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Abstract

Wireless Local Area Networks (WLAN) are becoming more and more impor-

tant for providing wireless broadband access. Applications and networking

scenarios evolve continuously and in an unpredictable way, attracting the

attention of academic institutions, research centers and industry. For de-

signing an efficient WLAN is necessary to carefully plan coverage and to

optimize the network design parameters, such as AP locations, channel as-

signment, power allocation, MAC protocol, routing algorithm, etc... In this

thesis we approach performance optimization in WLAN at different layer

of the OSI model. Our first approach is at Network layer. Starting from

a Hybrid System modeling the flow of traffic in the network, we propose a

Hybrid Linear Varying Parameter algorithm for identifying the link quality

that could be used as metric in routing algorithms. Go down to Data Link,

it is well known that CSMA (Carrier Sense Multiple Access) protocols ex-

hibit very poor performance in case of multi-hop transmissions, because of

inter-link interference due to imperfect carrier sensing. We propose two novel

algorithms, that are combining Time Division Multiple Access for grouping

contending nodes in non-interfering sets with Carrier Sense Multiple Access

for managing the channel access behind a set. In the first solution, a game

theoretical study of intra slot contention is introduced, in the second solu-

tion we apply an optimization algorithm to find the optimal degree between

contention and scheduling. Both the presented solutions improve the net-

work performance with respect to CSMA and TDMA algorithms. Finally we

analyze the network performance at Physical Layer. In case of WLAN, we

can only use three orthogonal channels in an unlicensed spectrum, so the fre-

quency assignments should be subject to frequent adjustments, according to

the time-varying amount of interference which is not under the control of the

provider. This problem make necessary the introduction of an automatic net-

work planning solution, since a network administrator cannot continuously

monitor and correct the interference conditions suffered in the network. We

propose a novel protocol based on a distributed machine learning mechanism



in which the nodes choose, automatically and autonomously in each time

slot, the optimal channel for transmitting through a weighted combination

of protocols.



Acknowledgments

My first thanks go to my advisor, Professor Laura Giarré for all the guidance
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Introduction

In recent years we have witnessed the great spread of wireless technologies

and the increasing of the networks in size and use; moreover the great variety

of mobile devices and services requiring resources have made radio resource

planning and optimization an attractive research topic. Thanks to their

flexibility, low cost and ease of deployment, Wireless Local Area Networks

(WLAN) are the most important technologies for wireless broadband access.

Network layout and its configuration influence overall performance of a spe-

cific WLAN. For designing an efficient WLAN is necessary to carefully plan

coverage and to optimize the network design parameter, such as AP locations,

channel assignment, AP power allocation, MAC protocol, routing, etc... In

the past, planning of the network was conceived as a static task. Now, in an

heterogeneous radio environment, with mobile nodes, and conditions that are

constantly changing, is necessary to apply dynamic network reconfigurability

(for example [1]) featuring software defined radio [2, 3, 4, 5], arriving to nodes

equipped with hardware card performing programmable MAC protocols [6].

In this thesis several algorithms for improving network’s performance in mesh

and ah-hoc networks at different layers of the OSI model (showed in fig.1) are

proposed: starting from an algorithm for identifying the channel quality that

could be used as metric for applying routing algorithms (layer 3), passing for

two algorithms for improving MAC access (layer 2), arriving to the physical

layer with frequency planning (layer 1).

At the Routing Layer, link quality is considered a performance metric in dif-

ferent protocols: in [7] Link Quality Source Routing (LQSR) is presented,

that select a routing path according to link quality metrics; in this paper

three different performance metrics compared with minimum hop-count met-

1
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Figure 1: The 7 Layers of the OSI Model.

ric are presented, but in a mobile environment minimum hop-count metric

has achieved the best performance. In [8] a multi-radio LQSR taking into

account both link quality and minimum hop-count metrics is proposed. An-

other proposal is Multi-Path routing [10], that tries to perform load balancing

and high fault tolerance selecting multiple path between source and destina-

tion. When a link is broken on a path can be chosen another path in the set

of existing path. A drawback of this protocol is the complexity. In [9] a hier-

archical routing is presented, that proposes to divide nodes in groups. Each

cluster has one or more cluster heads. Some node can communicate with

more clusters, acting as gateway, to maintain connectivity. In high density

networks this algorithm gives good performance, but the complexity of main-

taining hierarchy and cluster heads that could be bottleneck may degrade the

performance of the routing protocol. Another class of routing protocol pro-

posed is geographic routing, in which packets are forwarded using only the

position of neighbor nodes and destination node obtained through GPS or

similar location techniques. Topology change has less impact in this protocol



with respect to the others, but packet delivery is not granted even if a path

exists between source and destination. In order to guarantee delivery, planar-

graph-based geographic routing algorithm has also been proposed [11], but

they require much higher communication overhead.

It has been shown that in literature an important metric in routing algorithm

is the link quality. In this thesis we present an identification algorithm based

on an Hybrid Linear Varying Parameter model of a network that could be

used for evaluate instantaneous bandwidth, i.e. link quality, that could be

used as metric in a routing algorithm.

WLAN are based on IEEE802.11 standard family, that is divided into two

main layers: Medium Access Control layer (MAC) and Physical Layer (PHY).

A MAC protocol decides which nodes can transmit data at each time instant

in order to avoid that two active links interfere with each other. The origi-

nal 802.11 CSMA/CA Medium Access Control (MAC) has shown significant

shortcomings when facing the breakthrough rate improvements made avail-

able by the latest PHY enhancements (802.11n, 802.11ac), as well as when

applied to scenarios and contexts such as ad hoc and mesh networks, ve-

hicular environments, directional antennas, quality of service support, real

time media streaming support, multi-channel operation, dynamic spectrum

access, and many others. Designing high-performance MAC algorithms to

achieve maximum possible throughput in WLAN is of primary importance.

Since in many networks, especially when formed by a big number of nodes it

is not possible to have a centralized control and resources at nodes could be

limited, MAC protocol should be distributed and have low complexity and

overhead. In literature there are a great number of proposed solutions: Max-

imum Weight Scheduling (MWS) algorithm is based on length of the queue

in each nodes [12], it is throughput optimal but requires to solve NP-hard

optimization problem in a centralized manner at each time slot. An alter-

native to this protocol with lower complexity is Longest-Queue-First (LQF)

Scheduling. This algorithm schedule first nodes with longer queues disabling

interfering nodes. It has demonstrated [13] that when topology network

satisfy a local-pooling condition this algorithm obtains good performance in

terms of throughput and delay, but in general topology it could not achieve

optimal performance [14, 15] and when the size of the network grows also the



signaling and the time overhead can increase [16]. The most used protocols in

wireless networks are Carrier Sense Multiple Access CSMA/CA algorithms.

Applying these protocols in a distributed manner is very simple and they give

good performance, but in presence of hidden terminal nodes, nodes that are

in visibility with receiver node but not in reciprocal visibility, the performance

could severely degrade. In [17] an analytical model is derived to calculate

the throughput of a CSMA-type algorithm in multi-hop wireless networks

describing the evolution of schedules through a Markov chain. Based on this

result, a distributed algorithm was developed in [18] to adaptively choose

the CSMA parameters to meet the traffic demand without explicitly know-

ing the arrival rates. On the basis of results in [17, 18], [19] proposes a

discrete-time distributed queue-length based CSMA/CA protocol that com-

bine CSMA with distributed GMS leading to collision free data transmission

schedules. Another direction of designing CSMA algorithms for better delay

performance is to use actual or virtual multi-channels, which is motivated

by resolving the temporal link starvation of CSMA via de-correlating the

temporal accessibility to the wireless medium. In [20] a CSMA algorithm

with multiple frequency agility is presented, such that more than one fre-

quency channel is available and a link can transmit on at most one of the

channels. [21] proposes an algorithm called VMC-CSMA in which multiple

virtual channels (defined by dividing the time line) are used to emulate a

multi-channel system and address the starvation problem. The algorithm

randomly selects a virtual channel, and the schedule corresponding to this

chosen channel is used at each time slot. In [35] a fully-distributed CSMA

based MAC protocol is presented. Employing virtual multi-channels it ob-

tains good performance both in terms of throughput and delay in general

wireless networks. Another class of MAC algorithms is Time Division Mul-

tiple Access (TDMA) in which transmission of each node is scheduled in a

different time slot. This class of protocols avoids collisions, but may lead to

channel wastes. In this thesis we propose two algorithms for MAC access

based on a combination between TDMA and CSMA algorithms. We divide

the nodes in subnets, scheduling transmissions of subnets in different time

slots, and performing CSMA behind a subnet.

Another classical family of problems in WLAN planning and optimization



is the frequency assignment. The problem was brought into focus with the

introduction of the second generation (2G) cellular networks; in particu-

lar, Global System for Mobile Communications (GSM) networks, that use a

combination of Frequency Division Multiple Access (FDMA), TDMA, and

random access. Frequency assignment problem could be approached in dif-

ferent ways [22, 23, 25, 27, 28, 32, 34]. The basic approach is finding a

frequency assignment which is feasible to assignment constraints and inter-

ference constraints. Other approaches are the minimum interference problem

and the minimum span frequency assignment problem. In the first problem,

co-channel and adjacent channel interference are minimized. The second

problem minimizes the difference between the highest and the lowest fre-

quency used in solution. Frequency assignment is typically viewed as a graph

coloring problem [26, 27]. [29, 33] propose a cross-layer design and optimiza-

tion considering the information flows across the network layers to enable so-

lutions that are globally optimal to the entire system and thus facilitating the

optimal layer design. [24, 30] present another approach, considering layering

as optimization decomposition, in which the overall optimization problem

is decomposed in in subproblems corresponding to each layer. The inter-

faces among layers are quantified as functions of the optimization variables

coordinating the subproblems. In this thesis we present a fully-distributed

frequency planning based on a machine learning mechanism, in which each

node chooses autonomously and automatically the transmission channel.

The remainder of the thesis is organized in three parts, respectively, address-

ing the above described issues related to WLAN networks:

• In the first chapter an HLPV algorithm for identifying link quality

[66, 68] is presented. We consider a hybrid model for the flow of traffic

in communication networks, and identifying the region in which the

link is working we could evaluate its instantaneous bandwidth.

• In the second chapter two MAC algorithms are presented, in the first

[67] we propose a simple approach based on preallocating temporal slots

in which different sets of nodes are allowed to contend for the channel

access. Since the approach does not completely prevent contentions

for accessing the wireless channel, we also propose a game-theoretical



analysis of contention strategies for multi-hop networks. In the second

algorithm [69] we propose to convenient partition the network, applying

an optimization algorithm for resource allocation.

• In the third chapter we propose a novel protocol [108] based on a dis-

tributed machine learning mechanism in which the nodes choose, auto-

matically and autonomously in each time slot, the optimal channel for

transmitting through a weighted combination of protocols.



Chapter 1

HLPV Identification in wireless

ad-hoc networks

1.1 Introduction

Wireless ad-hoc networks consist of a number of untethered nodes able to

communicate with each other by means of intermediate nodes, collaboratively

forwarding ongoing traffic. Because of the nature of the wireless medium,

data communications in ad-hoc networks are intrinsically broadcast, so that

links exist between any pairs of nodes that are within the transmission range

of each other. These features make ad-hoc networks easy to be deployed and

suitable for a large number of applications, spanning from low-range sensor

networks targeted to distributed monitoring, to high-range mesh networks

targeted to build infrastructure-less transport networks.

In a WLAN, ensure that each node is aware of the performance of a link,

allows the routing algorithm to make optimal decisions in case it is possible

to reach a destination cross multiple path. Otherwise nodes should base their

knowledge exclusively on static information. In this chapter we present an

HLPV identification algorithm that could be used for evaluating link quality

in wireless ad-hoc networks. We start our analysis from a model presented in

[51] in which the flow of traffic in communication networks is modeled using a

Hybrid System, which combines continuous-time dynamics with event-based

7



logic. Linear Parameter Varying, Hybrid Switching and Piece-Wise Affine

models arise from different applications and have been studied in connection

to various control schemes. Linear models allow for efficient design and soft-

ware tools but often fail to provide a faithful description of the real systems.

The use of LPV models as an approximation of nonlinear models became

popular in the nineties [36]. In literature, a large amount of work on LPV

control design and methods to obtain a set of stabilizing controllers pro-

liferated since then. Actually, many industrial and advanced applications

benefit the use of such techniques. Identification of LPV models has been

approached since then in various way, by using State Space (SS) [37], [38],

[39], Input/Output (I/O) [40], [41], representation The terminology Linear

Parameter time-Varying (LPV) systems has been introduced in [36]. A dis-

crete LPV system is represented in SS as

xk+1 = A(p(k))xk +B(p(k))uk

yk = C(p(k))xk +D(p(k))uk

The exogenous parameter p(k) is assumed a priori unknown. However, it

can be measured or estimated upon operation of the system. Rather than

modeling the dynamical evolution of a particular variable, one can treat it as

an exogenous independent parameter, [36], [42], and the survey [43], as well

as reference therein. Since the beginning of the nineties, the literature on

LPV Control and LPV Identification has started growing almost in parallel.

The first attempt to solve the problem of LPV identification dates back to

the paper of [38], where Linear Fractional Transformation (LFT) LPV system

identification problem is solved having single time-varying block and state

space measurements. The problem was shown to be equivalent to a linear

regression, and certain conservative conditions for persistence of excitation

were given.

Since the end of the last century, the literature on LPV have tremendously

been spread and it is almost impossible to exhaustively list all the contribu-

tions here, but the main methodologies can be clustered according to various

paradigm and criteria, in [44] an overview of all the approach of LPV identi-

fication and more recent solved problems has been presented. On the other



hand, the importance of switching and hybrid dynamical systems [45] has

been recognized, relying also upon the fact that robust stabilizing control

can be designed, and new identification technique have been extensively con-

sidered in the literature, [46], [47]. Hybrid systems are dynamical systems

consisting of components with continuous and discrete behavior and thus

they have required a new hybrid systems and control theory that has been

developed in the past years and is still an active research topic. A survey of

the principal identification methods for hybrid systems can be found in [46],

[48] and [49]. An interesting paper that deals with an identification problem

close to the one discussed here is [50]. In the rest of the chapter we present

an application of HLPV in ad-hoc networks.

1.2 Model

1.2.1 System Model

The network structure can be represented through an edge labeled graph

G = (V,E). Specifically, the nodeset V includes all the nodes i of the network

and the edgeset E includes all the pairs of adjacent nodes (i, j) that are in

radio visibility of each other. We call each edge (i, j) ∈ E as link `, that

is labeled with its maximum transmission rate Bmax reached only when we

are in the best condition. B` ≤ Bmax is the effective transmission rate, that

in real environment is not constant over time, and depends on nearby radio

conditions, and among the other factors, is function of the distance between

nodes i and j and of the possible presence of obstacles.

1.2.2 Traffic Model

To model the channel traffic load, we take into account and extend the model

originally proposed by [51]. For a given topology, we consider some of the

nodes as sources and some are considered the final receivers. Actually we

consider that the routing of the flows has been set, so for each flow the path

is pre-assigned. We consider a communication network, with nl links, that



we assume unidirectional, crossed by n flows. Each link has a finite buffer,

so when the queue reaches its maximum value the incoming packets will be

dropped. In each link we define four vectors: q` that represents link’s queue

value, s` is the rate packets arriving at the node j for the link ` that connects

nodes j and k, r` is the transmission rate through the link and d` is drop rate

at link `. Component f of these vectors is the contribution of the flow f to

the total value. We neglect drops that occur in transmission medium. In this

model the input variable is s`, the state variable q`, and the output is the

transmission rate at the link `, y = r`. We can model the queue dynamics

as:

q̇` = s` − h(s`)− k(s`, q`)

y =
[
r`f
]′

Where d` = h(s`) and r`f = k(s`, q`).

According to [51], queue dynamics can be described with a system in which,

we use three different models depending of the value of
∑n

i=1 q
`
fi and

∑n
i=1 s

l
fi.

As showed in fig. 1.1, these are the parameters that allow us to transit from

a state to another. In each case the expression of h and k will be different

and the dependence on s` and q` changes depending on the different dynamic

state of the queue:

• Queue Empty -
∑n

f=1 q
`
f = 0 : in this case there are no drops and all

incoming packets are transmitted. In this case we have :

q̇` = s` − k(s`)

Where

kfi(s
`) =

s
`
f ,

∑n
f=1 s

`
f ≤ B`

B` s`f∑n
f=1 s

`
f
,
∑n

f=1 s
`
f > B`

• Queue neither empty nor full - 0 <
∑n

f=1 q
`
f < q`max or

∑n
f=1 q

`
f =

q`max and
∑n

f=1 s
`
f ≤ B` : also in this case there are no drops but the



packets are transmitted at the head of the queue (B` bytes per unit of

times). In this case we can rewrite the dynamics as:

q̇` = s` − k(q`)

Where

kf (q
`) = B`

q`f∑n
f=1 q

`
f

• Queue full -
∑n

f=1 q
`
f ≥ q`max and

∑n
f=1 s

`
f > B` : in this case the

packets are transmitted at the head of the queue as in the previous

case, but all the packets that exceed the maximum value of the queue

will be dropped. In this case:

q̇` = s` − h(s`)− k(q`)

Where

h(s`) = s` −B`
s`fi∑n
f=1 s

`
f

kf (q
`) = B`

q`f∑n
f=1 q

`
f

Interest in the identification and validation of this model derives by the im-

portance of on-line estimate the traffic load and the effective value of the

bandwidth in the network, to implement a distributed optimization enhanc-

ing performance in multi-hop transmissions.

Aim of this chapter is to show how to recast and identify such hybrid model

as Hybrid LPV (HLPV). Interpret the behavior of a complex system as the

effect of a linear model and a scheduling variable describing nonlinearity.

1.3 HLPV identification of the traffic model

According to [59] and [60], the literature can be divided into two main groups:

identification methods based on state space (SS) vs. Input/Output (I/O)

models, referring to the structure of the identified model. We can divide also



hybrid models in state space (SS) and Input/Output (I/O) representation.

We focus our attention on the second one.

Equivalence among SS and I/O and proper discretization have been exten-

sively discussed in literature, [53], then we notice that it is also easy to extend

the above regressor to include the past terms of pk, such as pk−1, pk−2, .., as

required. In Piece-Wise-Affine (PWA) systems, [54], σk is given by

σk = i iff

[
xk

uk

]
∈ Ωi, i = 1, . . . , s (1.1)

Following the discussion in [53, 55, 56, 57] a meaningful I/O representation

of an HLPV model is the following one: Definition HLPVIO

y(k) = −
na∑
i=1

(ai � ρk)y(k − i) +

nb∑
j=0

(bj � ρk)u(k − j − d) + g(ρk) (1.2)

where ρk = [pk, σk], and � denotes the evaluation of a function f over the

trajectory of ρk, i.e. f � ρk = f(pk, pk−1, pk−2, . . . pk−n̂, σk−n̂, . . . , σk) (see

[53]) with n̂
4
= max{na, nb} and g a function taking into account the affine

terms. In some cases, the selected I/O description can be simplified consid-

ering special forms of dynamic dependence on p, [58] allowing SS realizations

without introducing dynamic dependence on p. The selected I/O description

is appealing to describe the behavior of many practical applications and to

derive a corresponding SS representation. The importance of subsequently

determining a suitable SS representation is due to the fact that many effi-

cient control techniques are formulated using state space information. An

LPV model is characterized by the measurability of the scheduling variables.

Then, under the assumption of measurability of ρk, it would be possible to

proceed in the solution of the identification problem. Indeed, for several

applications it is possible to include additional information concerning the

scheduling variables. First we want to show how to simply recast the wireless

ad Hoc traffic hybrid model as HLPV. We consider a single link ` and we

assume that the number n of data flows is known and fixed to its maximum,

which is equal to the number Ns of sources. Note that this is a restrictive



assumption because in general n can be also time-varying, n ∈ [0, Ns]. We

drop the superscript ` for sake of clarity. Such a hybrid model can be recast

as a hybrid LPV model, by defining p1 :=
∑n

i=1 qfi and p2 :=
∑n

i=1 sfi and

assuming that the parameter p = [p1 p2]′ is the measurable varying param-

eter. This parameter takes into account an aggregated value of the queue

and the total incoming flow rate to the link. For each link the input is the

n−dimensional vector u = s in which every components is random with uni-

tary variance, the state is the n-dimensional x = q and the measured output

is given by the n-dimensional vector z = [zi] where

zi = yi + v, i = 1, . . . , n

and v is a measuring noise equally distributed on each flow fi. Moreover, we

assume that the theoretical value of the band B` = Bmax is known and the

maximum value of the queue qmax, but the effective value assumed by the

band is unknown and we rename it as bw ∈ [Bmin Bmax]. We assume that

the condition of an empty queue corresponds to p1 < ε, with ε sufficiently

small.

Numerical simulations have been carried out to gather data with Bmin =

6Mbit, Bmax = 54Mbit, ε = 0.0001, and qmax = 0.03Mbit. We consider

three flows crossing a link. The system is simulated in continuous time,

but parameters are kept constant during sampling time and data have been

collected at each sampling time interval. The corresponding simulated data

are shown in Figure 1.2, for each flow (i = 1, 2, 3). The measured output is

obtained by adding a uniform random noise v with unitary variance to the

output y. The simulation duration is 30s and the sampling time is T = 0.1s.

The above hybrid model assumes the following HLPVSS form:

ẋ = A(ρ)x+B(ρ)u

y = C(ρ)x+D(ρ)u

z = y + v

(1.3)

where ρ = [p′ σ]′ is the parameter vector and the switching parameter σ is

defined as follow:



σ = σk = j, j = {1, 2, 3, 4} ⇐⇒ p ∈ Ωj

Ω =



Ω1 if(p1 ≤ ε AND p2 ≤ bw)

Ω2 if(p1 ≤ ε AND p2 > bw)

Ω3 if(ε < p1 < qmax)

OR (p1 = qmax AND p2 ≤ bw)

Ω4 if(p1 > qmax)

OR (p1 = qmax AND p2 > bw)

(1.4)

In 1.4 the sets introduced are related to the dynamical model introduced in

section 1,Ω1 is the region corresponding to the condition queue empty, Ω3

queue neither empty nor full, Ω4 queue full. Ω2 is a degenerate region, a

point between Ω1 and Ω3. Note that the above regions are depending on the

unknown parameter bw. Actually we use a first approximation of this regions

where the known maximum value of the band Bmax, instead of the effective

value bw is used.

Notice that, because the particular structure of the model, all the ma-

trices become diagonal matrices with the same entries for i = 1, . . . , n:

A = diag(ai) = diag(a),B = diag(bi) = diag(b), C = diag(ci) = diag(c)

and D = diag(di) = diag(d) with:

a(ρ) =

{
0 if j = 1, 2

− bw
p1

if j = 3, 4

b(ρ) =


0 if j = 1

1− bw
p2

if j = 2

1 if j = 3
bw
p2

if j = 4

c(ρ) =

{
0 if j = 1, 2
bw
p1

if j = 3, 4



d(ρ) =


1 if j = 1
bw
p2

if j = 2

0 if j = 3, 4

Because the above state space model is diagonal and the entry terms are all

the same, a first order scalar state-space model for each single flow, Σ =

{a(ρ), b(ρ), c(ρ), d(ρ)} can be taken into account by itself.

For the present example, the parameters are kept constant during the sam-

pling time interval, so that the switching can occur only at the sampling

time instant and then, both the I/O representation and the discrete-time

model can be easily derived. The corresponding continuous time input-

output model is obtained simply by deriving the output expression and sub-

stituting the derivative term ẋ:

γ(ρ)ẏi(t) = α(ρ, ρ̇)yi(t) + (β(ρ))ui(t)

where

γ(ρ) =

{
0 if j = 1, 2

1 if j = 3, 4

α(ρ, ρ̇) =

{
c(ρ) if j = 1, 2

a(ρ)− ṗ1
p1

if j = 3, 4

and

β(ρ) =

{
d(ρ) if j = 1, 2

c(ρ)b(ρ) if j = 3, 4

The discretization of the former model, via a backward Euler approximation

with a ZOH, gives raise to a simple HLPVIO:

A(δ, ρk, ρk−1)yi(k) = B(δ, ρk)ui(k) (1.5)

where A(δ, ρk, ρk−1) = a0(ρk, ρk−1) + a1(ρk)δ and B(δ, ρk) = b0(ρk) and the

discrete time parameters are related to the continuous time parameters as



follows:

a0(ρk, ρk−1) =

{
1 if j = 1, 2

(2− Ta(ρk))p1k − p1k−1 if j = 3, 4

a1(ρk) =

{
0 if j = 1, 2

p1k if j = 3, 4

b0(ρk) =

{
d(ρk) if j = 1, 2

Tc(ρk)b(ρk)p1k if j = 3, 4

Clearly, the functional dependence on ρk, ρk−1 is unknown and is one of the

object of the identification. Moreover, model (1.5) can be easily recast with

the structure given in (1.2) as

y(k) = (α1 � ρk)y(k − 1) + (α0 � ρk)u(k),

with (α1 � ρk) = α1(p1k, p1k−1, σk) and (β0 � ρk) = β0(p1k, p2k, p1k−1, σk).

Depending on the available a-priori information on the model, some possible

different identification solutions can be adopted, as described in [44] Here

we report the application of the following solution. Off line identification.

Assume that the regions are known. Design the identification experiment

choosing the input at the sources, measuring p2 at each link and selecting

the variation of p1 satisfying the persistence excitations conditions as in [52].

Divide the data according to each region j and use the standard I/O LPV

identification method, recasting model (1.5) in a psuedo-regressor form and

identify each LPV model corresponding to a value of j.

1.4 Numerical Results

We now explain our results, mediated over seven simulations. Actually our

goal is identify the model to validate it, in future works we consider identi-

fication of the effective band bw, considering the regions unknown. In each

region, we have recast model in a psuedo-regressor form [1.5], an then we



have performed Least Mean Square algorithm. We consider

B(δ, ρ) := b0(ρ) + b1(ρ)δ + . . .+ bnb
(ρ)δnb

A(δ, ρ) := I + a1(ρ)δ + . . .+ ana(ρ)δna (1.6)

with na = 2 and nb = 1. For ai and bi we choose polynomial functional

dependence for the parameters:

ai(ρ) = a1
i + a2

i ρ+ . . .+ aNi ρ
N−1

bj(ρ) = b1
j + b2

jρ+ . . .+ bNj ρ
N−1.

(1.7)

with N = 3. So in each region we have identified the coefficients in the

matrices:

Θ :=


a1

1 a2
1 a3

1

a1
2 a2

2 a3
2

b1
0 b2

0 b3
0

b1
1 b2

1 b3
1


In Figure 1.4, Figure 1.5, and Figure 1.6 we see the simulation results of LMS

algorithm in regions 1,3 and 4 respectively.

We underline that we do not have identification in region 2, this is because

region 2 is a degenerate region i.e. a point, and using random input, guar-

anteeing persistence of excitation, we have not crossed this region. The

convergence values of the coefficients in the regions (in the figures we see

only the first part of the simulation and not the convergence) are:

Θ1 :=


−0.1642 0 0

−0.1846 0 0

0.3903 0 0

0.1643 0 0



Θ3 :=


−0.1684 0 0

−0.1902 0 0

0.3530 0 0

0.1716 0 0





Θ4 :=


−0.2135 −0.0245 0

−0.3603 −0.0374 0

0.7993 0.1030 0

0.1319 0 0


In Figure 1.7 we see the global identification, i.e. we see parameters crossing

the different regions during the simulation’s time. In this figure we see the

convergence value of previous figures.

1.5 Future Works

HLPV models inherit properties of LPV and PWA affine systems with the

addition of some knowledge on the scheduling variables.

A possible off line identification algorithm has been implemented. Other

more efficient solutions need to be investigated. We list now possible future

algorithms that need to be implemented.

1) On line identification.

a) Assume that the regions are known. Design the identification ex-

periment choosing the input at the sources, measuring p2 at each

link, and selecting the variation of p1 satisfying the constraints C.1

and C.2 and the persistence excitations conditions as in [52], and,

at the same time, guaranteeing that the parameter σ is kept con-

stant in a sufficiently long time to guarantee convergence of the al-

gorithm. Then, use the standard I/O LPV identification method,

recasting model (1.5) in a psuedo-regressor form and identify each

LPV model.

b) Assume that the regions are not known, but the number s =

4 is known. Design an identification experiment as in 2a). A

posteriori, separate each LPV model, from the identified one.

2) Two step identification. Assume that the approximating regions need

to be validated. First, perform a validation of the a-priori information



on p, to find approximated regions and validate them. Second, run

one of the previous identification scheme 1) or 2). This solution is still

under investigation.

3) Global experiment. In case we would like to perform an on line identifi-

cation and the assumption that σ is kept constant in a sufficiently long

time cannot be guaranteed, or if the model is more general than the

one obtained in the present example, then a global experiment for the

model given as in (1.2) need to be performed. A suitable identification

algorithm determining in one-shot both the functional dependence on

p and on σ need to be performed. This general solution is still under

investigation.



Figure 1.1: Hybrid Model for the queue at a link.
Source: [51]

Figure 1.2: Input/output data over an interval of 30s and sampling time
T=0.1s for each flow i = 1, 2, 3.



Figure 1.3: Parameters p1, p2 and σ over an interval of 30s and sampling
time T = 0.1s.

Figure 1.4: Parameters’ identification in region 1.



Figure 1.5: Parameters’ identification in region 3.

Figure 1.6: Parameters’ identification in region 4.



Figure 1.7: Parameters across regions.



Chapter 2

Medium Access: Contention vs.

Scheduling

2.1 Introduction

In wireless networks is of primary importance deciding when a node can send

a packet, and when it have to listen for receiving a packet. Making the right

decision could be difficult and could cause medium wastes and degradation of

network’s performance in terms of throughput. We consider solutions which

are centralized or distributed. Centralized solutions as polling and TDMA

(Time Division Multiple Access) with a centralized computation are simple

and they guarantee total absence of collisions, but are applicable only in

small and trivial networks. In greater networks we have to consider dis-

tributed algorithms that could be equipped with schedule-based protocols or

contention-based protocols. In schedule-based protocols the node to be trans-

mitted is regulated in each time; scheduling could be fixed or on demand.

This approach needs a synchronization mechanism. Most ad-hoc networks

rely on contention-based medium access protocols, since the use of carrier

sense and random backoff mechanisms is a simple and well-established solu-

tion for distributedly managing multiple-access over a shared channel band-

width. However, it is well known thatCSMA/CA (Carrier Sense Multiple

Access/Collision Avoidance) protocols exhibit very poor performance in case

24



of multi-hop transmissions. This is due to the inter-link interference caused

by imperfect carrier sensing, i.e. the impossibility that a transmitter detects

a signal interfering to the intended receiver and originating from a node out

of its carrier-sense range. The collisions due to this phenomenon, called

hidden-node collisions, can severely degrade the network throughput as the

transmission rate of each node increases. Theoretical bounds on the attain-

able limits of throughput in presence of imperfect carrier sensing have been

studied. In the seminal paper [61] bounds were determined for a network with

arbitrarily or randomly deployed nodes under the assumption that an ideal

scheduling scheme for arbitrating node transmissions can be implemented.

In [62] some analysis extensions have been considered for quantifying the

impact of mobility and node cooperation on such bounds. The hidden ter-

minal problem of CSMA/CA protocol is addressed in many papers, i.e. [63].

Moreover, in [64] a time-division scheduling for ad-hoc networks is presented,

with an analysis of the TDMA policy. Apart from the bound identification,

a crucial problem for actual network deployments is the implementation of

an efficient node coordination scheme. The scheme must be able to minimize

the signaling overhead required for coordinating multiple node transmissions,

while guaranteeing a significant performance improvement over CSMA/CA

protocols. For improving CSMA performance has been presented several pa-

per based on the idea of adapting contention aggressiveness basing on the

basis of queue’s length [65],[70],[71],[72]. Motivated by the study in [73] in

which has proved that this approach can suffer high performance degradation

because of channel asymmetries, packet collisions at flow receivers and dy-

namic traffic pattern, [74] proposes a system for proportional fairness keeping

in count optimization and robustness. They relax the assumption of chan-

nel symmetry and introduce a robustness function for reducing performance

degradation due to collisions decreasing channel access for avoiding interfer-

ence when the number of contending flows increase. A strong point of CSMA

algorithms is the flexibility in adapting when network’s conditions change in

topology or in traffic load. In order to become competitive, scheduled pro-

tocols should have a continuous adaptation method. In [76] and [77] it has

been proposed to alternate a contention phase and a scheduled phase. In the

first phase nodes exchange topology information that are used for comput-



ing the scheduling in the next phase. The problem in this approach is that

change in topology or traffic load could not be aligned with the phases of the

algorithm. In [79] a topological allocation through a distributed algorithm

that can operate within scheduled and contention-based MAC protocols is

proposed. This algorithm evaluates node’s topological persistence that is the

fraction of time that it is permitted to transmit, and after identifying ideal

persistences for a given topology and traffic load, topological persistences is

given as input to MAC protocols. This approach has several limitations: the

algorithm assumes a priori knowledge of traffic demands and local topology;

it does not accommodate changes in topology or traffic demands; the algo-

rithm requires synchronization. This algorithm is improved in [78] in which

node’s persistence is also computed but a scheduled MAC protocol able to

adapt to change in topology and traffic load is presented. Our approach is to

find a distributed resource allocation algorithm combining TDMA for group-

ing contending nodes in non-interfering sets and CSMA/CA for managing

the channel access behind a set. This pre-allocation mechanism of channel

holding times can significantly reduce the channel wastes due to hidden node

collisions and has been recently considered also in some standardization task

groups working on mesh networks and literature, for optimizing both the net-

work capacity and the energy consumption [80] in Zigbee networks, or coping

with bidirectional traffic flows over chain topologies exploiting network cod-

ing [81]. In the rest of the chapter we focus on the problem of determining

the optimal resources allocation, that is how many resources guarantee to

each node in order to obtain the best performance in terms of throughput.

The rest of the chapter is organized as follows:

• In section 3.4 we formulate the problem;

• In section 2.3 we present a solution that consists in scheduling poten-

tially interfering transmissions in different time slots, while allowing

in-range nodes to transmit in the same time slot but subject to a

CSMA/CA mechanism that avoids collision. The problem is formu-

lated in terms of a map coloring problem. Since color allocations may

leave some level of contention, by assigning the same color to nodes

in radio visibility, a game theoretical study of intra-slot contention is



introduced.

• Motivated by results obtained in section 2.3 showing that combining

contention and scheduling gives an improvement on both approaches

CSMA and TDMA, we asked ourselves what is the optimal degree be-

tween contention and scheduling. We present an algorithm which finds

a conveniently partition of the network, scheduling the transmissions

of different subsets in different time-slots. We apply an optimization

algorithm for deciding how many time-slots are guaranteed to each sub-

net. The number of subsets giving the best performance in a particular

network is the optimal degree between contention and scheduling for

that network.

2.2 Problem Formulation

We consider a single channel radio network made of a set V of nodes dis-

tributed uniformly over a given area. Each node i ∈ V can communicate

only with a subset of adjacent nodes Vi. We say that i is (radio) visible only

to the nodes in Vi. Differently, i is hidden to the remaining nodes in V \ Vi.
We assume that radio visibility is symmetric and that the communication

between pair (i, j) of adjacent nodes presents a maximum transmission rate

rij, function of the distance between nodes i and j and of the possible pres-

ence of obstacles. The channel time is divided into elementary allocation

units called slots. Each slot is able to accommodate a random backoff de-

lay and the transmission time of the maximum allowed packet size at the

minimum rate (followed by an explicit acknowledgment). Only the subset of

nodes to which a generic channel slot is pre-allocated are enabled to perform

the CSMA/CA function for transmitting on that slot. The slot allocations

are maintained on a per-frame basis: being x the total number of alloca-

tion slots, a sequence of x consecutive slots is a channel frame in which, slot

by slot, the same sorted list of nodes are enabled to transmit. Figure 2.1

shows an example of medium access in a network with 5 nodes, in which a

channel frame of 3 slots is considered. In the first slot, where only station

1 and 2 can access the medium, station 1 wins the contention (i.e. extracts



Figure 2.1: An example of medium access in a network with 5 nodes and a
frame composed of 3 slots.

the lowest backoff delay). The second slot is used by station 3 only, while

the third slot is reserved to the contention between stations 4 and 5. The

reason for pre-allocating channel slots to a sub-set of stations (thus grouping

in independent sets the stations allowed to transmit simultaneously) is the

mitigation of the hidden node problem. For example, if stations 1 and 3 are

hidden to each other (as shown in the figure) and wish to transmit to station

2 (which is able to hear both the stations), the previous allocation avoids any

collision possibility. Conversely, transmissions originated by stations 1 and 2,

which are in reciprocal visibility, are separated by the CSMA/CA protocol.

We formally define the problem of slot allocations in what follows.

2.2.1 Network Structure and Traffic Model

We represent the network structure through an edge labeled graph G =

(V,E). Specifically, the nodeset V includes all the nodes i of the network



and the edgeset E includes all the pairs of adjacent nodes (i, j) that are

in radio visibility to each other. Each edge (i, j) ∈ E is labeled with its

maximum transmission rate rij.

Since the system time is slotted, we also model the traffic source at each

node in terms of per-slot packet probability. Specifically, we assume that

each node i has a fixed probability λi to generate a packet in each slot.

In order to avoid interactions with the routing protocol, we consider only

one-hop packet deliveries. Packets are destined to a randomly selected node

among the neighbor ones. For isolated nodes, i.e. nodes without neighbors,

the traffic is assumed to be broadcast. In addition, we assume that the packet

size is of a fixed value D for all the nodes, whose transmission time is always

compatible with the slot size.

2.2.2 Resource Allocation

We assume that the reader is familiar with CSMA/CA protocols, which regu-

late the final channel access within an allocated channel slot. Although most

CSMA/CA protocols use a slotted backoff scale for efficiency reasons and

for implementation limits (since the carrier sense cannot be instantaneous),

we assume that backoff values are uniformly extracted in a continuous range

[0, b], thus implying that collisions cannot be originated by the extraction of

two identical backoff values. In order to implement a slot allocation mech-

anism, two basic functionalities have to be provided in the network: i) a

mechanism for inferring the network topology; ii) a mechanism for keeping a

common time reference among the nodes. For both the aspects, we consider

that an independent signaling channel is available (managed by a random

access scheme) and nodes in radio visibility can exchange control informa-

tion (e.g. the list of neighbor nodes). We also assume that nodes do not

have data storage constraints, while processing capabilities may depend on

the specific network scenario.



2.3 Utility-Based Resource Allocations in Multi-

Hop Networks

In this section, the problem is formulated in terms of a map coloring prob-

lem, which has a vast and well established literature [83, 84]. Therefore, we

simply adapt some existing coloring algorithms to ad-hoc networks, by trying

to identify the most effective trade-offs between complexity, signaling over-

heads and performance gain. Since color allocations may leave some level of

contention, by assigning the same color to nodes in radio visibility, a game

theoretical study of intra-slot contention is also introduced. In the above

context, the two main problems of our interest are the following ones.

Problem 1. Determine a distributed protocol that sets the number x of

slots in a frame and the slots allocations, in order to maximize the per-node

throughput in saturation conditions, i.e. in presence of greedy sources whose

packet generation rate is λi = 1.

Problem 2. Determine a distributed protocol that allows the allocations of

slots of a frame in order to minimize the average delivery delay for generic

source rates λi.

2.3.1 Solution Approach

In this section, we discuss the possibility of reducing Problems 3 and 4 to a

set of Minimum Graph Coloring (MGC) problems.

2.3.2 Graph coloring

Let G(V,E) the network graph including the set V of nodes distributed over

a given area and the set E of edges connecting radio visible nodes. Each node

i ∈ V is labeled with the number ai of slots to be allocated to it according

to the traffic it must support. Generally speaking a single slot is allocated

to each node. However, in case of heterogeneous packet generation rates

λi (which may actually model nodes belonging to heterogeneous number of



paths and aggregating traffic packets generated by multiple sources), some

nodes may require more slots to drain their traffic.

We define as incompatibility graph of type I the node labeled graphHE(V, FE)

whose edges in FE join the pair of nodes (j, k) ∈ V × V whose frames may

collide if transmitted simultaneously. By definition HE = G2, that is,

FE = {(j, k) : ∃i ∈ V s.t. (j, i), (i, k) ∈ E}.

We can see Problems 3 and 4 as a MGC problem that determines the min-

imum cardinality of a coloring of the nodes of HE such that each node is

colored with as many different colors as its label. Then, each color corre-

sponds to a specific slot allocated to the node on the frame.

Obviously, the network transport capacity is critically affected by the car-

dinality x of a coloring of HE, since each node i receives ai transmission

chance only every x slots. For example, assuming a uniform transmission

rate r among all the edges, the node transmission rate is upper bounded by

ai · r/x.

In defining the incompatibility graph of type I, we have not considered the

carrier sense functionality that intrinsically makes orthogonal (i.e. non-

interfering) the transmissions between visible nodes. Edges connecting visible

nodes in the incompatibility graph of type I may result redundant and some,

if not all of them, may be removed, possibly drastically reducing the number

of colors necessary for the graph. In this context, we define as incompatibility

graph of type II the node labeled graph H∅(V, F∅) whose edges in F join the

pair of nodes (j, k) ∈ V × V that are of the reciprocally hidden and whose

frames may collide if transmitted simultaneously. By definition H∅ = G2−G,

that is,

F∅ = {(j, k) : ∃i ∈ V s.t. (j, i), (i, k) ∈ E but (j, k) 6∈ E}.

Removing edges from the incompatibility graph can make the per-node trans-

mission rate Si (also called node throughput) heterogeneous, even in the case

of uniform rate r and ai allocations. Indeed, nodes receiving slots not shared



with visible nods receive a throughput bounded by ai ·r/x, while nodes shar-

ing the slot with neighbor nodes experience, in the worst case, a throughput

reduction equal to the number of contending nodes.

The graph HE and H∅ define the two extreme cases in which either all or

none of the pair of reciprocally visible nodes are considered. Obviously, even

intermediate situations may be defined. Let 2E be the power set of the

edgeset E.

For each e ∈ 2E, we can consider the coloring problems of the incompatibility

graphs He = (V, F∅∪e), and the per-node and aggregated throughput, Sei and

Setot =
∑

i∈V S
e
i . Then, the optimal coloring scheme is the coloring referring

to the incompatibility graph He which maximizes the value of Setot, for e ∈ 2E.

2.3.3 Throughput assessment

Consider a He, for e ∈ 2E, graph. For each node i ∈ V , let us define its

associated after coloring clique as the maximal clique on the graph G that

includes i and is formed by nodes of the same color of i. Let dei be the size

of such a clique and let ai = 1 ∀i.

Then, if we assume a uniform rate r for all the links in E, we can guarantee

a per-node collision free throughput

ρei =
r

xedei
(2.1)

where, xe is the number of colors used in He. The rationale behind (2.1) is

the following. For each node i ∈ V , we have to share the slot associated to its

allocated color with dei −1 contending nodes. On average, node i will win the

backoff contention only once every dei frames. Collisions with adjacent nodes

are avoided by means of the carrier sense functionalities, while collisions

with other nodes using the same colors are avoided by the coloring algorithm

(which re-assign the same slot only when nodes are distant more than two

hops).

Given a graph He, the maximum number of needed colors is upper bounded



by ∆e + 1, where ∆e is the maximum node degree of the graph. In addition,

coloring He with at maximum e + 1 colors can be easily attained with a

distributed protocol, such as Brooks-Vizing, [87]. The following condition

then holds:
r

∆E+1
≥ maxi∈V

r
(∆e+1)dei

∀e ∈ 2E

Since ∆e is an upper bound on the number of needed colors, the previous

condition implies that the lower bound of the collision-free throughput guar-

anteed to each node is higher for the incompatibility graph HE.

Let us now consider the aggregated collision-free throughput ρetot. After col-

oring, the throughput sum perceived by all the nodes belonging to each clique

is obviously r/xe, thus resulting in a total throughput equal to:

ρetot =
r

xe
ce

where ce is the total number of cliques resulting from the coloring of the

incompatibility graph He. Obviously, when He = HE such a number corre-

sponds to the number of nodes n (since 1-hop nodes are allocated on different

channels). It follows that we can also express the average per-node through-

put E[ρe] as ρetot/n = r
xeE[de]

(where E[de] = n/ce represents the average after

coloring clique size).

For each e ∈ 2E, we note that the collision free throughput is only a guaran-

teed lower bound on the actual throughput Setot that we can obtain coloring

the graph He. In fact, Setot can be a higher throughput. Let xe be the number

of colors used for He. Consider a generic node i and let xi the number of

colors used for coloring its adjacent nodes on He. When xi < xe + 1, we

may obtain a transmission rate for i greater than the one guaranteed by the

collision free throughput if we allow i to transmit during the slots associated

to its color and to colors different form the ones of its adjacent nodes on

He. If i is the only node with such a privilege, we will obtain a throughput

(with no collision) higher than the collision free throughput. Differently, if

we concede the above transmission privilege to all the nodes with xi < xe+1,

we cannot guarantee that extra slot allocations result in a free transmission.

Nevertheless, we obtain an overall throughput higher than the collision free



throughput, as long as each node does not transmit to the slots associated

to the adjacent nodes on He. If the competition for extra slots is extended

to all the slots of the frame (thus including the potential interfering nodes),

the collision-free throughput cannot be guaranteed anymore. Therefore, we

are currently investigating on the risks and benefits of enabling extra slot

allocations, by means of a game-theoretical analysis.

2.3.4 Coloring Algorithms

Coloring algorithms have been widely explored In literature. Some examples

of popular solutions are the Luby’s algorithm [85], the Johanson’s algorithm

[86], and their variants [87].

We consider here the algorithm proposed in [75]. A preliminary exchange

of control information is necessary for evaluating at each node i the global

degree of the network ∆ or the local number of neighbors δi. Let xmax the

global or the local maximum number of available colors. According to the

basic algorithm, each uncolored node has to perform the following steps:

1. First coloring Randomly pick a color from a list of available colors.

2. Conflict Resolution If none of your (1-hop or 2-hop) neighboring nodes

has chosen the same color, keep it as definitive color, otherwise remove

it form the list and try again the next step.

3. List update If the color list is empty, add new colors. The list is updated

starting from min{c+1, xmax} color, where c = max{neighboring node colors}.

This algorithm is called SC algorithm, for recalling its characteristic of first

Selecting a color and then Comparing the selected color with potential inter-

feres.

In order to optimize the number of used colors, we also considered a simple

modification of the previous scheme. Instead of randomly picking a color

from the available ones, each node first updates the list of available colors

(as in the third step of the previous scheme) and then selects the color with



the lowest index. This scheme is called CFA algorithm, since it is based on

Choosing the First Available color. While the nodes belonging to different

cliques cannot interfere because they are allowed to transmit only in different

frame slots, nodes belonging to the same after-coloring clique can hear each

other and have to use a CSMA protocol to share the same frame slot.

In section 2.3.3 we have assumed that nodes sharing the same frame slot have

the same probability to win the contention, i.e. in long terms they obtain

the same number of transmission grants. However, this assumption can be

restrictive. Indeed, nodes could be motivated in using heterogeneous access

probabilities1 for delivering more traffic. For examples, nodes relaying traffic

of many other nodes could need more channel resources than nodes trans-

mitting only their own packets, for preventing buffer overflows and packet

drops. Therefore, here we consider a game-theoretical analysis of intra-clique

contention. While the impact of heterogeneous access probabilities have been

considered for 1-hop wireless networks [88], according to our knowledge this

problem has not been explicitly addressed for multi-hop networks.

2.3.5 Station Utility

We consider a set of N nodes belonging to the same clique and sharing the

same frame slot. Let τi be the slot access probability (i.e. the node strategy)

and let λi be the per-slot packet generation probability of a generic station

i (with i = 1, 2, · · ·N). Since we are not modeling traffic paths and routing

schemes, we assume that λi takes into account both the node internal and

external (i.e. coming from other nodes) packet enqueuing rate and that each

node selects (uniformly) all the neighbor nodes as relays. We also assume that

during the network topology discovery phase, nodes exchange information

about their traffic patterns, thus notifying the resulting λi values to the

neighbor nodes.

A key aspect to be investigated is the definition of the utility function driving

1Heterogeneous access probabilities can be supported by using a protocol such as the
IEEE 802.11 EDCA, which differentiates the channel access probabilities of different traffic
classes, or by configuring non-standard access parameters by means of open-source drivers
accessing the card configuration registers.



the configuration of τi parameters. In single hop networks, such a utility has

been usually expressed in terms of transmission throughput percevied by each

contending node. Being pi = 1−
∏N

j=1(1−τj)/(1−τi) the collision probability

suffered by station i because of other node channel accesses, the transmission

throughput µi of station i can be expressed as τi(1−pi) packets/slot. Under a

utility function Ji = µi, the station best response corresponds to play τi = 1

and the channel resources can be completely wasted whenever at least two

different stations play this strategy.

The transmission throughput has been already proved to be an inconsistent

utility function for bi-directional traffic scenarios [88], where nodes are in-

terested not only in transmitting the locally-generated traffic packets, but

also in receiving the packets generated by the peer application. Therefore,

it is even more inconsistent for multi-hop networks, where the transmission

throughput of a given node directly affects the throughput of the neighbor

nodes using such a node as a relay. In other words, nodes cannot be only

interested in maximizing their transmission rate, since they need to leave re-

sources to the neighbor nodes which will carry their traffic towards multi-hop

destinations.

These considerations motivate the definition of a utility function describing

the whole transport capacity of the clique. Since in our model each node of

the clique exploits all the neighbor nodes as relay, we assume that the clique

nodes are interested in avoiding buffer overflows or bottlenecks at each node

of the system. In other words, being Qi the average queue length of node

i, we define Ji = −maxi=1,2,···N Qi = J ∀i. Being K the buffer size of

each node (expressed in terms of maximum number of packets that can be

accommodated in the buffer), we can express the average queue length of

node i as:

Qi =

{
min{ λi

µi−λi , K} µi > λi

K µi ≤ λi
(2.2)

Since the queue length provides a negative utility (i.e. it represents a cost

for the system in terms of pending packets to be delivered out of the clique),

nodes have to minimize such a length in order to maximize their payoff.



2.3.6 Station Best Response

An important aspect of our utility function formulation is that such a function

is common to all the stations, In fact, since each node has to relay on other

nodes for ultimately delivering and receiving its own traffic, there is no point

in implementing greedy behaviors that prevent neighbor nodes from accessing

the allocated frame slot. Moreover, such a common utility, which represents

the clique transport capacity, prevents other malicious behaviors such as

the signaling of wrong traffic generation rates λi. Being the node induced to

collaborate by the need of maximizing a common utility, we also assume that

in each notification message about neighbor nodes and traffic rates nodes can

also announce their current strategy τi
2.

Consider now a tagged node j of the clique. On the basis of the λi and

τi parameters signaled by all the clique nodes i = 1, 2 · · ·N i 6= j, and

on the basis of its traffic rate λj, the tagged node can implement a best

response strategy based on the evaluation of the per-node queue lengths as a

function of the tagged node strategy τj. Figure 2.2 shows an example of such

evaluations in a scenario with four nodes in which all the traffic rates are

constant and equal to 0.05 packets/slot and K = 100. The curves have been

obtained assuming that the tagged node is node 1 and that τ2 = 0.15, τ3=0.2,

and τ4=0.25. While Q1 is a not increasing function of τ1 (since increasing the

channel access rate node 1 has more chances to deliver its traffic), all the other

queue functions are not decreasing (since neighbor nodes experience higher

collision rates as the tagged node increases its access). For minimizing the

maximum queue length of the system, node 1 has to play τ1 = τ2 = 0.15

that means that has to equalize its queue to the length of the worst neighbor

queue. BeingQj(τj) not increasing withQj(0) = K andQi(τj) not decreasing

with Qi(1) = K ∀i, that such an equalization it is always possible for at least

one strategy τj. Such a strategy is unique if the intersection point between

Qj and the highest Qi curve is in the strictly monotoning range of the curves

(as shown in the figure), while it corresponds to a range of possible values

when the intersection is on the flat region of the curves (i.e. for Qi = K). In

2Such a notification is in principle not necessary, since each node can independently
estimate the access probability of other nodes from channel observations.



Figure 2.2: Queue Length at each node, as a function of the strategy of a
given contending node.

this last case, the tagged node could decide to play the highest τj value of

the range.

Generalizing the previous considerations to the case of heterogeneous λi pa-

rameters, we can implement a best response strategy as follows:

τ brj =

{
λjτx

λx−τx(λx−λj)
Qx < K

λj∏
i 6=j(1−τi)

K+1
K

Qx = K
(2.3)

being x the index of the node experiencing the worst congestion (i.e. the

longest queue). It can be proved that by repeating such a best response

strategy for all the nodes at the reception of the announcement messages, in

a finite number of steps the system converges towards a Nash Equilibrium

(NE) point, in which all the clique queues are equalized. The equilibrium

point is not unique and depends on the initial strategies of the nodes. The

details of such analysis are in [82].

2.3.7 Numerical Results

In order to compare the effectiveness of the slot pre-allocations in
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Figure 2.3: Average throughput under the SC coloring scheme, for different
incompatibility graphs and comparison with standard CSMA/CA.

improving the CSMA/CA performance in multi-hop networks, we run sev-

eral simulations, including both the network coloring phase and the data

transmission phase. Obviously, the throughput performance perceived in a

given network topology are critically affected by the final map of colors and

by the node source rates. For the same network topology, such a final map

depends on the random color selections and/or on the node initialization

choices. Therefore, each run performance can be different and has to be av-

eraged. Note also that in our simulations, we do not consider dynamic node

activations and de-activations, thus running the coloring phase only at the

beginning of the simulation and maintaining the color map for the rest of the

simulation time.

We considered random network topologies of 30 nodes deployed over an area

of 10 · 10m2, with a transmission range of 3m. We observed that the CFA

scheme requires on average 15 different colors when the incompatibility graph

is HE = G2, while it uses 8 colors only for the graph H∅ = G2−G. Conversely,

the SC coloring scheme resulted in an average number of colors equal to 24

for the G2 − G case, and 17 for the G2 − G case. The higher number of



adopted colors has two different effects: on one side it increases the frame

length, thus resulting in a lower rate of node transmission chances; on the

other side it reduces the contention level between 1-hop nodes in case of

G2 −G.

After that each node has been colored, we simulated 5000 channel slots. At

each slot, three different steps are considered: i) generation of traffic packets,

ii) selection of transmitting nodes; iii) verification of transmission outcomes.

At the first step, a new packet is generated in the transmission buffer of

each node i with a fixed probability λi = Rate ∀i. The destination node is

uniformly extracted among the neighbors and no buffer size limit is consid-

ered. At the second step, the simulator processes all the nodes whose color

corresponds to the current slot and extracts uniformly a backoff value for

resolving potential contentions. Since the traffic rate of each node is con-

stant, the backoff range of each node is constant too, in order to implement

a uniform slot access probability within the after-coloring cliques. All nodes

winning the contention are labeled as transmitting. Finally, if the neighbors

of the intended receiver are not transmitting, the transmission is considered

successful and the packet is removed from the buffer. Otherwise, the packet

remains in the buffer until a maximum number of retries (set to 3) has been

reached.

Figures 2.3 and 2.4 compare the per-node average throughput measured in

our simulations, under the SC and CFA scheme, for different incompatibility

graphs (namely, G, G2 and G2 − G). In both the figures we also plot the

CSMA/CA performance. The throughput has been averaged by considering

ten different coloring runs of the coloring schemes, referring to the same net-

work topology. From the figures we can draw some interesting observations.

First, coloring G can be useless, because the carrier sense functionality is

already able to avoid interference among adjacent nodes. For the CFA case,

the performance obtained under the G coloring are even worse than the ones

obtained with the CSMA/CA protocol, because the slot allocations may

synchronize hidden nodes for lower packet generation rates. Second, coloring

G2 can be more efficient (CFA case) or less efficient (SC case) than coloring

G2−G, according to the network topology and to the effectiveness of the col-
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Figure 2.4: Average throughput under the CFA coloring scheme, for different
incompatibility graphs and comparison with standard CSMA/CA.

oring scheme in selecting a limited number of colors and/or leaving a limited

number of bottlenecks. Third, when additional channel slots are allocated as

described in section III-B (the G2+ and G2 −G+ curves of the figures), the

network throughput performance can be further improved.

Finally, to validate the throughput bounds discussed in section III-B, table

2.1 compares the saturation (collision-free) theoretical bounds with the best

throughput values measured (on a given topology) under 10 different CFA

coloring runs.

2.3.8 Conclusions

Coordination among nodes in ad-hoc networks can significantly improves the

transport capacity of the networks, in comparison with simple uncoordinated

CSMA/CA protocols. A simple form of coordination can be provided by pre-

allocating temporal intervals in which different sets of nodes are allowed to

access the shared wireless medium. We have analyzed different solutions in-

troducing such a pre-allocation on the basis of a neighbor discovery protocol



Topology He xe ce ρ̂e/r E[ρe]/r
1 G2 16 30 0.0624 0.0625
1 G2 −G 5 12 0.0792 0.0800
2 G2 13 30 0.0768 0.0769
2 G2 −G 5 11 0.0730 0.0733
3 G2 15 30 0.0666 0.0667
3 G2 −G 5 13 0.0863 0.0867

Table 2.1: Measurements and estimates of throughput.

and distributed coloring schemes requiring limited signaling overheads. We

showed that the performance of these schemes can be critically affected by

the considered incompatibility graph, trading off the contention-level experi-

enced by 1-hop neighbors and the orthogonality guaranteed to hidden nodes.

We are currently working on coupling our framework with a network coding

scheme, able to further improve the transport capacity of each after-coloring

clique in the network. Further extensions are also considered for studying

different traffic models, based on per-path (multi-hop) traffic flows. Dynamic

traffic, changing topologies, mobile nodes and comparison with existing alter-

native algorithms is also under investigation. Moreover we are investigating

the possibility of studying the optimal solution of the posed problems via a

game theoretical approach.

2.4 Optimal Resource Allocation in Multi-

Hop Networks: Contention vs. Schedul-

ing

In this section we present a solution that partition the network and pro-

vide an heterogeneous number of time slots that depends on the total traffic

generated in each subset. The slot number allocation is based on an opti-

mization criterion devised to maximize the minimum throughput perceived

in the network. In the context described in section 3.4, the main problems

to be tackled in this section are the following.



Problem 3. Determine the best partition of the network i.e.: the best number

of subsets in which divide the network and how divide nodes in the subnets.

Problem 4. Determine the best number of time slots to grant to each subnet

in each frame.

2.4.1 System Model

The correlation between nodes in a mesh network (either due to spatial rea-

sons, or to traffic routes) has a more important effect on the final network

performance than the specific evolution of the backoff counter. Therefore,

we propose a system model based on the following simplifying assumptions:

• The time for the backoff countdown and medium sensing is negligible;

• The probability to have the minimum residual backoff counter is uni-

form for all the contending stations, while the probability to have ex-

actly the same residual backoff expiration time is zero.

According to the first assumption, all the contending stations complete their

backoff count-down sequentially (as determined by their backoff counters)

but with negligible time intervals between their transmission grants. In

other words, the time interval ∆ between consecutive transmission grants

is assumed equal to 0 when it accounts for consecutive backoff countdown,

and equal to P for completing the slot when all the stations are in a trans-

mitting or frozen state. When ∆ is equal to P , at the end of the slot all the

stations with non-empty queues switch synchronously to a contending state.

The second assumption implies that visible stations never collide and that

the start of a new slot is a regeneration instant, since all the stations with

traffic are in a contending state at the beginning of the slot with the same

residual backoff distribution.

2.4.2 Transport Model

Under the previous assumptions and that all the stations are saturated we

can evaluate per-node throughput determining transmission events and oc-



currence probability as seen in [89]. The idea is characterizing the occurrence

probability of different transmission events. A transmission event is the col-

lection of the state of each node at a generic time slot, where the node state

is considered equal to 1 if the node is transmitting during the time slot, and

equal to 0 otherwise.

Let A be the set of all the possible values a of transmission events, a(i) the

binary transmitting/frozen state of node i in the transmission event a, and

pA(a) the total probability of event a. For a given transmission event a,

the number of nodes able to receive successfully a frame sent by node i is

Si(a) =
∑n

j=1 a(i)gij
∏n

k=1(1 − gjka(k)), where we consider that the same

frame can be received by all the 1-hop neighbors j for which none of the

relative 1-hop neighbors k is active. We consider the time frame divided

in N time slots and we grant αi time slots to the subnet i, so the nodes

in this subnet have transmission opportunity only in αi time slots every N .

This implies that for computing the average transmission throughput we

have to consider a scale factor αi/N It follows that the average transmission

throughput Si for each node i (in terms of packets/slot) can be obtained as:

Si =
αi
N

∑
a∈A

pA(a)Si(a)

=
αi
N

∑
a∈A

pA(a)
n∑
j=1

a(i)gij

n∏
k=1

(1− gjka(k))
(2.4)

2.4.3 Channel Access Model

In order to implement our hybrid TDMA/CSMA access scheme, we organize

the channel access time in periodic frames composed by N time slots. Time

slots are not exclusively allocated to a single node, but rather are shared

among the set of nodes belonging to the same subnet. Contention is still

used for arbitrating the channel accesses among the subnet nodes.

We define partition of a network the partition of the nodeset V . A partition

of V is a set of subsets of V such that:

• All sets in V are pairwise disjoint: Vi ∩ Vj = ∅ ∀i 6= j



• The union of all the sets forms the whole set V =
⋃
Vi

• None of the sets in V is empty: Vi 6= ∅ ∀i

Our goal is to find both the best partition of the network and the best re-

sources allocation for improving the network performance in terms of through-

put with respect to both pure TDMA and pure CSMA based approaches.

2.4.4 Network Partitioning

Network partitioning substantially affects the network performance. The

number of subsets in which we divide nodes decides how much the medium

access will be scheduled or with contention. In fact if we consider only one

subset, that is the entire network, in all the time slots all nodes will contend

according to CSMA, so this is the case of total contention. Conversely if we

consider a partition formed by n subsets in a network formed by n nodes,

all the subsets are formed by one node only. In this case, each node will

transmit without contention and the system is entirely scheduled. All the

division in a number between 1 and n gives medium access partially scheduled

and partially with contention; our goal is to find the number of subsets with

the best performance. After solving the problem on how many subsets need

to be selected, we have to decide how to divide nodes in subsets. Network

performance may change considerably in different placement of nodes. For

example, because hidden nodes degrade CSMA performance, we would like

to assign hidden nodes to different subsets, so that they will never collide

because they can access the channel in non-overlapping time intervals.

Consider for example a simple network topology with three nodes in a row.

With pure CSMA, it is very likely that the edge (non-visible) nodes will

achieve an almost zero throughput due to the fact that when the first edge

node starts its transmission, the opposite one will decrement its backoff to

zero before the end of the ongoing transmission (thus resulting determin-

istically in continuous collisions). If we consider a fully connected network

formed by 20 nodes we can observe that applying CSMA/CA the network

reach an aggregated throughput of 0.634 pk/slot. If we divide the network



Figure 2.5: Network Topology.

Figure 2.6: Network divided in two random subnets.

in two subnets formed by 10 nodes granting half frame to each subnet the

aggregated throughput will be 0.8595 pk/slot, dividing in 4 we obtain 0.9668

pk/slot, in 10 subsets 0.9945. If we consider TDMA we obtain 1 pk/slot.

These results show that if we consider a fully connected network the best

performance in terms of throughput are obtained scheduling transmissions.

Let me now consider a partially connected network in which there are hidden

nodes. For example consider the network showed in fig. 2.5, formed by 12



nodes randomly distributed over an area of 1m2. In this network applying

CSMA algorithm we obtain an aggregated throughput of 1.15 pk/slot. Di-

viding the network in 2 subnets randomly formed by 6 nodes as showed in

fig. 2.6 ensuring half frame to each subnet, we obtain an aggregated through-

put of 1.82 pk/slot. Dividing the network in 3 subnets randomly formed

Figure 2.7: Network divided in three random subnets.

Figure 2.8: Network divided in two chosen subnets.

by 4 nodes as in fig. 2.7 we obtain 1.90 pk/slot. These results might lead



to think that also in this case scheduling transmissions improve network’s

performance, but if we go on in increasing the number of subsets we note

that aggregated throughput decrease. In table 2.4.4 are showed the values of

Number of subsets aggregated throughput [pk/slot]
1 1.15
2 1.86
3 1.95
4 1.75
5 1.74
6 1.64
7 1.40
8 1.22
9 1.09
10 1.08
11 1.02
12 1

Table 2.2: Comparison between aggregated throughput dividing the network
in subnets.

aggregated throughput dividing the network starting to 1 arriving to 12 sub-

nets. Each value is obtained averaging ten random placement of the nodes in

the subnets. The number of subsets in which we divide the nodes represents

a different tradeoff between contention and scheduling. A small number of

subsets will lead to an higher contention level in each subnet, while a great

number of subnets does not allow spatial reuse. We would like to assign nodes

that may collide to different subsets, so that they can access the channel in

non-overlapping time intervals. Let we now consider the network in fig. 2.5

divided in 2 subnets conveniently formed as showed in fig. 2.8 and ensure half

of frame to each subnet, in this case we reach an aggregated throughput of

2.1 pk/slot, so, maintaining the same number of subnets, but dividing nodes

in a different way we have further improved the performance. This proof

that for finding the best performance we have to choose both the number

of subsets in which divide the network and in which way dividing nodes. If

the partition is limited to two subnets only, being 10 the total number of

network nodes, in principle we have 210 possible combinations for organizing



the node groups, which are reduced to one half of this number if we consider

that throughput performance are invariant to the grouping order. In other

words, the performance is the same if nodes 1 and 2 are in subset 1 and nodes

3 and 4 in subset 2 or if nodes 1 and 2 are in subset 2 and 3 and 4 in subset

1. For each possible combination over the total 29 possible ones, we can then

solve an optimization algorithm in order to decide how many slots allocate

to the first and second subnet in a frame.

We can repeat the same reasoning considering the network divided in three

subnets e go on. An optimization algorithm that determines the optimal

value of subsets in which we can divide the network is NP-Hard [90] [91],

and increasing the number of subsets, full exploration becomes unthinkable

because of the huge number of possible combinations.

For this reason, we have faced the problem according to an heuristic approach

finding some logical rules for dividing the nodes in subnets. If for some

nodes is not possible to decide the destination group because the proposed

rules cannot be applied, we explore all possible decisions by considering as

freedom degree only the decisions about the nodes for which the heuristic

logic cannot decide. This allows to dramatically reduce the exploration space

in comparison to the whole combination set.

Heuristic decision logic. We base our heuristic decision logic on the following

considerations. A first rule to be applied in the subdivision of nodes is trying

to put hidden nodes in different subsets, so that they do not interfere. If

the number of subnets is not enough to separate all the hidden nodes, we

decide the assignment of the pending nodes by considering all the possible

decisions. For example, if we have to divide nodes in two subsets and a given

node is hidden both to a node in the first group and a node in the second

group, the node is considered as a freedom degree and all possible decisions

(assignment to the first group or assignment to the second group) need to

be explored by means of the throughput model described in section III-A. In

general, if the total number of pending nodes is p, we need to consider 2p−1

possible combinations.



2.4.5 Frame Decision Optimization

Recalling the network partitions in fig. 2.8 we can underline that the parti-

tions obtaining the best performance has subsets formed by different number

of nodes. Partitions do not generally include the same number of nodes, and

in generic traffic scenarios, we should also consider the offered load rather

than the number of nodes. It follows that the optimal solution is not ensure

the same number of slot to each subnet. Slot allocation should depend on

traffic demand and throughput achieved in each subnet. In addition to the

number of subsets in which we divide the network and to the grouping of

nodes in these subnets, we have to decide how many time slots in the frame

need to be allocated to each subset. In order to decide how to organize the

frame, because of the size of the problem, it is not possible to explore all the

combinations for each number of subsets. So, we implement the following

optimization algorithm, that we run for each partition of the network.

2.4.6 Optimization problem

The optimization problem is aimed at solving the following issues: i) deter-

mine the best number N of subsets in which divide the network, ii) divide the

nodes in subnets; iii) obtain the best number of time slots αi to be granted

to each subnet i in each frame.

We recall from eq. 2.4 that the throughput is related to the number N

of slots and to the parameter αi, then our problem can be solved with an

algorithm that makes an optimal choice of N and αi to improve the network

throughput.

As possible solution we have considered the maximization of the throughput

for each node achieving the worst performance in the network. In each subnet

i the node presenting the minimum throughput xi is chosen. As described

in section 2.4.1, the throughput is a portion αi

T
of the throughput calculated

with the CSMA algorithm, so we can maximize, varying αi, the minimum

comparing all αi∗xi. The problem becomes a multi-objective integer problem

max-min to be solved as follows:



max min
αi

(α1 ∗ x1, α2 ∗ x2, ..., αn ∗ xn)

s.t
∑

i=1,2,..,n

αi ≤ T

αi ≥ 0 i = 1, 2, ..n

αiinteger

(2.5)

where T is the frame duration, and the sum of time slots αi must be less or

equal to T .

This optimization needs to be applied in all possible combinations in case

of full exploration of the partitioning possibilities, as we have seen in the

previous paragraph.

Because the solution of the above optimization problem which is multi-

objective and integer is not viable, we recast the problem introducing an-

other way to assign the frame to the nodes. In this approach we maximize

the sum in the network of the minimum throughput of each subnet adding

a fairness factor: we grant to each node a throughput grater or equal to a

value that we choose as 1
n

of the sum of minimum throughput. In this way

we obtain the following optimization single-objective integer problem:

max
αi

∑
i=1,2,..,n

αi ∗ xi

s.t
∑

i=1,2,..,n

αi ≤ T

0 ≤ αi ≤ T i = 1, 2, ..n

αiinteger

αixi >
1

n

∑
i=1,2,..,n

xi

(2.6)



2.4.7 Numerical results

We have carried out simulations in random networks formed by 25 nodes

situated in an area of 1 m2 with a range of visibility between nodes varying

from 0, 4 m to 1 m. Varying the radius of visibility we can see how the

hidden nodes influence the network performance: a small radius corresponds

to a lot of hidden nodes, while a radius equal to 1 corresponds to a com-

pletely connected network, without hidden nodes. Simulations are carried

out with MATLAB software and GUROBI extension for the integer opti-

mization algorithm. Each curve in figure 2.9 is the result of an average over

ten simulations.

The algorithm applied for each number of subsets is described schematically

as follows:

0 From the knowledge of G and G2−G, divide nodes in subsets without

assigning hidden nodes to the same subset.

i. Check if we have nodes that we can not assign to a subset according

to the above rule.

ii. In case there are still not assigned nodes, explore all possible combina-

tions of these nodes in subsets.

iii. For each combination (if all nodes have been divided at the first step,

there is only one combination) apply the optimization algorithm.

iv. Check if there exist nodes presenting a throughput equal to zero, and

then try all possible combinations repeating from step 2.

v. Evaluate the best configuration solving an optimization problem for

each number of subnets in the partition.

In figure 2.9 the simulation results are depicted. In y axis we represent the

aggregated throughput, that is the sum of the node’s throughput in a subnet.

In the figure we represent the maximum value of aggregated throughput for

each number of subsets in the partitions. In x axis we see the number of sub-

sets in which the network is divided, starting from 1 subnet, that is the entire



network, in which medium access is completely contended between nodes, up

to 25 subnets, in which each subnet is formed by one node, corresponding

to an entirely scheduled access. Dividing the network in subnets it can be

shown that it is possible to obtain a throughput improvement with respect

both to an entirely contention access and to an entirely scheduling access.

Considering the curve with radius of visibility 0.4 m and dividing the network

in 2 subsets we obtain an aggregated throughput of 2.6 pk/node/slot, while

with CSMA we obtain 1.35 and with TDMA 0.12. The minimum throughput

obtained dividing in 2 subnets is 0.0426, while with CSMA is 0.0063 and with

TDMA is 0.04. The maximum throughput obtained dividing in 2 subnets is

0.2, while with CSMA is 0.1 and TDMA is 0.04. So we can see that dividing

the network in two subnets we improve all these values.

In table 2.4.7 we show the comparison between the optimal values of through-

put obtained with our algorithm and with the throughput obtained, respec-

tively, with CSMA end TDMA for all the considered radius of visibility.

These values are obtained as average of ten simulation with random topolo-

gies.

We note that the effectiveness of the hybrid CSMA/TDMA scheme improves

as the visibility radius becomes smaller, because in these conditions the im-

pact of hidden nodes is more relevant.

thr aggr
radius opt alg CSMA TDMA

0.4 2,64 1,35 0,13
0,5 2,06 1,14 0,12
0,6 1,44 0,70 0,12
0,7 1,07 0,59 0,12
0,8 0,95 0,56 0,12
0,9 0,92 0,55 0,12
1 0,81 0,71 0,04

Table 2.3: Comparison between the obtained (max, min, aggregated) optimal
values of throughput with the one obtained with, respectively, CSMA end
TDMA changing of the radius of visibility.
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Figure 2.9: Aggregated throughput varying node’s subset.

2.4.8 Conclusion

CSMA/CA shows poor performance in presence of hidden nodes. A form

of coordination among nodes can improve the network performance. In this

paper, we propose a novel algorithm presenting through an integer opti-

mization algorithm an equilibrium between contention and scheduling for

allocating optimally resources in multi-hop networks. The idea is to split

nodes in subsets transmitting in different time slots. Nodes inside a subnet

contend medium according CSMA algorithm. We have showed simulation

results proving that this method improves the network performance in terms

of throughput both respect to CSMA and TDMA algorithms. We are still

working on finding better algorithm for dividing nodes in subnets in order to

further improve network throughput.



Chapter 3

Frequency Planning

3.1 Introduction

The flexibility, low cost and ease of deployment offered by WLANs has been

a major factor in their widespread deployment and popularity. For designing

an efficient WLAN to optimize factors as access point (AP) locations, chan-

nel assignment and frequency planning is of primary importance. In this

chapter we arrive to analyze the network performance at the physical layer,

presenting a novel distributed algorithm for frequency planning. The mecha-

nism proposed is based on a machine learning technique in which each node

choose automatically and autonomously the channel. The algorithm does not

need to exchange of informations between nodes, and it adapt the planning

when conditions, such as topology change. The IEEE 802.11 (a/b/g) based

networks operate in the unlicensed ISM band in the 2.4 GHz and 5 GHz

frequencies. The 2.4 GHz band is divided into 11 channels with the channel

number indicating the center frequency. For example, channel 1 is at 2.412

GHz. The basic 802.11 and the 802.11b extension use the Direct Sequence

Spread Spectrum (DSSS) which takes about 22 MHz of bandwidth on each

side of the center frequency. However, the channel center frequencies are

spaced only 5 MHz apart. Thus, a single channel overlaps with up to 4 suc-

cessive neighboring channels. As a result, the 2.4 GHz ISM band has only 3

non-overlapping channels, 1, 6 and 11. The overlap among adjacent channels
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is typically detrimental in nature. For example, a transmission on channel

1 will interfere with transmissions in the vicinity on an adjacent. In recent

years the use of WLAN has always been growing, as well as the density of

APs, so the availability of only three orthogonal channels has made frequency

channel a crucial task. The problem of network planning and frequency reuse

in cellular networks is typically modeled as a graph-coloring problem, where

each graph vertex represents a different AP, each edge represents potential

interferences, and the colors represent the number of non-overlapping chan-

nels. Goal of the planning is to cover all the APs in the network, with the

minimum number of channels. However, in the case of multi-cellular WLAN,

there are some peculiarities which need to be taken into account, especially

for the 802.11b PHY layer, which makes available only three orthogonal chan-

nels. On one side the 802.11 access protocol is very robust to the interference,

thanks to the carrier sense function which prevents the access to the channel

whenever a source of interference is active. This means that the carrier sense

function makes orthogonal two interfering channels, by operating a time di-

vision access, and stations in two interfering cells receive almost the same

performance as they were utilizing the same channel. On the other side, in

case of misplacing of the interfering cells, the same carrier sense function

can very dramatically degrade the performance of some cells of the network.

Using orthogonal channels can alleviating contention and interference lead-

ing to substantial performance improvement. However, this also gives rise to

non-trivial channel coordination issues, and the variability in the achievable

data-rates across channels and links make the plan more difficult. Currently,

network administrators often manually decide on a static channel assignment

for APs based on RF profiles [105]. However, traffic loads in a network tend

to vary with time, and consequently, such assignments do not result in the

best performance. Computing an optimal schedule, even in a single-channel

network, is almost always intractable, due to the need for global information,

as well as the computational complexity [92]. For mitigating interference in

WLAN a mechanism that could be used is power control. 802.11 APs support

power adaptation, each AP can tune the transmission power for communicat-

ing with its clients [94, 95, 96], but this approach may introduce throughput

starvation due to asymmetric link. Further, although utility based power



control methods produce optimal network throughputs, they require frequent

message exchange between nodes and also easily produce severe unfairness to

individual node’s throughput [101] depending on the topological conditions

of the network. Another approach is to enable routers with multiradio (MR)

multichannel (MC) access. To enable the concurrent transmissions via mul-

tiple radios transmitting over orthogonal channels simultaneously, the key

problem is the channel scheduling. The benefits of using multiple radios and

channels have been theoretically studied in [97, 98, 99] in which is showed the

achievable throughput in MR-MC networks. In [99] is proved that the com-

plexity of general channel assignment problems is exponential in the number

of wireless links. In [100], the authors propose a channel scheduling algorithm

based on a network partitioning. They proposed an algorithm that identifies

and protects against interference links that are most critical. This approach

is simple and results in polynomial-time problem formulation, but all the

links in a partition are fixed to a common channel, so this solution is not

flexible and does not reach optimal throughput. Joint scheduling and power

control problem has been also proposed [102, 104], but [102] demonstrated to

be a NP-complete problem that requires a global knowledge on the network

which makes it difficult be applied to ad-hoc networks that do not have a cen-

tral coordinating node. Moreover the complexity of these algorithms grows

exponentially with the number of nodes. [103] proposes an algorithm based

on joint scheduling and power control problem employing a simple greedy

algorithm that autonomously groups nodes into a number of subgroups for

scheduling for a time division multiple access. This algorithm is fully dis-

tributed and requires limited message exchange between nodes, but does not

obtain optimal results. In [106] is described a scheduling algorithm for MC

MR wireless networks that requires information about per-channel queues

at all interfering links. This provides a strong motivation for the study of

scheduling algorithms that can operate with limited information.

For a small network in a limited area, only manufacturer’s information on

the coverage range is sufficient to deploy the APs. For a larger network, a

more accurate deployment procedure is required to ensure sufficient coverage

and network functionality (bit rate, capacity, interference, etc.). Basically

there are two approaches. The first is based on a site survey with a lot of
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Figure 3.1: An example of frequency planning based on the interference
observed by the Access Points.

measurements and experimental decisions. The second method comprises of

software planning using propagation models [93].

In this chapter we present a novel distributed protocol based on a ma-

chine learning mechanism in which the nodes choose, automatically and au-

tonomously in each time slot, the optimal channel for transmitting through

a weighted combination of protocols. Respect to the solutions proposed in

literature we obtain optimal results without adding any exchange of infor-

mations between nodes and following the network in changing conditions.

3.2 Dynamic Frequency Planning

3.2.1 Motivations

As discussed in the previous section, the problem of frequency planning in

WLANs has some peculiarities because of the small number of available chan-

nels in the 2.4GHz bands and the high-density of Access Points (APs) usu-

ally deployed. In these conditions, it is very likely that multiple interfering

cells are configured on the same channel. Although the carrier sense mecha-

nism allows the coexistence of interfering cells, cell capacity can be unevenly



allocated in different cells. Moreover, some stations can be significantly im-

paired by hidden node transmissions or flow-in-the-middle problems. These

phenomena are difficult to predict, because the APs (which decide about

the cell operating channel) can estimate the interference conditions suffered

in the cell only locally, while interference can vary drastically for different

receiver positions.

Consider for example the scenario depicted in figure 3.1. Four APs are de-

ployed in the same area according to the visibility graph represented by the

dashed links (e.g. APA can sense APB and APC transmissions, but not APD

ones). Assuming that only three channels are available, it is possible that

APA and APD select the same operating channel (e.g. the red one, while

APB and APC are configured on the orthogonal channels blue and green).

Under this hypothesis, the station associated to APD will experience a very

low throughput, because APA is hidden to APD and its transmissions can

collide with APD with high probability. Being APC cell empty, a better

choice could have been to tune APD on the green channel. In case APC cell

becomes congested, performance can be improved by moving APD on the

blue channel. It follows that it is difficult to find the best possible plan-

ning by only considering the interference experienced by the APs. Moreover,

since stations can move during their activity and traffic sessions activate/de-

activate dynamically, it does not exist a fixed frequency planning for which

the cell performance is always optimal.

Consider now another example in which four APs are all in radio visibility

(e.g. in figure 3.1, APD can also sense APA, and APB can sense APC). Since

in the 2.4GHz bands only three channels are available, any fixed planning

will configure two cells on two independent channels and two cells on the

same channel. This implies that the cells working on an exclusive channel

can achieve the maximum channel capacity, while the cells sharing the same

channel can achieve one half of the channel capacity. Resource allocation

can be improved under time-varying channel assignments. For example, by

periodically switching each AP to a different channel, it is possible to al-

ternatively work on an exclusive channel or on a shared channel in order to

allocate 3/4 of the channel capacity in each cell.
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Figure 3.2: An example of dynamic (synchronous and asynchronous) channel
switching performed at each beacon interval.

We conclude that a time-varying selection of the operating channel in each

cell can be beneficial for optimizing the utilization of the wireless resources

and for improving the fairness of resource allocation.

3.2.2 Supporting Channel Switching

Figure 3.2 shows an example of dynamic channel selection. Each AP notifies

the decision about the channel switch in the beacon frame, by means of a

special information element (IE). A similar information element, called chan-

nel switch announcement element, has been already included in the 802.11s

extensions, for tuning all the nodes belonging to a mesh network on the same

channel, and in the 802.11n extensions for moving from 20MHz to 40MHz

channels or vice versa. In principle, a new operating channel can be selected

at each beacon interval, while multiple beacon intervals can be considered

for minimizing the overhead due to the time required for switching to a

novel channel. In the figure, two APs transmit their beacon simultaneously,

thus synchronizing their channel switches, while a third AP sends its bea-

con slightly later. Obviously, this second condition is more realistic, because

beacon frames contend for the medium access in each cell and can experience

random delays from the expected transmission time. Thus, even synchroniz-

ing the expected transmission times, the final transmissions are not generally

synchronized. In the following, we will consider both the ideal case of syn-

chronous transmissions and the realistic case of asynchronous transmissions



among the cells.

3.3 Learning Scheme

Consider a network formed by n APs potentially interfering in transmis-

sions with nodes associated with them. Our idea is to define a frequency

plan through a distributed machine learning mechanism so that the interfer-

ing AP will transmit in orthogonal channel without interfere. The adopted

mechanism is based on Meta-MAC-Protocol [107], that is a systematic and

automatic method to dynamically combine any set of existing MAC protocols

into a single higher layer. The mechanism proposed in Meta-MAC-Protocol

is to decide if to transmit or not in a time-slot through a weighted combina-

tion of MAC protocols. After the transmission, the Meta-MAC evaluate the

performance of each protocol discounting the weights of protocols that was

wrong. Motivated by this idea, we implement the combination at Physical

layer rather than for MAC access. We consider the combination of protocols

that decide if transmit or not in a channel. We consider a time-slotted system

with three orthogonal channel, for example channel 1, 6 and 11. In each slot

every node will choose automatically and autonomously the optimal channel

for transmitting. Each protocol says to transmit in a different channel. As

showed in fig.3.3, every node attributes a weight to each protocol, the deci-

sion whether or not to transmit in a channel at a given time is reached by

appropriately combining the three protocols. Initially each protocol has the

same weight and each channel is a good candidate for the transmission; at

the end of each slot each node will check the channel performance. If the

transmission is not successful the node will penalize the channel for the next

slot discounting the weight of the related protocol, decreasing the probability

of choosing the same channel in the next slot. The algorithm is run locally at

each node and it does not need information from other nodes. We consider

two possible variations of the protocol:

• synchronous mode: time slots of nodes are contemporary, a synchro-

nization mechanism is necessary.



• asynchronous mode: time slots of nodes are not contemporary. We

assume that the difference between the begin of a slot of each couple

of adjacent nodes is minor respect the duration of a time slot.

We consider three protocols:

p1 = [1 0 0]′

p2 = [0 1 0]′

p3 = [0 0 1]′

The component equal to 1 says in which channel the protocol wants to trans-

mit. The decision is computed as a function of the weighted average of the

three protocols:

d(i) =

∑
k w(k, i) ∗ p(:, k)∑

k w(k, i)
(3.1)

where w(k,i) is the weight of k component of the protocol at node i. Decide

the channel: given a random number a the decision is:

• dt(:, i) = [1 0 0]′ if a ≤ d(1);

• dt(:, i) = [0 1 0]′ if a ≤ d(1) + d(2)

• dt(:, i) = [0 0 1]′ if a ≤ d(1) + d(2) + d(3)

At the end of each time slot we evaluate if the decision made in the time

slot was right in order to update the weight. At this end we have to define

when a decision is correct. We consider two versions of the protocol. In a

first version we consider a decision right only if the node transmit without

collisions. In a second version, CSMA/C compliant, we consider two cases

of right decision: if the node made a successful transmission, or if the node

have not transmitted because of carrier sense. Let yt denote the feedback.yt = 1 if the decision was right;

yt = 0 if the decision was wrong;
(3.2)
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Figure 3.3: Operation of the algorithm.

If the protocol made the right decision: if the node transmitted successfully

z(i) = p(i) otherwise z(i) = [0 0 0]′ and update the weight: for each protocol

k

δ =
∑
c

|z(c)− p(c, k)|

for each node i and each protocol k:

w(k, i) = w(k, i) ∗ exp(−η ∗ δ)

η is a parameter that define the speed of the weight update. The term δ

represent the deviation of the protocol k from the correct decision: if this

deviation is zero, then the weight of the protocol remains unchanged, other-

wise it decreases its weight such that with increasing errors the decrement

grows. Due to the normalization in equation 3.1, after each slot, the relative

weight of protocols that made the right decision will grows. In this way,

the weights essentially reflect the credit history of the component protocols.
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Figure 3.4: Frequency plan in synchronous protocol without Carrier Sense.

Because the weights decrease exponentially but never grows, if a protocol

reach weight 0 it can not be choose in next time slots. If network conditions

change this can become the right choice. So for maintaining all channel a

possible choice (even if improbable) we set a minimum value below which no

weight can drop. Renormalization does not change the relative sizes of the

weights, and since they are only used in a normalized way in computing the

combined value only their relative size matter.

We now summarize the steps of the protocol:

• Initialization: set all weights to 1;

• At the beginning of the slot each node i compute the component deci-

sion

d(i) =
∑
k

w(k, i) ∗ p(:, k)

• At the end of the slot (that is at the same time at each node) the

nodes evaluate if the protocol made the right decision z(i): if the node

transmitted successfully z(i) = p(i) otherwise z(i) = [0 0 0]′ and update



Figure 3.5: time slots in asynchronous mode.

the weight: for each protocol k

δ =
∑
c

|z(c)− p(c, k)|

for each node i and each protocol k:

w(k, i) = w(k, i) ∗ exp(−η ∗ δ)

For the proof of the convergence of the algorithm we refer to the proof in [107]

that is fully applicable also in our version. A key, and not trivial, point in this

algorithm is to decide when a protocol made the right decision. In all versions

if the node transmits successfully the decision is considered right. While in p1

and p3 all other decisions are wrong, in p2 and p4, CSMA compliant, if carrier

sense detects that a node in its range of visibility is transmitting in the same

channel chosen by node i it decides not to transmit: dt(:, i) = [0 0 0]′. When

the node evaluate if the protocol made the right decision z(i) if the node

decided to not transmit because of carrier sense the decision is considered

right z(i) = p(i).

Another problem that we faced is the synchronization between nodes: if

nodes are not synchronized, time slots in different nodes present not syn-



chronized initial and end times instant, and the probability of collisions in-

creases. As we can see in fig. 3.5 in an asynchronous environment, provided

node 1 has chosen the frequency channel, node 2 in its time slot 2, can have

collisions in both time slot 2 and time slot 3 of node 1, depending on the

frequency channel it just decided. Moreover, collisions with node 3 can still

happen, depending on the decision of the node 3 itself in its time slot 1 and

2. Generalizing at time slot t node i we have to check possible collisions

between:

d(i, t) and:

• d(j, t)

• d(j, t+ 1) when j < i

• d(j, t− 1) when j > i

We consider four versions of the protocol:

• p1: Syncronous without Carrier sense

• p2: Syncronous with Carrier sense

• p3: Asyncronous without Carrier sense

• p4: Asyncronous with Carrier sense

In the next section we show numerical results obtained applying the four

versions of the protocol.

3.4 Numerical Results

In this section we show results in a network formed by ten APs. Simulations

are carried out in Matlab. We have considered various networks formed by

several nodes starting from 3 up to 30 nodes in different situations. The

algorithm in all cases reached the optimal planning. Consider the matrices



Figure 3.6: Number of packets successfully transmitted in 300 TS from each
node comparing results obtained keeping in count or not traffic load in syn-
chronous mode.

G representing interfering conditions:

G= 

0 1 0 0 0 0 1 0.8 0 0

1 0 1 0 0 0 0 1 0 0

0 1 0 1 0 0 0 0.2 0 0.1

0 0 1 0 0.6 0 0 0 0 1

0 0 0 0.6 0 1 0 0 0 1

0 0 0 0 1 0 1 0 0.7 0

1 0 0 0 0 1 0 1 0 0

0.8 1 0.2 0 0 0 1 0 1 0

0 0 0 0 0 0.7 0 1 0 1

0 0 0.1 1 1 0 0 0 1 0


Each term Gij represents the probability of interference of transmissions be-

tween AP i and AP j and their respective stations. The probabilities showed

in G keep in count network load. Clearly we need this matrices only for

modeling the collisions that occur in the network. In a real implementation

we do not need of information about network topology or interference, in

that case we only check if collisions occur.
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Figure 3.7: Frequency plan in synchronous protocol with Carrier Sense.

We now show results for the four protocols analyzed. Initially nodes choose

randomly the channel, passing time the probability of choosing the optimal

channel grows, and after some time slots, maintaining network condition

stable, each node choose the same channel in all time slots. If the network

conditions change for example because of a mobility network, or the switch on

of a new AP, the weights will change and the protocol will find a new regime.

The parameter η influences how many fast weights will change. Considering

η = 0.25 we reach convergence in about 50 steps in synchronous mode and

about 150 steps in asynchronous mode. The number o steps for reaching the

convergence does not increase with the network size, and in our experiments

maintain these values also in networks formed by 30 nodes. In asynchronous

mode we have a longer transitory because as we said in section 3.3 in this

case we have a grater number of possible collisions, and to find the optimal

solution is more difficult. In fig. 3.4 is showed the frequency plan obtained

applying p1 protocol in regime’s condition. The three different colors rep-

resent the three different orthogonal channels. We can see that potentially

interfering transmissions are scheduled in different channels. In fig. 3.6 and

3.8 are showed the node’s throughput, respectively, in synchronous and asyn-



chronous mode. In blue we represent node’s throughput obtained applying

the algorithm considering network load, in red considering only potentially

interferences. It is evident from numerical example that the applications of

the algorithm that considers the network load can considerably improve the

performance.

In fig. 3.7 the resulting frequency plan, obtained applying p3, has been de-

picted. We consider a new matrices CS to keep in count the carrier sense. In

this example we have considered nodes 1 and 2, and 3 and 4 in radio visibility.

In this case we see that nodes 1 and 2 have chosen the same channel, and this

could appear an error, because according to G they could interfere, but they

are also in radio visibility, so carrier sense could manage transmissions be-

tween them. Comparing synchronous and asynchronous mode we note that

the first protocol gives better performance in terms of convergence rate and

obtained per-node throughput. This result was predictable, as we know that

in literature every synchronized algorithm gives better performance respect

to its asynchronous version, but in a real environment often is difficult, or not

possible, synchronize the nodes, and our asynchronous version still provides

good performance. In the next section we show the results obtained applying

in a real testbed the results obtained with our algorithm.

3.5 Experiments in a real testbed

3.5.1 Experiment Methodology

For further validate our algorithm we have applied in a real testbed the

results obtained with our algorithm. We have considered a network formed

by 6 AP with a station associated to each AP. We firstly have evaluate the

matrices of interferences at each station, that is a matrices 6∗6 in which each

row represents a station and each column the interference given by each AP.

The value of the cross between a station with its AP is set to 0. We apply

p2 algorithm for obtained results CSMA compliant. In the testbed we only

apply the frequency plan obtained with the algorithm, so at this step using

synchronous or asynchronous mode is indifferent. In our experiment scenario



Figure 3.8: Number of packets successfully transmitted in 300 TS from each
node comparing results obtained keeping in count or not traffic load in asyn-
chronous mode.

we have designed a multi-AP network were the position/transmission power

of each node has been chosen to provide the desired connectivity map. The

experiments consists of a saturation at fixed unicast 802.11 data transmission

(6 Mbps of modulation rate and 1470B of data payload size). We compared

three different channel planning:

• no channel planning, each AP works on the same channel;

• a reasonable channel planning without using the proposed algorithm;

• the channel planning of a converged network that uses our algorithm.

in fig 3.9 the connectivity map of APs is depicted. Each AP is a iMinds lab

embedded GNU/Linux Systems equipped with atheros AR900x IEEE 802.11

a/b/g/n COTS NICS. REACT algorithm [78] that is a distributed algorithm

for dynamical resource allocation, has been implemented on NIC O.S. drivers

using several statistics metrics given by the hardware such as receiving frame

counts (RTS,CTS, Data-frame, ACK,...) and busy-time estimation for mod-

eling the network’s conditions.
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Figure 3.9: Network Topology.

3.5.2 Results

Applying the channel balancing algorithm in a static scenario we obtain a

steady state situation where each AP has a fixed channel assignment of three

orthogonal channels. In our experiments we denote with ch1, ch2, ch3 these

channels.

In the first experiment, no channel planning is provided, all APs transmit
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Figure 3.10: Standard DCF transmission.



on the same channel. In fig.3.10 we depict the behavior of a standard trans-

mission throughput. The different performances depend on the position of

AP in relation with the position of the stations. All nodes present different

throughputs, there is an AP (labeled in the figure as B) that can not trans-

mit and the node that achieves the maximum throughput reaches about 4

Mbit/sec.

In fig.3.11 a reasonable non-automated planning is provided. We can see
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Figure 3.11: Arbitrary Frequency planning.

that 5 APs reach about 5 Mbit/sec, but an AP has a throughput of about 4

Mbit/sec (that is the minimum in this scenario but greater than the maxi-

mum in the precedent scenario).

In fig.3.12 we show the results obtained applying the planning obtained

with our algorithm. It has been showed that not only we have a fair situa-

tion in which all nodes achieve, more or less, the same throughput, but they

reach the maximum value obtained applying the precedent non-automated

planning.

3.6 Conclusions

In this chapter we have presented a novel protocol based on a distributed

machine learning mechanism in which the nodes choose, automatically and
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Figure 3.12: Frequency Planning.

autonomously in each time slot, the optimal channel for transmitting through

a weighted combination of protocols. The proposed algorithm could works

both in synchronous and asynchronous mode. We have showed numerical

and experimental results that have both proven the algorithm’s effectiveness.

While in the actual experiments we have applied the results of the planning,

in future works we will implement the algorithm directly in the nodes of

the testbed. We expect that results further improve, because an 802.11 APs

implementing CSMA/CA knows if a transmitted packet has been successfully

transmitted, while for update of the weights in machine learning mechanism

we evaluate if a transmission was successfully through a mathematical model

of the real environment, that obviously is only an approximation of the real

conditions.



Conclusions

Motivated by the increasing importance of WLAN, in this thesis we have

approached some performance optimization in WLAN at different layer of

the OSI model. At Network layer, starting from a Hybrid System model-

ing the flow of traffic in the network, we propose a Hybrid Linear Varying

Parameter algorithm to identify the link quality. To validate the model, nu-

merical results have been presented. In future works, we will implement an

on-line version to evaluate the link quality, that could be used as a metric

in routing algorithms. At Data Link, we have presented two algorithms for

MAC access based on a combination between TDMA and CSMA. We di-

vide the nodes in subnets, scheduling transmissions of subnets in different

time slots, and performing CSMA behind a subnet. In the first solution

a game theoretical study of intra slot contention is introduced, in the sec-

ond solution we apply an optimization algorithm to find the optimal degree

between contention and scheduling. Numerical results show that both the

solutions presented improve network performance with respect to both total

contented and total scheduled approaches. Finally we analyze the network

performance at Physical Layer. We have presented a novel protocol based

on a distributed machine learning mechanism in which the nodes choose,

automatically and autonomously in each time slot, the optimal channel for

transmitting through a weighted combination of protocols. We have pro-

vided numerical results showing the optimality of our algorithm. We have

presented also experimental results obtained applying the offline evaluated

planning and we have reached better performance with respect to both pure

DCF and a reasonable planning evaluated without the algorithm. In future

work we will implement the algorithm in a real testbed.
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