effect how the composition of actions is regarded
as successful, they do not affect which actions are executed. If there are no further constraints,
all specified actions are always executed in parallel for both kinds of operators. However,
a conjunction is only regarded successful if all specified actions are executed successfully,
whereas disjunctions are regarded successful if at least one specified action is executed suc-
cessfully.

Note that it does not make sense to provide a negation for the composition of actions: Actions
not to perform are simply not mentioned.

15Note that because of the implicit negation of the query it needs to be timely bounded.

D4.3 Dura– Concepts and Examples • Page 43 of 58

Project EMILI FP7-SEC-2009-1

Conjunction Conjunctions are used to specify that several actions should be executed. If
no further constraints are present, the specified actions are executed in parallel. When all
actions specified in a conjunction are executed successfully, the execution of the conjunction
is regarded successfully. However, if a single action fails, the execution of the conjunction
fails as well.

Disjunction Disjunctions are quite similar to conjunctions. All specified actions of a dis-
junction are executed in parallel. In contrast to conjunctions, it suffices that at least one of the
specified actions succeeds to render the execution of the complete disjunction successful.

Example If there are first signs that there might be fire in an area of a metro station, that is,
an uncertain-fire-alarm occurs, it is desirable to make certain arrangements in order to be
well prepared if the alarm is confirmed. These preparations can include for instance opening
the fire dampers of the area (if there are any), activate the lighting and the adaptation of the
ventilation regime.

ON
event: uncertain-fire-alarm { area{ var A } }

DO
and{

action a1: open-fire-dampers { area{ var A } },
action a2: turn-on-lights { area{ var A } },
action a3: fresh-air-supply {

area{ var A }, intensity { "max" } }
}

END

6.7. Temporal Relations

So far, only actions which are executed in parallel have been regarded. However, for a reactive
emergency management it is highly desirable to influence the execution order of actions and
to impose time constraints between several actions.

The same temporal relations introduced in Section 3.7 can be used to specify such relations
between actions. Similar to event queries and queries of stateful object, they can be included
in the where part of a composition operator.

For instance, the relation a1 before a2 ensures that the action a2 is only executed after the
action a1 has terminated successfully. Relations such as within can further be used to spec-
ify time constraints between actions which have an effect on whether and complex action is
regarded as successful or not.

In general, relations which imply an order on the execution of actions, such as before and
after, have an impact when the specified actions are actually executed. In contrast, relations
which verify time constraints on the duration of actions, such as within and apart, do not

D4.3 Dura– Concepts and Examples • Page 44 of 58

Project EMILI FP7-SEC-2009-1

influence the execution of actions but rather influence when a composed action is successful.
Therefore, expressions that are only verifying time constraints are shorthands for respective
event queries in the SUCCEEDES ON part of an action specification.

Note that binary relations can be used to specify expressions such as a before b before c.
They are considered syntactic sugar for expression without the nesting of relations. In the
given example, the expression translates to a before b, b before c.

Example In the last example, the fire dampers are opened and simultaneously the ventilation
regime is adapted. However, for some areas of the metro station it might be necessary to open
the fire dampers first and only after they have been opened successfully the ventilation regime
is adapted.

ON
event: uncertain-fire-alarm { area{ var A } }

DO
and{

action a1: open-fire-dampers { area{ var A } },
action a2: turn-on-lights { area{ var A } },
action a3: fresh-air-supply {

area{ var A }, intensity { "max" } }
} where { a3 after a1 }

END

It seems to be desirable to have a mean that allows to directly specify sequences of actions.
This could be achieved for instance by introducing composition operators with square brack-
ets. Such an operator would be interpreted as syntactic sugar for the same operator with curly
brackets and an appropriate where part that realizes the sequential execution of the actions in
the same order as they are specified in the rule.

6.8. Complex Action Specification

Complex actions can not only be specified in reactive rules, but can also be named in order to
share the same complex actions among several rules. In Dura this is done with the FOR <name
> DO <complex action> END statement. If the action name is initiated by a reactive rule, the
complex action given in the body of the complex action specification is executed.

Therefore, complex actions can be easily shared among several rules which is highly desirable
in the context of emergency management since rules need to be robust and easy to maintain. If
there is a high redundancy among the rules, errors during the development and maintenance of
rules are likely, such as copy-and-past errors and inconsistencies if only some of the redundant
rules are modified.

Example In the last example, preventive actions are executed when an uncertain fire alarm
is detected in a certain area. However, the same actions can be executed when a burning train

D4.3 Dura– Concepts and Examples • Page 45 of 58

Project EMILI FP7-SEC-2009-1

is approaching a station. But instead of copying the actions to a second rule which is detecting
that a train on fire is approaching a station, a complex action specification is used to give the
preventive actions a name. The complex action is then used in the rules that are dealing with
uncertain fire alarms and trains on fire approaching a station.

FOR
preventive-fire-suppression { area{ var A } }

DO
and{

action a1: open-fire-dampers { area{ var A } },
action a2: turn-on-lights { area{ var A } },
action a3: fresh-air-supply {

area{ var A }, intensity { "max" } }
}

END

ON
event: uncertain-fire-alarm { area{ var A } }

DO
action: preventive-fire-suppression { area{ var A } }

END

ON
and{

event e: certain-fire-alarm { area{ var A } },
state s: train{ id{ var A }, destination { var S } }

} where { s at end(e) }
DO

action: preventive-fire-suppression { area{ var S } }
END

6.9. Conditional Actions

Actions can be associated with additional conditions that need to be fulfilled before an action
is executed. So-called conditional actions are especially useful for the specification of alter-
natives or some kind of “compensating” action that is executed if, for instance, a previously
initiated action fails.

Conditional actions have the form IF <query> THEN <action> ELSE <action> END whereas
the else part of the statement is optional. The query needs to be timely bounded in order
to make the evaluation of the implicit negation in the else part feasible. Therefore, event
identifiers and identifiers of stateful objects which are defined outside the statement, that is in
the reactive rule it is contained in, can be used in the query of the conditional action.

Example In the preceding examples, preventive fire suppression always includes the open-
ing of fire dampers and the adaption of the ventilation regime. However, in case of an uncertain

D4.3 Dura– Concepts and Examples • Page 46 of 58

Project EMILI FP7-SEC-2009-1

fire alarm it can be sufficient to open the fire dampers and only if the fire dampers cannot be
opened within a certain time frame, the ventilation regime is adapted instead.

ON
event e: uncertain-fire-alarm { area{ var A } }

DO
and{

action a: open-fire-dampers { area{ var A } },

IF not event f: action-succeeded { ref{ action a } }
where { {e,f} within 30 sec }

THEN
action: fresh-air-supply {

area{ var A }, intensity { "max" } }
END

}
END

Conditional actions can furthermore be used to implement some sort of for each statement.
The query part of the statement can potentially match several events and stateful objects and
thus multiple actions can be carried out. Consequently, an action is initiated for each matching
stateful object.

Example Throughout the last examples, the complex action open-fire-dampers is used to
open all fire dampers of a certain area. This complex action can be realized by means of a
conditional action which executes the atomic action open-fire-damper for every fire damper
in an area.

FOR
action a: open-fire-dampers { area{ var A } }

DO
IF state s: fire-damper { id{ var Id }, area{ var A } }

where { s at begin(a) }
THEN

action: open-fire-damper { id{ var Id } }
END

END

Note that the execution of the if statement is only successful if all actions that are initiated by
the statement are executed successfully.

7. Related Work and Conclusion

7.1. Related Work

A major achievement of Dura is the integration of complex event queries, stateful objects and
reactive rules in a homogeneous fashion.

D4.3 Dura– Concepts and Examples • Page 47 of 58

Project EMILI FP7-SEC-2009-1

Prior and well established approaches like production rules and ECA rules, which have been
extensively studied in active databases, have significantly influenced the design of Dura. How-
ever, the specific requirements of emergency management require an adoption and generaliza-
tion of existing approaches.

The separation of event queries and queries of static data is too restrictive for our purposes.
There are extensions which integrate both kinds of queries, such as EA rules [15] and (EC)∗A
rules [4]. However, conditions in ECA rules only refer to the recent content of the database.
Therefore, they do not provide any notion of states, because states are constantly changing
over time and thus require a special treatment of temporal aspects.

Furthermore, time and timing of actions is not considered by current approaches. Due to their
origin in database most of them consider only internal actions, such as updates of the database,
and external function calls.

Process calculi [3, 25] are used to extend action specifications of ECA rules towards complex
action definitions capable of specifying sequences of actions and influencing the execution or-
der of actions. However these approached often rely on some kind of backtracking mechanism
or notion of transaction which is inherently not available in real-life applications. Moreover,
feedback of the success of actions might only be available in an indirect manner and thus
needs special treatment.

A more comprehensive survey on state-of-the-art of complex event processing and event con-
dition action rules can be found in [6, 5].

7.2. Conclusion

This document introduces a language sketch of Dura based on the information collected from
the use case designers and the descriptions of the use cases. The examples and concepts
introduced in this text form the basis for implementing reactive rules for the use cases.

So far, SOMAL has not been considered in designing Dura. Indeed, it seems to be more
related to implementing use cases than to designing Dura. Queries of a (possibly dynamic)
ontology can be realized in Dura by expressing the ontology as stateful objects.

The design of Dura has been carefully adjusted to the requirements of the use cases [30, 34,
29, 11] and the findings of previous research activities [6, 5, 10]. It should therefore be well
suited for emergency management in large infrastructures. Nonetheless there might be yet still
unknown requirements from the use cases that are not sufficiently supported by the language
and thus adaptations of the language might be necessary in the future.

The language design integrates complex events, states and stateful objects, and complex ac-
tions in a homogeneous and time aware fashion which distinguishes Dura from existing ap-
proaches. However, all three concepts are highly desirable for a reactive management of
emergencies in large infrastructures [6].

A core issue is however an efficient implementation of the Dura language making a fast com-
plex event processing possible. Indeed, the vision of a novel form of reactive emergency

D4.3 Dura– Concepts and Examples • Page 48 of 58

Project EMILI FP7-SEC-2009-1

management requires a very fast detection of possibly very complicated complex events.

Currently, an efficient run time system for Dura is developed which is based on the database
system MonetDB. Our efforts in both implementing Dura using this run time system and in
conceiving and implementing this run time system will be presented in the next deliverable.

D4.3 Dura– Concepts and Examples • Page 49 of 58

Project EMILI FP7-SEC-2009-1

A. Dura EBNF Grammar

The constraints mentioned below in the comments are intended as part of the specification of
the semantic analysis.

program ::= preamble (eventDefinition | stateDefinition
| actionDefinition | reactiveRule)+

preamble ::= (typeDefinition | constDefinition)*

/**
* constraints:
* all schemaDefinition labels are pairwise distinct
* type name ID is unique
* no cyclic definitions
*/

typeDefinition ::= ’TYPE’ ID ’IS’ basicType ’END’
| ’TYPE’ ID ’IS’ schemaDefinition typeSupplement? ’END’
| ’TYPE’ ID ’IS’ ’{’ schemaDefinition (’,’ schemaDefinition)* ’}’

typeSupplement? ’END’

/** constraint: const name ID is unique */
constDefinition ::= ’CONST’ ID ’IS’ constTerm ’END’

/**
* constraints:
* event definition schemaDefinition needs to be unique
* schema of derived events needs to comply with schmaDenfinition
*/

eventDefinition ::= ’EVENT’ schemaDefinition typeSupplement?
(’WITH’ (eventSpecification | whileStatement)*)? ’END’

/** constraints:
* stateful object definition schemaDefinition is unique
* schema of derived stateful objects needs to comply with schmaDenfinition
*/

stateDefinition ::= ’STATEFUL OBJECT’ schemaDefinition
(’WITH’ stateSpecification*)? ’END’

/** constraints:
* action definition schemaDefinition is unique
* schema of complex actions needs to comply with schmaDenfinition
*/

actionDefinition ::= ’ACTION’ schemaDefinition (’WITH’ actionSpecification*)? ’END’

eventSpecification ::= ’DETECT’ constructTerm (’group by’

D4.3 Dura – Concepts and Examples • Page 50 of 58

Project EMILI FP7-SEC-2009-1

’{’ binding (’,’ binding)* ’}’)? ’ON’ eventQuery ’END’

stateSpecification ::= ’DERIVE’ constructTerm ’FROM’ stateQuery ’END’

actionSpecification ::= ’FOR’ term ’DO’ action (’SUCCEEDES ON’ eventQuery)? ’END’
| ’FOR’ ’action’ ID? ’:’ term ’DO’ action

(’SUCCEEDES ON’ eventQuery)? ’END’

reactiveRule ::= ’ON’ eventQuery ’DO’ action (’SUCCEEDES ON’ eventQuery)? ’END’

whileStatement ::= ’WHILE’ stateQuery ’LET’
(eventSpecification | whileStatement)* ’END’

/** constaint: at least one positive event query in every disjunct of the dnf */
eventQuery ::= ’and’ ’{’ eventQuery (’,’ eventQuery)* ’}’ querySupplement?

| ’or’ ’{’ eventQuery (’,’ eventQuery)* ’}’ querySupplement?
| ’exists’ ’{’ eventQuery ’}’ querySupplement?
| ’exists’ eventQuery
| ’not’ ’{’ eventQuery ’}’ querySupplement?
| ’not’ eventQuery
| ’event’ ID? ’:’ eventQuery
| ifStatement
| atomicEventQuery

atomicEventQuery ::= ’event’ ID? ’:’ term querySupplement?
| ’state’ ID? ’:’ term querySupplement?

stateQuery ::= ’and’ ’{’ flatStateQuery (’,’ flatStateQuery)* ’}’ querySupplement?
| ’or’ ’{’ flatStateQuery (’,’ flatStateQuery)* ’}’ querySupplement?
| flatStateQuery (’,’ flatStateQuery)*

flatStateQuery ::= ’not’ atomicStateQuery
| atomicStateQuery

atomicStateQuery ::= ’state’ ID? ’:’ term querySupplement?

action ::= ’concurrent’ ’{’ action (’,’ action)* ’}’ actionSupplement?
| ’and’ ’{’ action (’,’ action)* ’}’ actionSupplement?
| ’or’ ’{’ action (’,’ action)* ’}’ actionSupplement?
| ’action’ ID? ’:’ action
| ifStatement
| atomicAction

ifStatement ::= ’IF’ eventQuery ’THEN’ action (’ELSE’ action)? ’END’ actionSupplement?

/** constraint: action term is actually defined */

D4.3 Dura – Concepts and Examples • Page 51 of 58

Project EMILI FP7-SEC-2009-1

atomicAction ::= ’action’ ID? ’:’ term actionSupplement?

querySupplement ::= (where | let | grouping)+

actionSupplement ::= where+

/** constraint: no variables occur in mathFormula */
typeSupplement ::= ’where’ ’{’ mathFormula (’,’ mathFormula)* ’}’

let ::= ’let’ ’{’ unification (’,’ unification)* ’}’

unification ::= dataVariable ’=’ expr

grouping ::= ’group by’ ’{’ binding (’,’ binding)* ’}’
| ’group by’ ’{’ binding (’,’ binding)* ’}’

’aggregate’ ’{’ aggregation (’,’ aggregation)* ’}’

binding ::= dataVariable
| identifier
| untypedIdentifier

aggregation ::= dataVariable ’=’ aggregationOp ’(’ dataVariable ’)’

where ::= ’where’ ’and’ ’{’ conditions (’,’ conditions)* ’}’
| ’where’ ’or’ ’{’ conditions (’,’ conditions)* ’}’
| ’where’ ’{’ conditions (’,’ conditions)* ’}’

conditions ::= ’and’ ’{’ conditions (’,’ conditions)* ’}’
| ’or’ ’{’ conditions (’,’ conditions)* ’}’
| condition

condition ::= intervalFormula
| mathFormula

/** constraints:
* either both or none of the expressions is of type duration
*/

mathFormula ::= expr arithmeticRelation expr

intervalFormula ::= ’{’ timeInterval ’,’ timeInterval
(’}’ ’apart-by’ duration
| (’,’ timeInterval)* ’}’ ’within’ duration
)

| timeInterval (intervalRelation timeInterval | ’at’ timePoint)

/** constraint: variable is of type timeinterval */

D4.3 Dura – Concepts and Examples • Page 52 of 58

Project EMILI FP7-SEC-2009-1

timeInterval ::= dataVariable
| identifier
| untypedIdentifier
| relativeTimerOp ’(’ timeInterval ’,’ duration ’)’

/** constraint: variable is of type timepoint */
timePoint ::= dataVariable

| intervalOp ’(’ timeInterval ’)’

/** constraint: all timeunits are are pairwise distinct */
duration ::= time+

time ::= NUMBER timeUnit

/**
* constraints:
* all term labels are pairwise distinct
* no cyclic definitions
*/

term ::= label ’{’ ’}’
| label ’{’ termLeaf ’}’
| label ’{’ term (’,’ term)* ’}’

/** constraints:
* variables are unified with basic types
* constants are unified with basic types
* identifiers are unified with identifier types
*/

termLeaf ::= dataVariable
| constant
| identifier
| duration
| STRING
| NUMBER

/**
* constraints:
* all constTerm labels are pairwise distinct
* no cyclic definitions
*/

constTerm ::= STRING
| NUMBER
| constant
| duration
| label ’{’ ’}’
| label ’{’ constTerm (’,’ constTerm)* ’}’

D4.3 Dura – Concepts and Examples • Page 53 of 58

Project EMILI FP7-SEC-2009-1

/**
* constraints:
* all schemaDefinition labels are pairwise distinct
* no cyclic definitions
*/

schemaDefinition ::= label ’{’ basicType ’}’
| label ’{’ compositeType ’}’
| label ’{’ schemaDefinition (’,’ schemaDefinition)* ’}’

expr ::= mathExpr
| identifier

mathExpr ::= (multExpr) ((’+’ | ’-’) multExpr)*

multExpr ::= (powExpr) ((’*’ | ’/’) powExpr)*

powExpr ::= (atom) (’^’ atom)*

/**
* constraints:
* constants used in aritmetic expressions need to be a number
*/

atom ::= ’(’ expr ’)’
| intervalOp ’(’ timeInterval ’)’
| aggregationOp ’(’ dataVariable ’)’
| dataVariable
| constant
| path
| (NUMBER) (timeUnit time*)?
| STRING

constructTerm ::= label ’{’ ’}’
| label ’{’ expr ’}’
| label ’{’ constructTerm (’,’ constructTerm)* ’}’

path ::= label (’.’ label)*

label ::= aggregationOp
| intervalOp
| ID

basicType ::= (’string’ | ’int’ | ’long’ | ’double’ | ’float’
| ’boolean’ | ’identifier’ | ’timestamp’ | ’duration’)

/** constraint: composite type ID is actually defined */

D4.3 Dura – Concepts and Examples • Page 54 of 58

Project EMILI FP7-SEC-2009-1

compositeType ::= ID

identifier ::= (’event’ | ’state’ | ’action’) ID

untypedIdentifier ::= ID

dataVariable ::= ’var’ ID

/** constraint: constant ID is actually defined */
constant ::= ’const’ ID

intervalRelation ::= (’before’ | ’contains’ | ’overlaps’ | ’after’ | ’during’
| ’overlapped-by’ | ’starts’ | ’finishes’ | ’meets’
| ’started-by’ | ’finished-by’ | ’met-by’ | ’equals’
| ’while’ | ’valid-at’ | ’valid-during’)

relativeTimerOp ::= (’extend’ | ’shorten’ | ’extend-begin’ | ’shorten-begin’
| ’shift-forward’ | ’shift-backward’ | ’from-end’
| ’from-end-backward’ | ’from-start’ | ’from-start-backward’
| ’from-begin’ | ’from-begin-backward’)

intervalOp ::= (’begin’ | ’end’)

aggregationOp ::= (’max’ | ’min’ | ’mean’ | ’avg’ | ’count’)

timeUnit ::= (’day’ | ’days’ | ’hour’ | ’hours’ | ’min’ | ’sec’ | ’ms’)

arithmeticRelation ::= (’<’ | ’<=’ | ’=’ | ’!=’ | ’>’ | ’>=’)

ID ::= (’a’..’z’ | ’A’..’Z’) (’a’..’z’ | ’A’..’Z’ | ’0’..’9’ | ’-’ | ’_’)*

NUMBER ::= (’0’..’9’)+ ’.’ (’0’..’9’)* Exponent?
| (’0’..’9’)+ Exponent?

Exponent ::= (’e’ | ’E’) (’+’ | ’-’)? (’0’..’9’)+

STRING ::= ’"’ (EscapeSequence | ~(’\\’ | ’"’))* ’"’

EscapeSequence ::= ’\\’ (’b’ | ’t’ | ’n’ | ’f’ | ’r’ | ’\"’ | ’\’’ | ’\\’)

COMMENT ::= ’//’ ~(’\n’ | ’\r’)* ’\r’? ’\n’
| ’/*’ (.)* ’*/’

WS ::= (’ ’ | ’\t’ | ’\r’ | ’\n’)

D4.3 Dura– Concepts and Examples • Page 55 of 58

Project EMILI FP7-SEC-2009-1

References

[1] Data cleaning material collection. http://paul.rutgers.edu/~weiz/readinglist.
html.

[2] J. F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM, 26:832–
843, November 1983.

[3] E. Behrends, O. Fritzen, W. May, and F. Schenk. Event algebras and process algebras in
eca rules. In Fundamenta Informaticae 82, pages 237–263. IOS Press, 2008.

[4] H. Behrends. An operational semantics for the activity description language adl. Tech-
nical report, Universität Oldenburg, 1994.

[5] S. Brodt, S. Hausmann, and F. Bry. Deliverable D4.2: Reactive rules for emergency
management, 2010.

[6] S. Brodt, S. Hausmann, F. Bry, O. Poppe, and M. Eckert. Deliverable D4.1: A survey on
IT-techniques for a dynamic emergency management in large infrastructures, 2010.

[7] F. Bry and M. Eckert. Rule-based composite event queries: the language XChangeEQ

and its semantics. In Proceedings of the 1st international conference on Web reasoning
and rule systems, RR’07, pages 16–30, Berlin, Heidelberg, 2007. Springer-Verlag.

[8] S. Ceri, R. Cochrane, and J. Widom. Practical applications of triggers and constraints:
Success and lingering issues. In A. E. Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal,
N. Kamel, G. Schlageter, and K.-Y. Whang, editors, VLDB 2000, Proceedings of 26th
International Conference on Very Large Data Bases, September 10-14, 2000, Cairo,
Egypt, pages 254–262. Morgan Kaufmann, 2000.

[9] Disaster report: Daegu subway. http://eng.nema.go.kr/sub/cms3/3_4.asp.

[10] M. Eckert. Complex Event Processing with XChangeEQ: Language Design, Formal
Semantics and Incremental Evaluation for Querying Events. PhD thesis, Institute for
Informatics, University of Munich, 2008.

[11] J. L. M. Español. Deliverable D3.1 annexe c: Specific report for use case III, power
networks, 2010.

[12] Fire investigation summary Düsseldorf. http://www.nfpa.org/assets/files/pdf/
dusseldorf.pdf.

[13] H. Galhardas. Data Cleaning: Model, Language and Algoritmes. PhD thesis, University
of Versailles, 2001.

[14] H. Galhardas, D. Florescu, and D. Shasha. Declarative data cleaning: Language, model,
and algorithms. In In VLDB, pages 371–380, 2001.

[15] N. H. Gehani, H. V. Jagadish, and O. Shmueli. Event specification in an active object-
oriented database. In Proceedings of the 1992 ACM SIGMOD international conference
on Management of data, SIGMOD ’92, pages 81–90, New York, NY, USA, 1992. ACM.

[16] F. Groffen. Deliverable D5.2: Library for sensor interaction, 2010.

D4.3 Dura– Concepts and Examples • Page 56 of 58

http://paul.rutgers.edu/~weiz/readinglist.html
http://paul.rutgers.edu/~weiz/readinglist.html
http://eng.nema.go.kr/sub/cms3/3_4.asp
http://www.nfpa.org/assets/files/pdf/dusseldorf.pdf
http://www.nfpa.org/assets/files/pdf/dusseldorf.pdf

Project EMILI FP7-SEC-2009-1

[17] G. Haddow, J. Bullock, and D. P. Coppola. Introduction to Emergency Management.
Butterwoth-Heinemann, 2008.

[18] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kauffman,
2001.

[19] C. S. Jensen and R. T. Snodgrass. Temporal data management. IEEE Trans. on Knowl.
and Data Eng., 11:36–44, January 1999.

[20] E. M. Knorr. Outliers and Data Mining: Finding Exceptions in Data. PhD thesis,
University of British Columbia, 2002.

[21] D. Luckham and R. Schulte. Event processing glossary. http://www.complexevents.
com/?p=361, July 2008.

[22] A. E. Monge. Adaptive detection of approximately duplicate database records and the
database integration approach to information discovery. PhD thesis, University of Cali-
fornia, San Diego, 1997.

[23] H. Müller and J.-C. Freytag. Problems, methods, and challenges in comprehensive data
cleansing. HUB-IB-164, Humboldt University Berlin, 2003.

[24] G. Ozsoyoglu and R. T. Snodgrass. Temporal and real-time databases: A survey. IEEE
Trans. on Knowl. and Data Eng., 7:513–532, August 1995.

[25] A. Paschke, A. Kozlenkov, and H. Boley. A homogenous reaction rule language for
Complex Event Processing. In In Proc. 2nd Int. Workshop on Event Drive Architecture
and Event Processing Systems, 2007.

[26] N. W. Paton, J. Campin, A. A. A. Fernandes, and M. H. Williams. Formal specification
of active database functionality: A survey. In Rules in Database Systems, pages 21–37,
1995.

[27] N. W. Paton and O. Díaz. Active database systems. ACM Comput. Surv., 31:63–103,
March 1999.

[28] Rahm and Do. Data cleaning: Problems and current approaches. IEEE Bulletin 23(4),
2000.

[29] N. Seifert and M. Bettelini. Deliverable D3.1 annexe b: Specific report for use case II,
public transport, 2010.

[30] N. Seifert and M. Bettelini. Deliverable D3.1: Use cases requirements analysis and
specification (main report), 2010.

[31] N. Seifert, M. Bettelini, and S. Rigert. Deliverable D3.2 annexe d: Simulation method-
ology, 2011.

[32] N. Seifert, M. Bettelini, and S. Rigert. Deliverable D3.2: Concrete use case models,
2011.

[33] A. Usov. Deliverable D6.2: User interface requirements for site, 2010.

[34] S. Vraneš, V. Mijović, N. Tomašević, G. Konečni, V. Janev, and L. Kraus. Deliverable

D4.3 Dura– Concepts and Examples • Page 57 of 58

http://www.complexevents.com/?p=361
http://www.complexevents.com/?p=361

Project EMILI FP7-SEC-2009-1

D3.1 annexe a: Specific report for use case I, airport, 2010.

[35] S. Vraneš, M. Stanojević, V. Janev, N. Tomašević, and V. Mijović. Deliverable D6.3
design of the first prototype of the integrated emili-site system, 2011.

[36] J. Widom and S. Ceri, editors. Active Database Systems: Triggers and Rules For Ad-
vanced Database Processing. Morgan Kaufmann, 1996.

D4.3 Dura– Concepts and Examples • Page 58 of 58

	Introduction
	Reactive Emergency Management in a Nutshell
	Events
	Properties of Events
	Complex Event Query Dimensions
	Querying Simple Events
	Deductive Rules for Events
	Hierarchies of Events
	Event Composition
	Temporal (and other) Relationships
	Event Accumulation
	Provenance

	Data Cleansing
	Data Cleansing with Dura
	Advanced Data Cleansing Methods

	States
	States vs. Stateful Objects
	Properties of Stateful Objects
	Querying States and Stateful Objects
	Modifying Stateful Objects
	Querying State Changes
	States for Modularization
	Reasoning on Stateful Objects
	Accumulation of Stateful Objects

	Actions
	Properties of Actions
	Dimensions of Complex Actions
	Atomic Actions
	Reactive Rules (Event-Condition-Action Rules)
	Events Entailed by Actions
	Action Composition
	Temporal Relations
	Complex Action Specification
	Conditional Actions

	Related Work and Conclusion
	Related Work
	Conclusion

	Dura EBNF Grammar

