7,030 research outputs found

    A Multi-Game Framework for Harmonized LTE-U and WiFi Coexistence over Unlicensed Bands

    Full text link
    The introduction of LTE over unlicensed bands (LTE-U) will enable LTE base stations (BSs) to boost their capacity and offload their traffic by exploiting the underused unlicensed bands. However, to reap the benefits of LTE-U, it is necessary to address various new challenges associated with LTE-U and WiFi coexistence. In particular, new resource management techniques must be developed to optimize the usage of the network resources while handling the interdependence between WiFi and LTE users and ensuring that WiFi users are not jeopardized. To this end, in this paper, a new game theoretic tool, dubbed as \emph{multi-game} framework is proposed as a promising approach for modeling resource allocation problems in LTE-U. In such a framework, multiple, co-existing and coupled games across heterogeneous channels can be formulated to capture the specific characteristics of LTE-U. Such games can be of different properties and types but their outcomes are largely interdependent. After introducing the basics of the multi-game framework, two classes of algorithms are outlined to achieve the new solution concepts of multi-games. Simulation results are then conducted to show how such a multi-game can effectively capture the specific properties of LTE-U and make of it a "friendly" neighbor to WiFi.Comment: Accepted for publication at IEEE Wireless Communications Magazine, Special Issue on LTE in Unlicensed Spectru

    Experimentation with MANETs of Smartphones

    Full text link
    Mobile AdHoc NETworks (MANETs) have been identified as a key emerging technology for scenarios in which IEEE 802.11 or cellular communications are either infeasible, inefficient, or cost-ineffective. Smartphones are the most adequate network nodes in many of these scenarios, but it is not straightforward to build a network with them. We extensively survey existing possibilities to build applications on top of ad-hoc smartphone networks for experimentation purposes, and introduce a taxonomy to classify them. We present AdHocDroid, an Android package that creates an IP-level MANET of (rooted) Android smartphones, and make it publicly available to the community. AdHocDroid supports standard TCP/IP applications, providing real smartphone IEEE 802.11 MANET and the capability to easily change the routing protocol. We tested our framework on several smartphones and a laptop. We validate the MANET running off-the-shelf applications, and reporting on experimental performance evaluation, including network metrics and battery discharge rate.Comment: 6 pages, 7 figures, 1 tabl

    Sharing of Unlicensed Spectrum by Strategic Operators

    Full text link
    Facing the challenge of meeting ever-increasing demand for wireless data, the industry is striving to exploit large swaths of spectrum which anyone can use for free without having to obtain a license. Major standards bodies are currently considering a proposal to retool and deploy Long Term Evolution (LTE) technologies in unlicensed bands below 6 GHz. This paper studies the fundamental questions of whether and how the unlicensed spectrum can be shared by intrinsically strategic operators without suffering from the tragedy of the commons. A class of general utility functions is considered. The spectrum sharing problem is formulated as a repeated game over a sequence of time slots. It is first shown that a simple static sharing scheme allows a given set of operators to reach a subgame perfect Nash equilibrium for mutually beneficial sharing. The question of how many operators will choose to enter the market is also addressed by studying an entry game. A sharing scheme which allows dynamic spectrum borrowing and lending between operators is then proposed to address time-varying traffic and proved to achieve perfect Bayesian equilibrium. Numerical results show that the proposed dynamic sharing scheme outperforms static sharing, which in turn achieves much higher revenue than uncoordinated full-spectrum sharing. Implications of the results to the standardization and deployment of LTE in unlicensed bands (LTE-U) are also discussed.Comment: To appear in the IEEE Journal on Selected Areas in Communications, Special Issue on Game Theory for Network

    MAC design for WiFi infrastructure networks: a game-theoretic approach

    Full text link
    In WiFi networks, mobile nodes compete for accessing a shared channel by means of a random access protocol called Distributed Coordination Function (DCF). Although this protocol is in principle fair, since all the stations have the same probability to transmit on the channel, it has been shown that unfair behaviors may emerge in actual networking scenarios because of non-standard configurations of the nodes. Due to the proliferation of open source drivers and programmable cards, enabling an easy customization of the channel access policies, we propose a game-theoretic analysis of random access schemes. Assuming that each node is rational and implements a best response strategy, we show that efficient equilibria conditions can be reached when stations are interested in both uploading and downloading traffic. More interesting, these equilibria are reached when all the stations play the same strategy, thus guaranteeing a fair resource sharing. When stations are interested in upload traffic only, we also propose a mechanism design, based on an artificial dropping of layer-2 acknowledgments, to force desired equilibria. Finally, we propose and evaluate some simple DCF extensions for practically implementing our theoretical findings.Comment: under review on IEEE Transaction on wireless communication

    Modeling the relationship between network operators and venue owners in public Wi-Fi deployment using non-cooperative game theory

    Get PDF
    Wireless data demands keep rising at a fast rate. In 2016, Cisco measured a global mobile data traffic volume of 7.2 Exabytes per month and projected a growth to 49 Exabytes per month in 2021. Wi-Fi plays an important role in this as well. Up to 60% of the total mobile traffic was off-loaded via Wi-Fi (and femtocells) in 2016. This is further expected to increase to 63% in 2021. In this publication, we look into the roll-out of public Wi-Fi networks, public meaning in a public or semi-public place (pubs, restaurants, sport stadiums, etc.). More concretely we look into the collaboration between two parties, a technical party and a venue owner, for the roll-out of a new Wi-Fi network. The technical party is interested in reducing load on its mobile network and generating additional direct revenues, while the venue owner wants to improve the attractiveness of the venue and consequentially generate additional indirect revenues. Three Wi-Fi pricing models are considered: entirely free, slow access with ads or fast access via paid access (freemium), and paid access only (premium). The technical party prefers a premium model with high direct revenues, the venue owner a free/freemium model which is attractive to its customers, meaning both parties have conflicting interests. This conflict has been modeled using non-cooperative game theory incorporating detailed cost and revenue models for all three Wi-Fi pricing models. The initial outcome of the game is a premium Wi-Fi network, which is not the optimal solution from an outsider's perspective as a freemium network yields highest total payoffs. By introducing an additional compensation scheme which corresponds with negotiation in real life, the outcome of the game is steered toward a freemium solution
    • …
    corecore