The introduction of LTE over unlicensed bands (LTE-U) will enable LTE base
stations (BSs) to boost their capacity and offload their traffic by exploiting
the underused unlicensed bands. However, to reap the benefits of LTE-U, it is
necessary to address various new challenges associated with LTE-U and WiFi
coexistence. In particular, new resource management techniques must be
developed to optimize the usage of the network resources while handling the
interdependence between WiFi and LTE users and ensuring that WiFi users are not
jeopardized. To this end, in this paper, a new game theoretic tool, dubbed as
\emph{multi-game} framework is proposed as a promising approach for modeling
resource allocation problems in LTE-U. In such a framework, multiple,
co-existing and coupled games across heterogeneous channels can be formulated
to capture the specific characteristics of LTE-U. Such games can be of
different properties and types but their outcomes are largely interdependent.
After introducing the basics of the multi-game framework, two classes of
algorithms are outlined to achieve the new solution concepts of multi-games.
Simulation results are then conducted to show how such a multi-game can
effectively capture the specific properties of LTE-U and make of it a
"friendly" neighbor to WiFi.Comment: Accepted for publication at IEEE Wireless Communications Magazine,
Special Issue on LTE in Unlicensed Spectru