1,155 research outputs found

    Decentralized Delay Optimal Control for Interference Networks with Limited Renewable Energy Storage

    Full text link
    In this paper, we consider delay minimization for interference networks with renewable energy source, where the transmission power of a node comes from both the conventional utility power (AC power) and the renewable energy source. We assume the transmission power of each node is a function of the local channel state, local data queue state and local energy queue state only. In turn, we consider two delay optimization formulations, namely the decentralized partially observable Markov decision process (DEC-POMDP) and Non-cooperative partially observable stochastic game (POSG). In DEC-POMDP formulation, we derive a decentralized online learning algorithm to determine the control actions and Lagrangian multipliers (LMs) simultaneously, based on the policy gradient approach. Under some mild technical conditions, the proposed decentralized policy gradient algorithm converges almost surely to a local optimal solution. On the other hand, in the non-cooperative POSG formulation, the transmitter nodes are non-cooperative. We extend the decentralized policy gradient solution and establish the technical proof for almost-sure convergence of the learning algorithms. In both cases, the solutions are very robust to model variations. Finally, the delay performance of the proposed solutions are compared with conventional baseline schemes for interference networks and it is illustrated that substantial delay performance gain and energy savings can be achieved

    Efficient Scheduling Algorithms for Wireless Resource Allocation and Virtualization in Wireless Networks

    Get PDF
    The continuing growth in demand for better mobile broadband experiences has motivated rapid development of radio-access technologies to support high data rates and improve quality of service (QoS) and quality of experience (QoE) for mobile users. However, the modern radio-access technologies pose new challenges to mobile network operators (MNO) and wireless device designers such as reducing the total cost of ownership while supporting high data throughput per user, and extending battery life-per-charge of the mobile devices. In this thesis, a variety of optimization techniques aimed at providing innovative solutions for such challenges are explored. The thesis is divided into two parts. In the first part, the challenge of extending battery life-per-charge is addressed. Optimal and suboptimal power-efficient schedulers that minimize the total transmit power and meet the QoS requirements of the users are presented. The second outlines the benefits and challenges of deploying wireless resource virtualization (WRV) concept as a promising solution for satisfying the growing demand for mobile data and reducing capital and operational costs. First, a WRV framework is proposed for single cell zone that is able to centralize and share the spectrum resources between multiple MNOs. Consequently, several WRV frameworks are proposed, which virtualize the spectrum resource of the entire network for cloud radio access network (C-RAN)- one of the front runners for the next generation network architecture. The main contributions of this thesis are in designing optimal and suboptimal solutions for the aforementioned challenges. In most cases, the optimal solutions suffer from high complexity, and therefore low-complexity suboptimal solutions are provided for practical systems. The optimal solutions are used as benchmarks for evaluating the suboptimal solutions. The results prove that the proposed solutions effectively contribute in addressing the challenges caused by the demand for high data rates and power transmission in mobile networks

    Performance Optimization in Wireless Local Area Networks

    Get PDF
    Wireless Local Area Networks (WLAN) are becoming more and more important for providing wireless broadband access. Applications and networking scenarios evolve continuously and in an unpredictable way, attracting the attention of academic institutions, research centers and industry. For designing an e cient WLAN is necessary to carefully plan coverage and to optimize the network design parameters, such as AP locations, channel assignment, power allocation, MAC protocol, routing algorithm, etc... In this thesis we approach performance optimization in WLAN at di erent layer of the OSI model. Our rst approach is at Network layer. Starting from a Hybrid System modeling the ow of tra c in the network, we propose a Hybrid Linear Varying Parameter algorithm for identifying the link quality that could be used as metric in routing algorithms. Go down to Data Link, it is well known that CSMA (Carrier Sense Multiple Access) protocols exhibit very poor performance in case of multi-hop transmissions, because of inter-link interference due to imperfect carrier sensing. We propose two novel algorithms, that are combining Time Division Multiple Access for grouping contending nodes in non-interfering sets with Carrier Sense Multiple Access for managing the channel access behind a set. In the rst solution, a game theoretical study of intra slot contention is introduced, in the second solution we apply an optimization algorithm to nd the optimal degree between contention and scheduling. Both the presented solutions improve the network performance with respect to CSMA and TDMA algorithms. Finally we analyze the network performance at Physical Layer. In case of WLAN, we can only use three orthogonal channels in an unlicensed spectrum, so the frequency assignments should be subject to frequent adjustments, according to the time-varying amount of interference which is not under the control of the provider. This problem make necessary the introduction of an automatic network planning solution, since a network administrator cannot continuously monitor and correct the interference conditions su ered in the network. We propose a novel protocol based on a distributed machine learning mechanism in which the nodes choose, automatically and autonomously in each time slot, the optimal channel for transmitting through a weighted combination of protocols

    Efficient and Virtualized Scheduling for OFDM-Based High Mobility Wireless Communications Objects

    Get PDF
    Services providers (SPs) in the radio platform technology standard long term evolution (LTE) systems are enduring many challenges in order to accommodate the rapid expansion of mobile data usage. The modern technologies demonstrate new challenges to SPs, for example, reducing the cost of the capital and operating expenditures while supporting high data throughput per customer, extending battery life-per-charge of the cell phone devices, and supporting high mobility communications with fast and seamless handover (HO) networking architecture. In this thesis, a variety of optimized techniques aimed at providing innovative solutions for such challenges are explored. The thesis is divided into three parts. The first part outlines the benefits and challenges of deploying virtualized resource sharing concept. Wherein, SPs achieving a different schedulers policy are sharing evolved network B, allowing SPs to customize their efforts and provide service requirements; as a promising solution for reducing operational and capital expenditures, leading to potential energy savings, and supporting higher peak rates. The second part, formulates the optimized power allocation problem in a virtualized scheme in LTE uplink systems, aiming to extend the mobile devices’ battery utilization time per charge. While, the third part extrapolates a proposed hybrid-HO (HY-HO) technique, that can enhance the system performance in terms of latency and HO reliability at cell boundary for high mobility objects (up to 350 km/hr; wherein, HO will occur more frequent). The main contributions of this thesis are in designing optimal binary integer programmingbased and suboptimal heuristic (with complexity reduction) scheduling algorithms subject to exclusive and contiguous allocation, maximum transmission power, and rate constraints. Moreover, designing the HY-HO based on the combination of soft and hard HO was able to enhance the system performance in term of latency, interruption time and reliability during HO. The results prove that the proposed solutions effectively contribute in addressing the challenges caused by the demand for high data rates and power transmission in mobile networks especially in virtualized resources sharing scenarios that can support high data rates with improving quality of services (QoSs)

    Radio Resource Management Optimization For Next Generation Wireless Networks

    Get PDF
    The prominent versatility of today’s mobile broadband services and the rapid advancements in the cellular phones industry have led to a tremendous expansion in the wireless market volume. Despite the continuous progress in the radio-access technologies to cope with that expansion, many challenges still remain that need to be addressed by both the research and industrial sectors. One of the many remaining challenges is the efficient allocation and management of wireless network resources when using the latest cellular radio technologies (e.g., 4G). The importance of the problem stems from the scarcity of the wireless spectral resources, the large number of users sharing these resources, the dynamic behavior of generated traffic, and the stochastic nature of wireless channels. These limitations are further tightened as the provider’s commitment to high quality-of-service (QoS) levels especially data rate, delay and delay jitter besides the system’s spectral and energy efficiencies. In this dissertation, we strive to solve this problem by presenting novel cross-layer resource allocation schemes to address the efficient utilization of available resources versus QoS challenges using various optimization techniques. The main objective of this dissertation is to propose a new predictive resource allocation methodology using an agile ray tracing (RT) channel prediction approach. It is divided into two parts. The first part deals with the theoretical and implementational aspects of the ray tracing prediction model, and its validation. In the second part, a novel RT-based scheduling system within the evolving cloud radio access network (C-RAN) architecture is proposed. The impact of the proposed model on addressing the long term evolution (LTE) network limitations is then rigorously investigated in the form of optimization problems. The main contributions of this dissertation encompass the design of several heuristic solutions based on our novel RT-based scheduling model, developed to meet the aforementioned objectives while considering the co-existing limitations in the context of LTE networks. Both analytical and numerical methods are used within this thesis framework. Theoretical results are validated with numerical simulations. The obtained results demonstrate the effectiveness of our proposed solutions to meet the objectives subject to limitations and constraints compared to other published works
    • …
    corecore