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Abstract
A (k× l)-birthday repetition Gk×l of a two-prover game G is a game in which the two provers are
sent random sets of questions from G of sizes k and l respectively. These two sets are sampled
independently uniformly among all sets of questions of those particular sizes. We prove the
following birthday repetition theorem: when G satisfies some mild conditions, val(Gk×l) decreases
exponentially in Ω(kl/n) where n is the total number of questions. Our result positively resolves
an open question posted by Aaronson, Impagliazzo and Moshkovitz [Aaronson et al., CCC, 2014].

As an application of our birthday repetition theorem, we obtain new fine-grained inapprox-
imability results for dense CSPs. Specifically, we establish a tight trade-off between running
time and approximation ratio by showing conditional lower bounds, integrality gaps and approx-
imation algorithms; in particular, for any sufficiently large i and for every k ≥ 2, we show the
following:

We exhibit an O(q1/i)-approximation algorithm for dense Max k-CSPs with alphabet size q
via Ok(i)-level of Sherali-Adams relaxation.
Through our birthday repetition theorem, we obtain an integrality gap of q1/i for Ω̃k(i)-level
Lasserre relaxation for fully-dense Max k-CSP.
Assuming that there is a constant ε > 0 such that Max 3SAT cannot be approximated to
within (1−ε) of the optimal in sub-exponential time, our birthday repetition theorem implies
that any algorithm that approximates fully-dense Max k-CSP to within a q1/i factor takes
(nq)Ω̃k(i) time, almost tightly matching our algorithmic result.

As a corollary of our algorithm for dense Max k-CSP, we give a new approximation algorithm for
Densest k-Subhypergraph, a generalization of Densest k-Subgraph to hypergraphs. When
the input hypergraph is O(1)-uniform and the optimal k-subhypergraph has constant density, our
algorithm finds a k-subhypergraph of density Ω(n−1/i) in time nO(i) for any integer i > 0.
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1 Introduction

Polynomial-time reductions between computational problems are among the central tools
in complexity theory. The rich and vast theory of hardness of approximation emerged out
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of the celebrated PCP Theorem [6] and the intricate web of polynomial-time reductions
developed over the past two decades. During this period, an extensive set of reduction
techniques such as parallel repetition and long-codes have been proposed and a variety of
mathematical tools including discrete harmonic analysis, information theory and Gaussian
isoperimetry have been applied towards analyzing these reductions. These developments
have led to an almost complete understanding of the approximability of many fundamental
combinatorial optimization problems like Set Cover and Max 3SAT. Yet, there are a few
central problems such as computing approximate Nash equlibria, Densest k-Subgraph and
Small Set Expansion, that remain out of reach of the web of polynomial-time reductions.

A promising new line of work proposes to understand the complexity of these problems
through the lens of sub-exponential time reductions. Specifically, the idea is to construct a
sub-exponential time reduction from 3SAT to the problem at hand, say, the Approximate
Nash Equilibrium problem. Assuming that 3SAT does not admit sub-exponential time
algorithms (also known as the Exponential Time Hypothesis (ETH) [35]), this would rule
out polynomial time algorithms for the Approximate Nash Equilibrium problem.

At the heart of this line of works, lies the so-called birthday repetition of two-prover games.
To elaborate on this, we begin by formally defining the notion of two-prover games.

I Definition 1. A two-prover game G consists of
A finite set of questions X,Y and corresponding answer sets (aka alphabets) ΣX ,ΣY .
A distribution Q over pairs of questions X × Y .
A verification function P : X × Y × ΣX × ΣY → {0, 1}.

The value of G is the maximum over all strategies φ : X ∪ Y → ΣX ∪ ΣY of the output of P ,
i.e., val(G) = maxφ:X∪Y→ΣX∪ΣY E(x,y)∼Q[P (x, y, φ(x), φ(y))]. We use n and q to denote the
number of variables |X|+ |Y | and the alphabet size |ΣX |+ |ΣY | respectively.

Two prover games earn their name from the following interpretation of the above definition:
The game G is played between a verifier V and two cooperating proversMerlin1 andMerlin2
who have agreed upon a common strategy, but cannot communicate with each other during
the game. The verifier samples two questions (x, y) ∼ Q and sends x to Merlin1 and y to
Merlin2. The provers respond with answers φ(x) and φ(y), which the verifier accepts or
rejects based on the value of the verification function P (x, y, φ(x), φ(y)).

Two-prover games and, more specifically, a special class of two-prover games known
as Label Cover are the starting points for reductions in a large body of hardness of
approximation results. The PCP theorem implies that for some constant ε0, approximating
the value of a two prover game to within an additive ε0 is NP-hard. However, this hardness
result on its own is inadequate to construct reductions to other combinatorial optimization
problems. To this end, this hardness result can be strengthened to imply that it is NP-hard
to approximate the value of two-prover games to any constant factor, using the parallel
repetition theorem.

For an integer k, the k-parallel repetition G⊗k of G can be described as follows. The
question and answer sets in G⊗k consist of k-tuples of questions and answers from G. The
distribution over questions in G⊗k is given by the product distribution Qk. The verifier for
G⊗k accepts the answers if and only if the verifier for G accepts each of the k individual
answers.

Roughly speaking, the parallel repetition theorem asserts that the value of Gk decays
exponentially in k. The theorem forms a key ingredient in obtaining hardness of approximation
results, and have aptly received considerable attention in literature [51, 34, 50, 25, 46, 14].

Birthday repetition, introduced by Aaronson et al. [2], is an alternate transformation on
two-prover games defined as follows.
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I Definition 2. The (k × l)-birthday repetition of a two-prover game G consists of
The set of questions in Gk×l are

(
X
k

)
and

(
Y
l

)
respectively, i.e., each question is a subset

S ⊆ X of size k and subset T ⊆ Y of size l.
The distribution over questions is the uniform product distribution over

(
X
k

)
×
(
Y
l

)
.

The verifier accepts only if, for every (x, y) ∈ S × T such that (x, y) form a valid pair of
questions in G, i.e., (x, y) ∈ supp(Q), the answers to x and y are accepted G.

The basic idea of birthday repetition can be traced back to the work of Aaronson et al. [1]
on quantum multiprover proof systems QMA(k) for 3SAT. Subsequent work by Aaronson
et al. [2] on the classical analogue of QMA(k) formally defined birthday repetition for
two-prover games, and set the stage for applications in hardness of approximation.

Unlike parallel repetition, birthday repetition is only effective for large values of k and
l. In particular, if k, l < o(

√
n), then, for most pairs of S and T , there is no (x, y) ∈ S × T

such that (x, y) belongs to the support of the questions in the original game. However, if
we pick k = l = ω(

√
n), then by the birthday paradox, with high probability the sets S, T

contain an edge (x, y) from the original game G. Hence, for this choice of k and l, the game
played by the provers is seemingly at least as difficult to succeed, as the original game G.
Aaronson et al. [2] confirmed this intuition by proving the following theorem.

I Theorem 3 ([2]). For any two-prover game G such that Q is uniform over its support, if the
bipartite graph induced by (X,Y, supp(Q)) is biregular, then val(Gk×l) ≤ val(G) +O(

√
n
kl ).

On the one hand, birthday repetition is ineffective in that it has to incur a blowup of
2
√
n in the size, to even simulate the original game G. The distinct advantage of birthday

repetition is that the resulting game Gk,l has a distinct structure – in that it is a free game.

I Definition 4. A free game is a two-player game such that Q is uniform over X × Y .

The birthday repetition theorem of [2] immediately implies a hardness of approximation
for the value of free games. Specifically, they show that it is ETH-hard to approximate free
games to some constant ratio in almost quasi-polynomial time. Interestingly, this lower bound
is nearly tight in that free games admit a quasipolynomial time approximation scheme [10, 2].

Following Aaronson et al.’s work, birthday repetition has received numerous applications,
which can be broadly classified in to two main themes. On the one hand, there are problems
such as computing approximate Nash equilibria [16, 8, 54], approximating free games [2],
approximating learning dimensions [43], and approximate symmetric signaling in zero sum
games [53], where the underlying problems admit quasipolynomial-time algorithms [26, 38, 28]
and birthday repetition can be used to show that such a running time is necessary, assuming
ETH. On the other hand, there are computational problems like Densest k-Subgraph [15,
39], injective tensor norms [1, 33, 9], 2-to-4-norms [1, 33, 9] wherein an NP-hardness of
approximation result seems out of reach of current techniques. But the framework of birthday
repetition can be employed to show a quasi-polynomial hardness assuming ETH1.

Unlike the parallel repetition theorem, the birthday repetition theorem of [2] does not
achieve any reduction in the value of the game. It is thus natural to ask whether birthday
repetition can also be used to decrease the value of a game. Aaronson et al. conjectured
that the value of the birthday repetition game indeed deteriorates exponentially in Ω(kl/n),
which is the expected number of edges between S and T in birthday repetition. Our main
contribution is that we resolve the conjecture positively by showing the following theorem.

1 Although the hardness results for injective tensor norms and 2-to-4-norms build over quantum multiprover
proof systems, the basic idea of birthday repetition [1] lies at the heart of these reductions.

ICALP 2017



78:4 A Birthday Repetition Theorem and Complexity of Approximating Dense CSPs

I Theorem 5 (Birthday Repetition Theorem (informal)). Let G = (X,Y,Q,ΣX ,ΣY , P ) be a
two-prover game such that Q is uniform over its support, (X,Y, supp(Q)) is biregular and
|ΣX |, |ΣY | are constant. If val(G) = 1− ε, then val(Gk×l) ≤ 2(1− ε/2)Ω(ε5kl/n).

Note that our result is more general than stated above and can handle irregular graphs and
non-constant alphabet sizes as well (see Theorem 12 and Theorem 13).

By definition, our theorem immediately implies the following inapproximability of free
games.

I Corollary 6. Unless ETH is false, no polynomial time algorithm can approximate the value
of a free game to within a factor of 2Ω̃(log(nq)).

1.1 Dense CSPs
Free games can be viewed as 2-ary constraint satisfaction problems (CSP). From this
perspective, free games are dense, in that there are constraints on a constant fraction of all
pairs of variables. As an application of our birthday repetition theorem, we show almost-tight
lower bounds for dense CSPs. To this end, we begin by defining CSPs and its density.

I Definition 7. A Max k-CSP instance G consists of
A finite set of variables V and a finite alphabet set Σ.
A distribution Q over k-tuple of variables V k.
A predicate P : V k × Σk → [0, 1].

Similar to two-prover games, val(G) is defined as maxφ:V→Σ ES∼Q[P (S, φ|S)] where φ|S is
the restriction of the assignment to S, and we use n to denote the number of variables |V |
and q to denote the alphabet size |Σ| of G. Finally, G is called ∆-dense if ∆ · Q(S) ≤ 1/|V |k
for every S ∈ V k. The 1-dense instances are also said to be fully-dense.

There has been a long line of works on approximating dense CSPs. Arora et al. were
first to devise a polynomial-time approximation scheme for the problem when alphabet size
is constant [5]. Since then, numerous algorithms have been invented for approximating
dense CSPs using variety of techniques such as combinatorial algorithms with exhaustive
sampling [5, 21, 44, 58, 40, 29], subsampling of instances [3, 10], regularity lemmas [30, 20]
and LP/SDP hierarchies [22, 11, 31, 60]. Among the known algorithms, the fastest is
Yaroslavtsev’s [58] that achieves (1 + ε)-approximation in qOk(log q) + (nq)O(1) time2.

Unfortunately, when q is (almost-)polynomial in n, none of the above algorithms run in
polynomial time. CSPs in such regime of parameters have long been studied in hardness of
approximation (e.g. [12, 52, 7, 24, 47, 45]) and have recently received more attention from the
approximation algorithm standpoint, both in the general case [48, 17, 41, 19] and the dense
case [40]. The approximabilities of these two cases are vastly different. In the general case,
approximating Max 2-CSP to within a factor of 2log1−ε(nq) is NP-hard for any constant
ε > 0 [24]. Moreover, the long-standing Sliding Scale Conjecture [12] states that this ratio
can be improved to (nq)ε for some constant ε > 0. On the other hand, aforementioned
algorithms for dense CSPs rule out such hardnesses for the dense case.

While the gap between known approximation algorithms and inapproximability results
in the general case is tiny (2logε(nq) for any constant ε > 0), the story is different for the
dense case, especially when we restrict ourselves to polynomial-time algorithms. Aaronson
et al. only ruled out, assuming ETH, polylog(nq)-approximation for such algorithms [2].

2 [58] states that the algorithm takes qOk(1) + (nq)O(1) time, which is incorrect [59].
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However, for k > 2, no non-trivial polynomial-time algorithm for dense Max k-CSP on
large alphabet is even known. In this paper, we settle down the complexity of approximating
dense Max k-CSP almost completely by answering the following fine-grained question: for
each i ∈ N, what is the best approximation for dense Max k-CSP, achievable in time (nq)i?

Manurangsi and Moshkovitz developed an algorithm for dense Max 2-CSP that, when the
instance has value Ω(1), obtains O(q1/i)-approximation in (nq)O(i) time [40]. Unfortunately,
the algorithm does not work for dense Max k-CSP when k > 2. Using a conditioning-
based rounding technique developed in [11, 49, 60], we show that the Sherali-Adams (SA)
relaxation [56] exhibits a similar approximation even when k > 2, as stated below.

I Theorem 8 (Informal). For every i > 0 and any dense Max k-CSP instance of value 1−ε,
an Ok,ε(i/∆)-level of the SA relaxation yields an O(q1/i)-approximation for the instance.

Using our birthday repetition theorem, we prove that the above tradeoff between run-time
and approximation ratio cannot be improved even with the stronger Lasserre hierarchy [37].
Specifically, by applying the birthday repetition theorem with k, l = Ω(n log i/i) on an
Ω(n)-level Lasserre integrality gap for Max 3XOR [55], we show the following.

I Lemma 9 (Informal). For every sufficiently large i > 0, there is a fully-dense Max k-CSP
instance of value 1/(nq)1/i such that the value of Ω̃k(i)-level Lasserre relaxation is one.

Instead, if we assume that there exists a constant ε > 0 so that Max 3SAT cannot
be approximated to 1 − ε in sub-exponential time (which we call the Exponential Time
Hypothesis for Approximating 3SAT (ETHA)3), we can similarly arrive at the following
hardness result.

I Lemma 10 (Informal). Unless ETHA is false, for every sufficiently large i > 0, no
(nq)Õk(i)-time algorithm approximates fully-dense Max k-CSP to within a factor of (nq)1/i.

Thus, assuming ETHA, our results resolve complexity of approximating dense CSPs up
to a factor of polylog i and a dependency on k in the exponent of the running time.

1.2 Densest k-Subhypergraph
As a by-product of our algorithm for dense Max k-CSP, we give an approximation algorithm
for the following Densest k-Subhypergraph problem: given a hypergraph (V,E), find
S ⊆ V of k vertices that maximizes the number of edges contained in S.

When the input hypergraph is simply a graph, the problem becomes Densest k-
Subgraph, which has been extensively studied dating back to the early ’90s [36, 27, 28, 57, 13].
On the other hand, Densest k-Subhypergraph was first studied in 2006, when Hajiaghayi
et al. [32] proved that, if 3SAT /∈ DTIME(2n3/4+ε) for some ε > 0, then no polynomial-time
algorithm approximates the problem to within a factor of 2logδ n for some δ > 0. Later, Apple-
baum [4] showed, under a cryptographic assumption, that, for sufficiently large d, Densest
k-Subhypergraph on d-uniform hypergraph is hard to approximate to a factor of nε for
some ε > 0. More recently, Chlamtác et al. [18] provided the first non-trivial approximation
algorithm for the problem; their algorithm works only on 3-uniform hypergraph and achieves
O(n4(4−

√
3)/13+ε)-approximation for any constant ε > 0 in polynomial time.

3 ETHA is also introduced independently as gap-ETH by Dinur [23] who uses it to provide a supporting
evidence to the Sliding Scale Conjecture.
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Thanks to Charikar et al.’s [17] reduction from Densest k-Subgraph to Max 2-CSP,
which can be adapted to reduce Densest k-Subhypergraph on d-uniform hypergraph to
Max d-CSP, Theorem 8 implies the following algorithm for Densest k-Subhypergraph.

I Corollary 11 (Informal). There is a randomized algorithm that, given a d-uniform hypergraph
on n vertices whose densest k-subhypergraph is ∆-dense and an integer i > 0, runs in nOd(i/∆)

time and outputs a k-subhypergraph of density Ωk(∆/n1/i) with high probability.

Here the density of a d-uniform hypergraph is defined as d!|E|/|V |d. Note that the density
condition required is on the optimum not the input. Moreover, when ∆ and d are constant,
the algorithm provides an O(n1/i) approximation in nO(i) time for every i > 0. When d = 2,
this matches the previously known algorithms for Densest k-Subgraph [28, 57, 40].

Organization of the Paper

In Section 2, we provide preliminaries and notations used in the paper. Then, in Section 3, we
outline the proofs of our main theorems; the full proofs are deferred to the full version of this
work [42]. Next, the algorithm for dense CSPs is described in Section 4. Finally, we conclude
by proposing open questions in Section 5. Note that the lower bounds for dense CSPs and
the algorithm for Densest k-Subhypergraph are also deferred to the full version.

2 Preliminaries and Notations

For n ∈ N, we use [n] to denote {1, . . . , n}. For two sets X and S, define XS to be the set
of tuples (xs)s∈S . We sometimes view (xs)s∈S as a function from S to X. For a set S and
n ∈ N,

(
S
n

)
denotes the collection of subsets of S of size n. Moreover, let

(
S
0
)

= {∅} and(
S
[n]
)

=
(
S
0
)
∪ · · · ∪

(
S
n

)
. For any bipartite graph (A,B,E) and S ⊆ A, T ⊆ B, let E(S, T )

denote the set of all edges with one endpoint in S and the other in T .
Let X be a probability distribution over a finite probability space Θ. We use x ∼ X to

denote a random variable x sampled from X . Sometimes we abuse the notation and write
Θ in place of the uniform distribution over Θ. For each θ ∈ Θ, we denote Prx∼X [x = θ] by
X (θ). The support of X or supp(X ) is the set of all θ ∈ Θ such that X (θ) 6= 0. For any event
E, we use 1[E] to denote the indicator variable for the event.

The informational divergence between distributions X and Y is defined as DKL(X‖Y) =∑
θ∈supp(X ) X (θ) log(X (θ)/Y(θ)). The total correlation between random variables x1, . . . , xn

is C(x1; . . . ;xn) = DKL(X1,...,n‖X1 × · · · × Xn) where X1,...,n is the joint distribution of
x1, . . . , xn and Xi is the marginal distribution of xi. Finally, the conditional total correlation
is defined as C(x1; . . . ;xn−1|xn) = Eθ∼supp(Xn)[C(x1; . . . ;xn−1)|xn = θ].

For Max k-CSP, we use N to denote the instance size (nq)k. For convenience, we
write the predicates as PS(φ|S) instead of P (S, φ|S). Moreover, for an assignment φ of
G = (V,W, {PS}), its value is valG(φ) = ES∼W [PS(φ|S)]. When G is clear from the
context, we simply write val(φ). Note that val(G) = maxφ valG(φ). For any S, T ⊆ V ,
φS ∈ ΣS and φT ∈ ΣT are said to be consistent if they agree on S ∩ T and inconsistent
otherwise. For consistent φS , φT , we define φS ◦ φT ∈ ΣS∪T by φS ◦ φT (x) = φS(x) if
x ∈ S and φS ◦ φT (x) = φT (x) otherwise. Similar notations are also used for two-prover
games. Finally, recall that a game (X,Y,Q,ΣX ,ΣY , {P(x,y)}) is a projection game if, for
each (x, y) ∈ supp(Q), there is f : ΣX → ΣY such that, for all σx ∈ ΣX , σy ∈ ΣY ,
P(x,y)(σx, σy) = 1[f(σx) = σy].
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3 Birthday Repetition Theorem: Proof Overview

In this section, we outline the proofs of our birthday repetition theorems. We first state our
main theorems formally, starting with the birthday repetition theorem for general games.

I Theorem 12. There exists a constant α > 0 such that the following is true. Let G =
(X,Y,E,ΣX ,ΣY , {P(x,y)}) be any two-prover game of value 1− ε. Let dmax be the maximum
degree of a vertex in (X,Y,E) and c = log |ΣX ||ΣY |. For all 0 ≤ k ≤ |X| and 0 ≤ l ≤ |Y |,

val(Gk×l) ≤ 2(1− ε/2)
αε5kl|E|

dmax|X||Y |c2

For projection games, we can improve the dependency on ε and avoid the dependency on
c:

I Theorem 13. There exists a constant α > 0 such that the following is true. Let G =
(X,Y,E,ΣX ,ΣY , {P(x,y)}) be any projection game of value 1− ε. Let dmax be the maximum
degree of a vertex in (X,Y,E). For all 0 ≤ k ≤ |X| and 0 ≤ l ≤ |Y |, we have

val(Gk×l) ≤ 2(1− ε/2)
αε3kl|E|

dmax|X||Y |

In short, we will to show that Gk×l has small value by “embedding” an Ω
(

kl|E|
dmax|X||Y |

)
-

parallel repetition game, which has low value by the parallel repetition theorem, into it.
For convenience, let s denote kl|E|

|X||Y | , the expected number of edges in E(S, T ) when S
and T are independently uniformly sampled from

(
X
k

)
and

(
Y
l

)
respectively. Let s1 and s2 be

s(1 + δ) and s(1− δ) respectively for some δ ∈ [0, 1/2] that will be chosen later. We will use
r = βs/dmax rounds of parallel repetition where β ∈ [0, δ/40] will be specified later. Lastly,
let Er = {((x1, . . . , xr), (y1, . . . , yr)) | (x1, y1), . . . , (xr, yr) ∈ E}.
I Remark. δ and β will be chosen based on ε, c and whether G is a projection game. When
ε and c are constant, both δ and β are small constants. This is the most representative case
and is good to keep in mind when reading through the proof.

Our overall strategy is to reduce G⊗r to Gk×l. Since val(G⊗r) is exponentially small
in r = Ω

(
kl|E|

dmax|X||Y |

)
due to the parallel repetition theorem, such reduction would give a

similar upper bound on val(Gk×l). Unfortunately, we do not know how to do this in one
step so we will have to go through a sequence of reductions. The sequence of games that we
reduce to are G⊗rset ,Gk×lem ,Gk×lem,[s1,s2] and G

k×l
[s1,s2] respectively. The game G⊗rset share the same

questions, alphabet sets and predicates with G⊗r while Gk×lem ,Gk×lem,[s1,s2] and G
k×l
[s1,s2] share

those with Gk×l. The distribution of each game is defined as follows.
The distribution of G⊗rset is uniform over the set Erset of all ((x1, . . . , xr), (y1, . . . , yr)) ∈ Er
such that x1, . . . , xr, y1, . . . , yr are all distinct. Note that this distribution is simply G⊗r’s
distribution conditioned on x1, . . . , xr, y1, . . . , yr being all distinct.
We will try to make the distribution Qk×lem of Gk×lem reflect an embedding of the game
G⊗rset . We define Qk×lem based on the following sampling process for (S, T ) ∼ Qk×lem . First,
sample ((x1, . . . , xr), (y1, . . . , yr)) uniformly at random from Erset. Then, sample S̃ and
T̃ independently uniformly from

(
X−{x1,...,xr}

k−r
)
and

(
Y−{y1,...,yr}

l−r
)
respectively. Finally,

set S = {x1, . . . , xr} ∪ S̃ and T = {y1, . . . , yr} ∪ T̃ .
The distribution Qk×lem,[s1,s2] of Gk×lem,[s1,s2] is the distribution Qk×lem conditioned on the
number of edges between the two sets being in the range [s1, s2]. In other words,
Qk×lem,[s1,s2](S, T ) = Pr(S′,T ′)∼Qk×lem

[S = S′ ∧ T = T ′ | s1 ≤ |E(S′, T ′)| ≤ s2].

ICALP 2017
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Finally, the distribution of Gk×l[s1,s2] is uniform over the set Ek×l[s1,s2] of all (S, T ) such that
|E(S, T )| ∈ [s1, s2]. In other words, we ignore weights in Qk×lem,[s1,s2] and use the uniform
distribution over supp(Qk×lem,[s1,s2]).

Before we present the overview of the proofs, let us list simple bounds that will be useful
in understanding the intuitions. Their proofs can be found in the full version of this work [42].

I Lemma 14. Let (X,Y,E) be any bipartite graph with maximum degree dmax. For any
non-negative integers k ≤ |X| and l ≤ |Y |, let s = kl|E|

|X||Y | . For any 0 ≤ γ < 1/2, we have

Pr
S∼(Xk),T∼(Yl )

[|E(S, T )| /∈ [(1− γ)s, (1 + γ)s]] ≤ 4 exp
(
− γ2s

54dmax

)
.

I Lemma 15. Let G and G′ be two games on the same questions, alphabets, and predicates
but on different distributions Q and Q′ respectively. If, for some α, Q(x, y) ≤ α · Q′(x, y)
for all x ∈ X, y ∈ Y , then val(G) ≤ α · val(G′). In particular, when Q and Q′ are uniform
distributions on some E ⊆ E′, val(G) ≤ |E

′|
|E| · val(G

′).

I Lemma 16. Let G = (X,Y,Q,ΣX ,ΣY , {Px,y}(x,y)∈supp(Q)) be any two player game and
let A be any event occurring with probability 1− p > 0 (w.r.t. Q). Let Q′ be the conditional
probability Q given A, i.e., Q′(x̃, ỹ) = Pr(x,y)∼Q[x = x̃ ∧ y = ỹ | A]. For the game
G′ = (X,Y,Q′,ΣX ,ΣY , {Px,y}(x,y)∈supp(Q′)), we have val(G)− p ≤ val(G′) ≤ val(G) + 2p.

We will next give intuitions on why val(G⊗r) ≈ val(G⊗rset ) ≈ val(Gk×lem ) ≈ val(Gk×lem,[s1,s2]) ≈
val(Gk×l[s1,s2]) ≈ val(G

k×l) where each ≈ hides some multiplicative or additive losses in each
step. With the right choice of δ and β, we can ensure that each loss is significantly smaller
than val(G⊗r), and, thus, we will be able to bound val(Gk×l). Below, we state these losses
more precisely and summarize the overview of each proof.

I Lemma 17. val(G⊗rset ) ≤
(

1
1−2β

)r
· val(G⊗r)

Proof Idea. From Lemma 15, it suffices to lower bound the ratio |Erset|/|Er|. This is the
probability that r random edges from E do not share any endpoints, which is easy to
bound. J

I Lemma 18. val(Gk×lem ) ≤ val(G⊗rset )

Proof Idea. Based on how Qk×lem is defined, it induces a canonical map from each strategy
in Gk×lem to a “mixed strategy” in G⊗rset . We can show that each strategy φ in Gk×lem has value
no more than the value of the mixed strategy in G⊗rset that φ maps to, which yields the
lemma. J

I Lemma 19. val(Gk×lem,[s1,s2]) ≤ val(G
k×l
em ) + 8 exp

(
− δ2r

432β

)
Proof Idea. Qk×lem,[s1,s2] is Q

k×l
em conditioned on the event E(S, T ) ∈ [s1, s2]. From Lemma 16,

it suffices to bound the probability of such event. From the definition of Qk×lem , S and T

can be sampled by first sampling x1, . . . , xr, y1, . . . , yr according to Er and then sampling
the rest of S and T from X − {x1, . . . , xr} and Y − {y1, . . . , yr} respectively. When r is
small enough, we can show, with the help of Lemma 14, that, for any x1, . . . , xr, y1, . . . , yr,
|E(S, T )| concentrates around s. This gives us the desired bound. J

I Lemma 20. val(Gk×l[s1,s2]) ≤
(

1+δ
1−δ−2β

)2r
· val(Gk×lem,[s1,s2])
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Proof Idea. We will show that the two distributions are (multiplicatively) close and evoke
Lemma 15 to arrive at the bound. Since the distribution of Gk×l[s1,s2] is uniform, we only need
to show that the maximum and the minimum (non-zero) probabilities in Qk×lem,[s1,s2] are close.

Fortunately, we know that Qk×lem,[s1,s2] is Q
k×l
em conditioned on an event. This means that,

when Qk×lem,[s1,s2](S, T ) is not zero, it is proportional to Qk×lem (S, T ). The latter, in turn, is
proportional to the number of edges (x1, y1), . . . , (xr, yr) ∈ Er such that x1, . . . , xr, y1, . . . , yr
are all distinct and x1, . . . , xr ∈ S and y1, . . . , yr ∈ T . In other words, we want to upper
bound and lower bound the number of r edges in E(S, T ) with distinct endpoints. This
is feasible since we know that |E(S, T )| ∈ [s1, s2] and r is so small that with a reasonable
probability r edges picked will not share any endpoint with each other. J

I Lemma 21. val(Gk×l) ≤ val(Gk×l[s1,s2]) + 4 exp
(
− δ2r

54β

)
Proof Idea. By realising that Gk×l[s1,s2]’s distribution is simply Gk×l’s distribution conditioned
on |E(S, T )| ∈ [s1, s2], this follows immediately from Lemma 14 and Lemma 16. J

We defer proofs of the above lemmas to the full version [42]. Let us now use them to
prove the birthday repetition theorems. To avoid repeating arguments for general games and
projection games, we prove the following lemma. Its proof, mostly calculations, is deferred
to the full version.

I Lemma 22. Let G be any game of value 1− ε and k, l, β, δ, r be as above. If val(G⊗r) ≤
(1−ε/2)R for some R such that 200δr

ε ≤ R ≤ min{r, δ2r
1000βε}, then val(G

k×l) ≤ 2(1−ε/2)R/10.

The final ingredient for our main proof is the parallel repetition theorem. For general
games, we use Holenstein’s version of the theorem [34], which is stated below.

I Theorem 23 ([34]). There is a constant C > 0 such that, for every k > 0 and any two-
prover game G = (X,Y,Q,ΣX ,ΣY , {P(x,y)}) of value 1−ε, val(G⊗k) ≤ (1−ε/2)Cε2k/ log(|ΣX ||ΣY |).

Equipped with Lemma 22 and the parallel repetition theorem, we can now prove our
birthday repetition theorems just by selecting the right δ and β.

Proof of Theorem 12. Pick δ = ε3C
103c and β = ε3C

1010c where C is the constant from The-
orem 23. From Theorem 23, we have val(G⊗r) ≤ (1 − ε/2)Cε2r/c. Let R = Cε2r/c. We
can see that R, δ, β satisfy the conditions in Lemma 22. Hence, we can conclude that

val(Gk×l) ≤ 2(1− ε/2)R/10 = 2(1− ε/2)
(C2/1011)

(
ε5kl|E|

c2|X||Y |dmax

)
as desired. J

In the case of projection games, we can improve dependency on ε and get rid of dependency
on c thanks to the stronger bound in Rao’s parallel repetition theorem for projection
games [50].

I Theorem 24 ([50]). There exists a constant C > 0 such that, for any projection game G
of value 1− ε and for every k > 0, we have val(G⊗k) ≤ (1− ε/2)Cεk.

Proof of Theorem 13. Pick δ = ε2C
103 and β = ε2C

1010 where C is the constant from Theorem 24.
From the theorem, we have val(G⊗r) ≤ (1− ε/2)Cεr. Let R = Cεr. By evoking Lemma 22,

we have val(Gk×l) ≤ 2(1− ε/2)R/10 = 2(1− ε/2)
(C2/1011)

(
ε3kl|E|

|X||Y |dmax

)
as desired. J
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4 Improved Approximation Algorithm for Dense CSPs

To describe our algorithm, we first explain ingredients central in conditioning-based algorithms:
a LP/SDP hierarchy, a conditioning operator, and an independent rounding procedure.

Sherali-Adams (SA) relaxation of Max k-CSP. An r-level SA solution µ of G = (V,W, {PS})
is a collection {XS} of distributions XS on ΣS for every S ∈

(
V
[r]
)
such that, for every

S, T ∈
(
V
[r]
)
, the marginal probability of XS and XT on ΣS∩T agrees. For r ≥ k, the

value of µ is valSA(µ) = ES∼W [ExS∼µ[PS(xS)]] where ExS∼µ[PS(xS)] is a shorthand for
EφS∼X{i1,...,ik} [PS(φS)] when S = (xi1 , . . . , xik). The optimum of the r-level SA relaxation
of G, optrSA(G), is the maximum value among all the r-level SA solutions. Clearly, finding
optrSA(G) can be formulated as a LP and can be computed in (nq)O(r) time.

Conditioning SA Solution. Let µ = {XS} be any r-level SA solution. For any T ⊆ V and
φT ∈ ΣT such that XT (φT ) > 0, µ conditioned on φT is µ|φT = {X̃S}|S|≤r−|T | where

X̃S(φS) =
{
XS∪T (φS ◦ φT )/XT (φT ) if φS is consistent with φT ,
0 otherwise.

It is not hard to see that µ|φT is an (r − |T |)-level SA solution.

Independent Rounding. A natural way to round a SA solution {XS} is to independently
assign each variable x based on Xx. This gives a solution with expected value at least
ES=(xi1 ,...,xik )∼W

[
EφS∼Xi1×···×Xik [PS(φS)]

]
and can be easily derandomized.

Without going into too much detail, conditioning-based algorithms typically proceed as
follows. First, solve a LP/SDP relaxation of the problem. As long as the solution has large
“total correlation”, try conditioning it on an assignment to a random variable. Once the
solution has small total correlation, use independent rounding on the solution to get the
desired assignment. The intuition here is that, if the solution has large total correlation,
conditioning on one variable substantially reduces the total correlation. Hence, after a certain
number of rounds of conditioning, the total correlation becomes small. At this point, the
solution is quite independent and independent rounding gives a good approximation.

Our algorithm will also follow this framework. In fact, it remains largely unchanged
from [60] except that we use a stronger relaxation to avoid arguing about values of conditioned
solutions. However, our main contribution lies in the analysis: we will show that independent
rounding does well even when the total correlation is large (super-constant). This is in
contrast to the previously known conditioning-based algorithms [11, 49, 60], all of which
require their measures of correlation to be small constants to get any meaningful result.

The new relaxation, which we call the r-level SA with Conditioning (SAC), is defined
below.

maximize λ
subject to {XS}|S|≤r is a valid r-level SA solution

E
S∼W

[ E
φS∼(µ|φT )

[PS(φS)]] ≥ λ ∀T, φT s.t. |T | ≤ r − k,XT (φT ) > 0.

If λ is a constant, the program can be easily written as a LP. Thus, the relaxation can be
solved to within arbitrarily small error in (nq)O(r) time by binary search on λ.
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Algorithm 1 Approximation Algorithm for Dense CSPs
Input: a ∆-dense Max k-CSP instance G, an integer i
Output: An assignment φ : V → Σ
r ← k, λ← 0
while (r − k)λ < k2i/∆ and r < n do

r ← r + 1
µ, λ← solve r-level of SAC relaxation for G

for T ∈
(

V
[r−k]

)
, φT ∈ ΣT do

φ← independent rounding of µ|φT
return φ from the previous step with maximum value

Figure 1 Approximation Algorithm for Dense CSPs. The difference between this and the above
summary is that we iteratively increase the number of levels r. This is because the number of levels
depends on the value of the solution (see Lemma 28). Specifically, we need r ≥ k2i/(∆λ) + k.

Roughly speaking, our algorithm first solves an O(k
2i
∆ + k)-level SAC relaxation for the

instance. We then try every possible conditioning (i.e., every assignment to T ⊆ V of size
≤ k2i/∆). For each conditioned solution, we use independent rounding to arrive at an
assignment. Finally, output the best such assignment. The pseudo-code for the full algorithm
is shown in Figure 1. This algorithm yields the following approximation for the problem.

I Theorem 25 (Theorem 8, Restated). On any ∆-dense Max k-CSP instance of value 1− δ,
Algorithm 1 outputs an assignment of value at least (1− δ)δ

δ
1−δ /q1/i in time NO

(
ki

(1−δ)∆

)
.

We spend the rest of the section sketching the proof of Theorem 25. First, we define
and state a bound on the total correlation of conditioned solutions in Section 4.1. Then, in
Subsection 4.2, we state our main contribution of this section, i.e., that even when the total
correlation is super-constant, independent rouding still yields non-trivial approximation.

4.1 Total Correlation of Conditioned Sherali-Adams Solution
For a k-level SA solution µ = {XS} and a tuple S = (xi1 , . . . , xij ) ∈ V j where j ≤ k, the
total correlation of S is Cµ(xS) = C(σi1 ; . . . ;σij ) where σi1 , . . . , σij are jointly sampled from
X{xi1 ,...,xij }. The total correlation of µ is then defined as C(µ) = ES∼W [Cµ(xS)]. µ is said
to be κ-independent if C(µ) ≤ κ. Yoshida and Zhou [60] show that, for any l > 0 and any
(l+ k)-level SA solution µ, there exists an assignment φT ∈ ΣT to a subset T of size ≤ l such
that the total correlation of (µ|φT ) is at most 3k log q/(l∆). Here we can improve this bound
as stated below. Since the proof is similar to that of [60], we defer it to the full version of
this work [42].

I Lemma 26. Let µ be a r-level SA solution of a ∆-dense Max k-CSP instance (V,W, {PS}).
Then, for any 0 < l ≤ r − k, there is t ≤ l such that ET∼V t,φT∼ΣT [C(µ|φT )] ≤ k2 log q

l∆ .

4.2 New Bound on Rounding κ-independent Solution
For the known conditioning-based algorithms, once the solution is fairly independent, it is
easy to show that independent rounding gives a good solution. Specifically, [49] and [60]
conclude this step using the Pinsker’s inequality, which states that, for any distributions X
and Y, DKL(X‖Y) ≥ (2 log 2)‖X − Y‖21. Roughly speaking, X is the distribution in the LP
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solution whereas Y is the distribution from independent rounding. Hence, once DKL(X‖Y) is
at most a small constant ε, it follows that, for any predicate f , |Ex∼X [f(x)]−Ey∼Y [f(y)]| ≤√
ε/(2 log 2). Thus, if Ex∼X [f(x)], the value of the LP solution, is large, then Ey∼Y [f(y)],

the expected value of a solution from independent rouding, is also large.
While this works for small ε, it completely fails when ε is larger than a certain constant.

In this regard, we prove the following lemma, which gives a non-trivial bound even for large
ε. For convenience, 00 is defined to be 1 and (δδe−κ)

1
1−δ (1− δ) is defined to be 0 when δ = 1.

I Lemma 27. For any two probability distributions X ,Y over Θ such that DKL(X‖Y) ≤ κ
and any f : Θ→ [0, 1], if Ex∼X [f(x)] = 1− δ, then Ey∼Y [f(y)] ≥

(
δδe−κ

) 1
1−δ (1− δ).

Lemma 27 can then be used to prove a new lower bound for the value of the output from
independent rounding on a κ-independent k-level SA solution as stated below.

I Lemma 28. If {XS} is a κ-independent k-level SA solution of value 1−δ for a Max k-CSP
instance, then independent rounding gives an assignment of value at least (δδe−κ)

1
1−δ (1− δ).

Theorem 25 can now be proved by combining Lemma 26 and 28. Due to space constraint,
we omit the proofs of Lemma 27, Lemma 28 and Theorem 25 from this extended abstract.

5 Conclusion and Open Problems

While we settle down the approximability of dense Max k-CSP up to a k polylog(ki) factor
in the exponent, our work raises many interesting questions such as the two listed below:

Can Lemma 27 be used to prove new approximation guarantees for other problems?
Lemma 27 is a generic bound relating expectations of a function on two distributions
based on their informational divergence. Thus, it may help yield new approximation
guarantees for other correlation-based algorithms.
What is the right dependency on ε and c in the birthday repetition theorem? It is likely
that the dependency of ε and c in our birthday repetition is not tight. In particular,
parallel repetition for general games only has 1/c factor in the exponent whereas our
theorem has 1/c2; would it be possible to reduce the dependency to 1/c in birthday
repetition? Similar question also applies to ε.
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