1,602 research outputs found

    Neural Correlates of Auditory Perceptual Awareness and Release from Informational Masking Recorded Directly from Human Cortex: A Case Study.

    Get PDF
    In complex acoustic environments, even salient supra-threshold sounds sometimes go unperceived, a phenomenon known as informational masking. The neural basis of informational masking (and its release) has not been well-characterized, particularly outside auditory cortex. We combined electrocorticography in a neurosurgical patient undergoing invasive epilepsy monitoring with trial-by-trial perceptual reports of isochronous target-tone streams embedded in random multi-tone maskers. Awareness of such masker-embedded target streams was associated with a focal negativity between 100 and 200 ms and high-gamma activity (HGA) between 50 and 250 ms (both in auditory cortex on the posterolateral superior temporal gyrus) as well as a broad P3b-like potential (between ~300 and 600 ms) with generators in ventrolateral frontal and lateral temporal cortex. Unperceived target tones elicited drastically reduced versions of such responses, if at all. While it remains unclear whether these responses reflect conscious perception, itself, as opposed to pre- or post-perceptual processing, the results suggest that conscious perception of target sounds in complex listening environments may engage diverse neural mechanisms in distributed brain areas

    Novel methods to evaluate blindsight and develop rehabilitation strategies for patients with cortical blindness

    Full text link
    20 à 57 % des victimes d'un accident vasculaire cérébral (AVC) sont diagnostiqués aves des déficits visuels qui réduisent considérablement leur qualité de vie. Parmi les cas extrêmes de déficits visuels, nous retrouvons les cécités corticales (CC) qui se manifestent lorsque la région visuelle primaire (V1) est atteinte. Jusqu'à présent, il n'existe aucune approche permettant d'induire la restauration visuelle des fonctions et, dans la plupart des cas, la plasticité est insuffisante pour permettre une récupération spontanée. Par conséquent, alors que la perte de la vue est considérée comme permanente, des fonctions inconscientes mais importantes, connues sous le nom de vision aveugle (blindsight), pourraient être utiles pour les stratégies de réhabilitation visuelle, ce qui suscite un vif intérêt dans le domaine des neurosciences cognitives. La vision aveugle est un phénomène rare qui dépeint une dissociation entre la performance et la conscience, principalement étudiée dans des études de cas. Dans le premier chapitre de cette thèse, nous avons abordé plusieurs questions concernant notre compréhension de la vision aveugle. Comme nous le soutenons, une telle compréhension pourrait avoir une influence significative sur la réhabilitation clinique des patients souffrant de CC. Par conséquent, nous proposons une stratégie unique pour la réhabilitation visuelle qui utilise les principes du jeu vidéo pour cibler et potentialiser les mécanismes neuronaux dans le cadre de l'espace de travail neuronal global, qui est expliqué théoriquement dans l'étude 1 et décrit méthodologiquement dans l'étude 5. En d'autres termes, nous proposons que les études de cas, en conjonction avec des critères méthodologiques améliorés, puissent identifier les substrats neuronaux qui soutiennent la vision aveugle et inconsciente. Ainsi, le travail de cette thèse a fourni trois expériences empiriques (études 2, 3 et 4) en utilisant de nouveaux standards dans l'analyse électrophysiologique qui décrivent les cas de patients SJ présentant une cécité pour les scènes complexes naturelles affectives et ML présentant une cécité pour les stimuli de mouvement. Dans les études 2 et 3, nous avons donc sondé les substrats neuronaux sous-corticaux et corticaux soutenant la cécité affective de SJ en utilisant la MEG et nous avons comparé ces corrélats à sa perception consciente. L’étude 4 nous a permis de caractériser les substrats de la détection automatique des changements en l'absence de conscience visuelle, mesurée par la négativité de discordance (en anglais visual mismatch negativity : vMMN) chez ML et dans un groupe neurotypique. Nous concluons en proposant la vMMN comme biomarqueur neuronal du traitement inconscient dans la vision normale et altérée indépendante des évaluations comportementales. Grâce à ces procédures, nous avons pu aborder certains débats ouverts dans la littérature sur la vision aveugle et sonder l'existence de voies neurales secondaires soutenant le comportement inconscient. En conclusion, cette thèse propose de combiner les perspectives empiriques et cliniques en utilisant des avancées méthodologiques et de nouvelles méthodes pour comprendre et cibler les substrats neurophysiologiques sous-jacents à la vision aveugle. Il est important de noter que le cadre offert par cette thèse de doctorat pourrait aider les études futures à construire des outils thérapeutiques ciblés efficaces et des stratégies de réhabilitation multimodale.20 to 57% of victims of a cerebrovascular accident (CVA) develop visual deficits that considerably reduce their quality of life. Among the extreme cases of visual deficits, we find cortical blindness (CC) which manifests when the primary visual region (V1) is affected. Until now, there is no approach that induces restoration of visual function and in most cases, plasticity is insufficient to allow spontaneous recovery. Therefore, while sight loss is considered permanent, unconscious yet important functions, known as blindsight, could be of use for visual rehabilitation strategies raising strong interest in cognitive neurosciences. Blindsight is a rare phenomenon that portrays a dissociation between performance and consciousness mainly investigated in case reports. In the first chapter of this thesis, we’ve addressed multiple issues about our comprehension of blindsight and conscious perception. As we argue, such understanding might have a significant influence on clinical rehabilitation patients suffering from CB. Therefore, we propose a unique strategy for visual rehabilitation that uses video game principles to target and potentiate neural mechanisms within the global neuronal workspace framework, which is theoretically explained in study 1 and methodologically described in study 5. In other words, we propose that case reports, in conjunction with improved methodological criteria, might identify the neural substrates that support blindsight and unconscious processing. Thus, the work in this Ph.D. work provided three empirical experiments (studies 2, 3, and 4) that used new standards in electrophysiological analyses as they describe the cases of patients SJ presenting blindsight for affective natural complex scenes and ML presenting blindsight for motion stimuli. In studies 2 and 3, we probed the subcortical and cortical neural substrates supporting SJ’s affective blindsight using MEG as we compared these unconscious correlates to his conscious perception. Study 4 characterizes the substrates of automatic detection of changes in the absence of visual awareness as measured by the visual mismatch negativity (vMMN) in ML and a neurotypical group. We conclude by proposing the vMMN as a neural biomarker of unconscious processing in normal and altered vision independent of behavioral assessments. As a result of these procedures, we were able to address certain open debates in the blindsight literature and probe the existence of secondary neural pathways supporting unconscious behavior. In conclusion, this thesis proposes to combine empirical and clinical perspectives by using methodological advances and novel methods to understand and target the neurophysiological substrates underlying blindsight. Importantly, the framework offered by this doctoral dissertation might help future studies build efficient targeted therapeutic tools and multimodal rehabilitation training

    Isolating the proper neural correlates of visual awareness from its neural consequences

    Get PDF
    One of the major challenges in the neuroscience of consciousness is to disclose the timing and neural mechanisms underlying visual awareness, the subjective experience of seeing. Electroencephalography (EEG) studies investigating the time course of consciousness-related neural processes have found two potential correlates of visual awareness: the N2 and the P3 ERP components. However, recent works have suggested that only N2 correlates to visual awareness, whereas later neural activity expressed by the P3 component reflects post-perceptual processes related to subjects\u2019 report or to accumulation of sensory evidence leading to decision-making. Building upon this observation, the objective of this study was to provide further evidence that the P3 component reflects a post-perceptual process. To this end, we designed two EEG experiments in which we directly manipulated decision making processes and visual awareness while keeping constant the physical property of visual stimuli. This experimental manipulation allowed us to identify the possible influences of post-perceptual processing over the time course of neural responses and determine the temporal window at which such influence occurs. In Experiment 1, we manipulated participant\u2019s decision criterion by inducing, respectively, a liberal and a conservative decision bias in two different experimental sessions. The aim of this first Experiment was to determine whether our manipulation of the decision processes would produce a modulation of P3 ERP component. Experiment 2 was identical to Experiment 1 except that participants were not requested to adjust their decision criterion (own criterion session). The aim of this experiment was to examine whether in a condition in which there was no manipulation of post-perceptual processes, N2 and P3 ERP component would distribute differently. Electrophysiological and Behavioral results of Experiment 2 were then compared with those of Experiment 1. If the amplitude of the P3 reflects post-perceptual processes related to decision making processes, one would expect to find some differences in the topography or in the time-course of the P3 between the condition in which a decision criterion was imposed (Experiment 1) and the condition in which there was not a decision bias induced (Experiment 2). ERP results of Experiment 1 revealed that the amplitude of the N2 and the P3 components were enhanced for those trials were subjects reported to have seen the stimulus as compared to unaware trials. Importantly, the amplitude of the P3 was modulated by the decision criterion: it was enhanced when participants adopted the liberal criterion compared to the conservative criterion, suggesting that P3 reflects brain processes related to decision making that occurs after that awareness has emerged. ERP data of Experiment 2 confirmed that aware responses were associated with enhanced N2 and P3 amplitude than unaware responses. Interestingly, the decision criterion manipulation had an effect on P3 component revealing that the own and the liberal criteria were associated with an increased positivity over central areas if compared to the conservative criterion. In addition, we found that the amplitude of the N2 was enhanced for the own session if compared to conservative and liberal sessions. Overall these results suggest that when sensory information was relevant for the task (own session) a bigger N2 was observed. On the contrary, P3 amplitude was sensitive to the manipulation of the decision criterion, suggesting a critical role of neural activity expressed by the P3 component in decision making processes. These findings support the hypothesis that P3 might reflect post-perceptual processes that occur after that awareness has emerged while the N2 component reflects a proper correlate of visual awareness

    Good vibrations, bad vibrations: Oscillatory brain activity in the attentional blink

    Get PDF
    The attentional blink (AB) is a deficit in reporting the second (T2) of two targets (T1, T2) when presented in close temporal succession and within a stream of distractor stimuli. The AB has received a great deal of attention in the past two decades because it allows to study the mechanisms that influence the rate and depth of information processing in various setups and therefore provides an elegant way to study correlates of conscious perception in supra-threshold stimuli. Recently evidence has accumulated suggesting that oscillatory signals play a significant role in temporally coordinating information between brain areas. This review focuses on studies looking into oscillatory brain activity in the AB. The results of these studies indicate that the AB is related to modulations in oscillatory brain activity in the theta, alpha, beta, and gamma frequency bands. These modulations are sometimes restricted to a circumscribed brain area but more frequently include several brain regions. They occur before targets are presented as well as after the presentation of the targets. We will argue that the complexity of the findings supports the idea that the AB is not the result of a processing impairment in one particular process or brain area, but the consequence of a dynamic interplay between several processes and/or parts of a neural network

    Neuronal correlates of full and partial visual conscious perception

    Get PDF
    Stimuli may induce only partial consciousness—an intermediate between null and full consciousness—where the presence but not identity of an object can be reported. The differences in the neuronal basis of full and partial consciousness are poorly understood. We investigated if evoked and oscillatory activity could dissociate full from partial conscious perception. We recorded human cortical activity with magnetoencephalography (MEG) during a visual perception task in which stimulus could be either partially or fully perceived. Partial consciousness was associated with an early increase in evoked activity and theta/low-alpha-band oscillations while full consciousness was also associated with late evoked activity and beta-band oscillations. Full from partial consciousness was dissociated by stronger evoked activity and late increase in theta oscillations that were localized to higher-order visual regions and posterior parietal and prefrontal cortices. Our results reveal both evoked activity and theta oscillations dissociate partial and full consciousness.Peer reviewe

    Controlling for performance capacity confounds in neuroimaging studies of conscious awareness

    Get PDF
    Studying the neural correlates of conscious awareness depends on a reliable comparison between activations associated with awareness and unawareness. One particularly difficult confound to remove is task performance capacity, i.e. the difference in performance between the conditions of interest. While ideally task performance capacity should be matched across different conditions, this is difficult to achieve experimentally. However, differences in performance could theoretically be corrected for mathematically. One such proposal is found in a recent paper by Lamy, Salti and Bar-Haim [Lamy D, Salti M, Bar-Haim Y. Neural correlates of subjective awareness and unconscious processing: an ERP study. J Cognitive Neurosci 2009,21:1435-46], who put forward a corrective method for an electroencephalography experiment. We argue that their analysis is essentially grounded in a version of High Threshold Theory, which has been shown to be inferior in general to Signal Detection Theory. We show through a series of computer simulations that their correction method only partially removes the influence of perfor- mance capacity, which can yield misleading results. We present a mathematical correction method based on Signal Detection Theory that is theoretically capable of removing performance capacity confounds. We discuss the limitations of mathemati- cally correcting for performance capacity confounds in imaging studies and its impact for theories about consciousness

    Decoding the functional relevance of intrinsic brain activity with (TMS-)EEG

    Get PDF
    • …
    corecore