681 research outputs found

    Scheduling in cloud manufacturing systems: Recent systematic literature review

    Get PDF
    Cloud Manufacturing (CMFg) is a novel production paradigm that benefits from Cloud Computing in order to develop manufacturing systems linked by the cloud. These systems, based on virtual platforms, allow direct linkage between customers and suppliers of manufacturing services, regardless of geographical distance. In this way, CMfg can expand both markets for producers, and suppliers for customers. However, these linkages imply a new challenge for production planning and decision-making process, especially in Scheduling. In this paper, a systematic literature review of articles addressing scheduling in Cloud Manufacturing environments is carried out. The review takes as its starting point a seminal study published in 2019, in which all problem features are described in detail. We pay special attention to the optimization methods and problem-solving strategies that have been suggested in CMfg scheduling. From the review carried out, we can assert that CMfg is a topic of growing interest within the scientific community. We also conclude that the methods based on bio-inspired metaheuristics are by far the most widely used (they represent more than 50% of the articles found). On the other hand, we suggest some lines for future research to further consolidate this field. In particular, we want to highlight the multi-objective approach, since due to the nature of the problem and the production paradigm, the optimization objectives involved are generally in conflict. In addition, decentralized approaches such as those based on game theory are promising lines for future research.Fil: Halty, AgustĂ­n. Universidad de la RepĂșblica; UruguayFil: SĂĄnchez, Rodrigo. Universidad de la RepĂșblica; UruguayFil: VĂĄzquez, ValentĂ­n. Universidad de la RepĂșblica; UruguayFil: Viana, VĂ­ctor. Universidad de la RepĂșblica; UruguayFil: Piñeyro, Pedro. Universidad de la RepĂșblica; UruguayFil: Rossit, Daniel Alejandro. Universidad Nacional del Sur. Departamento de IngenierĂ­a; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de MatemĂĄtica BahĂ­a Blanca. Universidad Nacional del Sur. Departamento de MatemĂĄtica. Instituto de MatemĂĄtica BahĂ­a Blanca; Argentin

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    A New Method for Improving the Fairness of Multi-Robot Task Allocation by Balancing the Distribution of Tasks

    Get PDF
    This paper presents an innovative task allocation method for multi-robot systems that aims to optimize task distribution while taking into account various performance metrics such as efficiency, speed, and cost. Contrary to conventional approaches, the proposed method takes a comprehensive approach to initialization by integrating the K-means clustering algorithm, the Hungarian method for solving the assignment problem, and a genetic algorithm specifically adapted for Open Loop Travel Sales Man Problem (OLTSP). This synergistic combination allows for a more robust initialization, effectively grouping similar tasks and robots, and laying a strong foundation for the subsequent optimization process. The suggested method is flexible enough to handle a variety of situations, including Multi-Robot System (MRS) with robots that have unique capabilities and tasks of varying difficulty. The method provides a more adaptable and flexible solution than traditional algorithms, which might not be able to adequately address these variations because of the heterogeneity of the robots and the complexity of the tasks. Additionally, ensuring optimal task allocation is a key component of the suggested method. The method efficiently determines the best task assignments for robots through the use of a systematic optimization approach, thereby reducing the overall cost and time needed to complete all tasks. This contrasts with some existing methods that might not ensure optimality or might have limitations in their ability to handle a variety of scenarios. Extensive simulation experiments and numerical evaluations are carried out to validate the method's efficiency. The extensive validation process verifies the suggested approach's dependability and efficiency, giving confidence in its practical applicability

    A comprehensive survey on cultural algorithms

    Get PDF
    Peer reviewedPostprin

    Evolutionary Computation 2020

    Get PDF
    Intelligent optimization is based on the mechanism of computational intelligence to refine a suitable feature model, design an effective optimization algorithm, and then to obtain an optimal or satisfactory solution to a complex problem. Intelligent algorithms are key tools to ensure global optimization quality, fast optimization efficiency and robust optimization performance. Intelligent optimization algorithms have been studied by many researchers, leading to improvements in the performance of algorithms such as the evolutionary algorithm, whale optimization algorithm, differential evolution algorithm, and particle swarm optimization. Studies in this arena have also resulted in breakthroughs in solving complex problems including the green shop scheduling problem, the severe nonlinear problem in one-dimensional geodesic electromagnetic inversion, error and bug finding problem in software, the 0-1 backpack problem, traveler problem, and logistics distribution center siting problem. The editors are confident that this book can open a new avenue for further improvement and discoveries in the area of intelligent algorithms. The book is a valuable resource for researchers interested in understanding the principles and design of intelligent algorithms

    An improved dynamic load balancing for virtualmachines in cloud computing using hybrid bat and bee colony algorithms

    Get PDF
    Cloud technology is a utility where different hardware and software resources are accessed on pay-per-user ground base. Most of these resources are available in virtualized form and virtual machine (VM) is one of the main elements of visualization. In virtualization, a physical server changes into the virtual machine (VM) and acts as a physical server. Due to the large number of users sometimes the task sent by the user to cloud causes the VM to be under loaded or overloaded. This system state happens due to poor task allocation process in VM and causes the system failure or user tasks delayed. For the improvement of task allocation, several load balancing techniques are introduced in a cloud but stills the system failure occurs. Therefore, to overcome these problems, this study proposed an improved dynamic load balancing technique known as HBAC algorithm which dynamically allocates task by hybridizing Artificial Bee Colony (ABC) algorithm with Bat algorithm. The proposed HBAC algorithm was tested and compared with other stateof-the-art algorithms on 200 to 2000 even tasks by using CloudSim on standard workload format (SWF) data sets file size (200kb and 400kb). The proposed HBAC showed an improved accuracy rate in task distribution and reduced the makespan of VM in a cloud data center. Based on the ANOVA comparison test results, a 1.25 percent improvement on accuracy and 0.98 percent reduced makespan on task allocation system of VM in cloud computing is observed with the proposed HBAC algorithm

    Algorithms and Methods for Designing and Scheduling Smart Manufacturing Systems

    Get PDF
    This book, as a Special Issue, is a collection of some of the latest advancements in designing and scheduling smart manufacturing systems. The smart manufacturing concept is undoubtedly considered a paradigm shift in manufacturing technology. This conception is part of the Industry 4.0 strategy, or equivalent national policies, and brings new challenges and opportunities for the companies that are facing tough global competition. Industry 4.0 should not only be perceived as one of many possible strategies for manufacturing companies, but also as an important practice within organizations. The main focus of Industry 4.0 implementation is to combine production, information technology, and the internet. The presented Special Issue consists of ten research papers presenting the latest works in the field. The papers include various topics, which can be divided into three categories—(i) designing and scheduling manufacturing systems (seven articles), (ii) machining process optimization (two articles), (iii) digital insurance platforms (one article). Most of the mentioned research problems are solved in these articles by using genetic algorithms, the harmony search algorithm, the hybrid bat algorithm, the combined whale optimization algorithm, and other optimization and decision-making methods. The above-mentioned groups of articles are briefly described in this order in this book

    Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration Versus Algorithmic Behavior, Critical Analysis Recommendations

    Get PDF
    In recent algorithmic family simulates different biological processes observed in Nature in order to efficiently address complex optimization problems. In the last years the number of bio-inspired optimization approaches in literature has grown considerably, reaching unprecedented levels that dark the future prospects of this field of research. This paper addresses this problem by proposing two comprehensive, principle-based taxonomies that allow researchers to organize existing and future algorithmic developments into well-defined categories, considering two different criteria: the source of inspiration and the behavior of each algorithm. Using these taxonomies we review more than three hundred publications dealing with nature- inspired and bio-inspired algorithms, and proposals falling within each of these categories are examined, leading to a critical summary of design trends and similarities between them, and the identification of the most similar classical algorithm for each reviewed paper. From our analysis we conclude that a poor relationship is often found between the natural inspiration of an algorithm and its behavior. Furthermore, similarities in terms of behavior between different algorithms are greater than what is claimed in their public disclosure: specifically, we show that more than one-third of the reviewed bio-inspired solvers are versions of classical algorithms. Grounded on the conclusions of our critical analysis, we give several recommendations and points of improvement for better methodological practices in this active and growing research field
    • 

    corecore