257 research outputs found

    Towards Recommendations for Value Sensitive Sustainable Consumption

    Get PDF
    Excessive consumption can strain natural resources, harm the environment, and widen societal gaps. While adopting a more sustainable lifestyle means making significant changes and potentially compromising personal desires, balancing sustainability with personal values poses a complex challenge. This article delves into designing recommender systems using neural networks and genetic algorithms, aiming to assist consumers in shopping sustainably without disregarding their individual preferences. We approach the search for good recommendations as a problem involving multiple objectives, representing diverse sustainability goals and personal values. While using a synthetic historical dataset based on real-world sources, our evaluations reveal substantial environmental benefits without demanding drastic personal sacrifices, even if consumers accept only a fraction of the recommendations

    Assessing river basin development given water-energy-food-environment interdependencies

    Get PDF
    Many river basins in the Global South are undergoing rapid development with major implications for the interdependent water-energy-food-environmental (WEFE) ‘nexus’ sectors. A range of views on the extent to which such natural-human systems should be developed typically exist. The perceived best investments in river basins depend on how one frames the planning problem. Therefore, we propose an approach where the best possible (optimised) implementations of different river basin development scenarios are assessed by comparing their WEFE sector trade-offs. We apply the approach to Tanzania’s river basin, an area with multiple WEFE interdependencies and high development potential (irrigation and hydropower) and ecosystem services. Performance indicators are identified through stakeholder consultation and describe WEFE sector response under scenarios of river basin development. Results show considerable potential exists for energy and irrigation expansion. Designs that prioritise energy production adversely affect environmental performance, however, part of the negative impacts can be minimised through release rules designed to replicate the natural variability of flow. The reliability of monthly energy generation is more sensitive to environmental-oriented management than the cumulative annual energy production. Overall results highlight how sectoral trade-offs change depending on the extent of development, something that may be difficult to regulate in the future, and that there are important basin-scale interdependencies. Benefits and limitations of the approach and its application are discussed

    Shared value economics: an axiomatic approach

    Full text link
    The concept of shared value was introduced by Porter and Kramer as a new conception of capitalism. Shared value describes the strategy of organizations that simultaneously enhance their competitiveness and the social conditions of related stakeholders such as employees, suppliers and the natural environment. The idea has generated strong interest, but also some controversy due to a lack of a precise definition, measurement techniques and difficulties to connect theory to practice. We overcome these drawbacks by proposing an economic framework based on three key aspects: coalition formation, sustainability and consistency, meaning that conclusions can be tested by means of logical deductions and empirical applications. The presence of multiple agents to create shared value and the optimization of both social and economic criteria in decision making represent the core of our quantitative definition of shared value. We also show how economic models can be characterized as shared value models by means of logical deductions. Summarizing, our proposal builds on the foundations of shared value to improve its understanding and to facilitate the suggestion of economic hypotheses, hence accommodating the concept of shared value within modern economic theory.Comment: 22 pages, 4 figure

    State-of-the-Art Report on Systems Analysis Methods for Resolution of Conflicts in Water Resources Management

    Get PDF
    Water is an important factor in conflicts among stakeholders at the local, regional, and even international level. Water conflicts have taken many forms, but they almost always arise from the fact that the freshwater resources of the world are not partitioned to match the political borders, nor are they evenly distributed in space and time. Two or more countries share the watersheds of 261 major rivers and nearly half of the land area of the wo rld is in international river basins. Water has been used as a military and political goal. Water has been a weapon of war. Water systems have been targets during the war. A role of systems approach has been investigated in this report as an approach for resolution of conflicts over water. A review of systems approach provides some basic knowledge of tools and techniques as they apply to water management and conflict resolution. Report provides a classification and description of water conflicts by addressing issues of scale, integrated water management and the role of stakeholders. Four large-scale examples are selected to illustrate the application of systems approach to water conflicts: (a) hydropower development in Canada; (b) multipurpose use of Danube river in Europe; (c) international water conflict between USA and Canada; and (d) Aral See in Asia. Water conflict resolution process involves various sources of uncertainty. One section of the report provides some examples of systems tools that can be used to address objective and subjective uncertainties with special emphasis on the utility of the fuzzy set theory. Systems analysis is known to be driven by the development of computer technology. Last section of the report provides one view of the future and systems tools that will be used for water resources management. Role of the virtual databases, computer and communication networks is investigated in the context of water conflicts and their resolution.https://ir.lib.uwo.ca/wrrr/1005/thumbnail.jp

    Biopsychosocial Assessment and Ergonomics Intervention for Sustainable Living: A Case Study on Flats

    Get PDF
    This study proposes an ergonomics-based approach for those who are living in small housings (known as flats) in Indonesia. With regard to human capability and limitation, this research shows how the basic needs of human beings are captured and analyzed, followed by proposed designs of facilities and standard living in small housings. Ninety samples were involved during the study through in- depth interview and face-to-face questionnaire. The results show that there were some proposed of modification of critical facilities (such as multifunction ironing work station, bed furniture, and clothesline) and validated through usability testing. Overall, it is hoped that the proposed designs will support biopsychosocial needs and sustainability

    Combining evolutionary algorithms and agent-based simulation for the development of urbanisation policies

    Get PDF
    Urban-planning authorities continually face the problem of optimising the allocation of green space over time in developing urban environments. To help in these decision-making processes, this thesis provides an empirical study of using evolutionary approaches to solve sequential decision making problems under uncertainty in stochastic environments. To achieve this goal, this work is underpinned by developing a theoretical framework based on the economic model of Alonso and the associated methodology for modelling spatial and temporal urban growth, in order to better understand the complexity inherent in this kind of system and to generate and improve relevant knowledge for the urban planning community. The model was hybridised with cellular automata and agent-based model and extended to encompass green space planning based on urban cost and satisfaction. Monte Carlo sampling techniques and the use of the urban model as a surrogate tool were the two main elements investigated and applied to overcome the noise and uncertainty derived from dealing with future trends and expectations. Once the evolutionary algorithms were equipped with these mechanisms, the problem under consideration was defined and characterised as a type of adaptive submodular. Afterwards, the performance of a non-adaptive evolutionary approach with a random search and a very smart greedy algorithm was compared and in which way the complexity that is linked with the configuration of the problem modifies the performance of both algorithms was analysed. Later on, the application of very distinct frameworks incorporating evolutionary algorithm approaches for this problem was explored: (i) an ‘offline’ approach, in which a candidate solution encodes a complete set of decisions, which is then evaluated by full simulation, and (ii) an ‘online’ approach which involves a sequential series of optimizations, each making only a single decision, and starting its simulations from the endpoint of the previous run

    A Multi-Attribute decision support system for allocation of humanitarian cluster resources , based on decision makers’ perspective

    Get PDF
    The rush of the humanitarian suppliers into the disaster area proved to be counter-productive. To reduce this proliferation problem, the present research is designed to provide a technique for supplier ranking/selection in disaster response using the principles of utility theory. A resource allocation problem is solved using optimisation based on decision maker’s preferences. Due to the lack of real-time data in the first 72 h after the disaster strike, a Decision Support System (DSS) framework called EDIS is introduced to employ secondary historical data from disaster response in four humanitarian clusters (WASH: Water, Sanitation and Hygiene, Nutrition, Health, and Shelter) to estimate the demand of the affected population. A methodology based on multi-attribute decision-making (MADM), Analytical Hierarchy processing (AHP) and Multi-attribute utility theory (MAUT) provides the following results. First a need estimation technique is put forward to estimate minimum standard requirements for disaster response. Second, a method for optimization of the humanitarian partners selection is provided based on the resources they have available during the response phase. Third, an estimate of resource allocation is provided based on the preferences of the decision makers. This method does not require real-time data from the aftermath of the disasters and provides the need estimation, partner selection and resource allocation based on historical data before the MIRA report is released
    corecore