27,916 research outputs found

    Extraction of bodily features for gait recognition and gait attractiveness evaluation

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s11042-012-1319-2. Copyright @ 2012 Springer.Although there has been much previous research on which bodily features are most important in gait analysis, the questions of which features should be extracted from gait, and why these features in particular should be extracted, have not been convincingly answered. The primary goal of the study reported here was to take an analytical approach to answering these questions, in the context of identifying the features that are most important for gait recognition and gait attractiveness evaluation. Using precise 3D gait motion data obtained from motion capture, we analyzed the relative motions from different body segments to a root marker (located on the lower back) of 30 males by the fixed root method, and compared them with the original motions without fixing root. Some particular features were obtained by principal component analysis (PCA). The left lower arm, lower legs and hips were identified as important features for gait recognition. For gait attractiveness evaluation, the lower legs were recognized as important features.Dorothy Hodgkin Postgraduate Award and HEFCE

    On using gait to enhance frontal face extraction

    No full text
    Visual surveillance finds increasing deployment formonitoring urban environments. Operators need to be able to determine identity from surveillance images and often use face recognition for this purpose. In surveillance environments, it is necessary to handle pose variation of the human head, low frame rate, and low resolution input images. We describe the first use of gait to enable face acquisition and recognition, by analysis of 3-D head motion and gait trajectory, with super-resolution analysis. We use region- and distance-based refinement of head pose estimation. We develop a direct mapping to relate the 2-D image with a 3-D model. In gait trajectory analysis, we model the looming effect so as to obtain the correct face region. Based on head position and the gait trajectory, we can reconstruct high-quality frontal face images which are demonstrated to be suitable for face recognition. The contributions of this research include the construction of a 3-D model for pose estimation from planar imagery and the first use of gait information to enhance the face extraction process allowing for deployment in surveillance scenario

    Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors

    Get PDF
    This paper presents a gait recognition method which combines spatio-temporal motion characteristics, statistical and physical parameters (referred to as STM-SPP) of a human subject for its classification by analysing shape of the subject's silhouette contours using Procrustes shape analysis (PSA) and elliptic Fourier descriptors (EFDs). STM-SPP uses spatio-temporal gait characteristics and physical parameters of human body to resolve similar dissimilarity scores between probe and gallery sequences obtained by PSA. A part-based shape analysis using EFDs is also introduced to achieve robustness against carrying conditions. The classification results by PSA and EFDs are combined, resolving tie in ranking using contour matching based on Hu moments. Experimental results show STM-SPP outperforms several silhouette-based gait recognition methods

    Gait recognition based on shape and motion analysis of silhouette contours

    Get PDF
    This paper presents a three-phase gait recognition method that analyses the spatio-temporal shape and dynamic motion (STS-DM) characteristics of a human subject’s silhouettes to identify the subject in the presence of most of the challenging factors that affect existing gait recognition systems. In phase 1, phase-weighted magnitude spectra of the Fourier descriptor of the silhouette contours at ten phases of a gait period are used to analyse the spatio-temporal changes of the subject’s shape. A component-based Fourier descriptor based on anatomical studies of human body is used to achieve robustness against shape variations caused by all common types of small carrying conditions with folded hands, at the subject’s back and in upright position. In phase 2, a full-body shape and motion analysis is performed by fitting ellipses to contour segments of ten phases of a gait period and using a histogram matching with Bhattacharyya distance of parameters of the ellipses as dissimilarity scores. In phase 3, dynamic time warping is used to analyse the angular rotation pattern of the subject’s leading knee with a consideration of arm-swing over a gait period to achieve identification that is invariant to walking speed, limited clothing variations, hair style changes and shadows under feet. The match scores generated in the three phases are fused using weight-based score-level fusion for robust identification in the presence of missing and distorted frames, and occlusion in the scene. Experimental analyses on various publicly available data sets show that STS-DM outperforms several state-of-the-art gait recognition methods

    Gait Recognition from Motion Capture Data

    Full text link
    Gait recognition from motion capture data, as a pattern classification discipline, can be improved by the use of machine learning. This paper contributes to the state-of-the-art with a statistical approach for extracting robust gait features directly from raw data by a modification of Linear Discriminant Analysis with Maximum Margin Criterion. Experiments on the CMU MoCap database show that the suggested method outperforms thirteen relevant methods based on geometric features and a method to learn the features by a combination of Principal Component Analysis and Linear Discriminant Analysis. The methods are evaluated in terms of the distribution of biometric templates in respective feature spaces expressed in a number of class separability coefficients and classification metrics. Results also indicate a high portability of learned features, that means, we can learn what aspects of walk people generally differ in and extract those as general gait features. Recognizing people without needing group-specific features is convenient as particular people might not always provide annotated learning data. As a contribution to reproducible research, our evaluation framework and database have been made publicly available. This research makes motion capture technology directly applicable for human recognition.Comment: Preprint. Full paper accepted at the ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), special issue on Representation, Analysis and Recognition of 3D Humans. 18 pages. arXiv admin note: substantial text overlap with arXiv:1701.00995, arXiv:1609.04392, arXiv:1609.0693

    Notions of symmetry in human movement for recognition

    Get PDF
    Notions of symmetry are powerful for understanding as they explore relationships in nature for analysis. We describe how symmetry analysis can be used to recognize people by their gait. This approachis reinforced by the view from psychology that human gait is a symmetrical pattern of motion and that symmetrical properties of human movement can indeed be used for human gait analysis.Here, we use gait as a vehicle to investigate both the symmetry of moving objects as provided in our new spatial and spatio-temporal symmetry analyses. We apply these symmetry extractions to a numberof databases to demonstrate their potency. A performance analysis shows that using symmetry for gait recognition enjoys practical advantages such as relative immunity to noise, ability to handlemissing information and the capability to handle occlusion. The results show that the symmetrical properties of human gait appear to be unique and can indeed be used for analysis and for recognition with recognition rates exceeding 90%. Best performance is achieved by a spatio-temporal operator, reflecting the view that recognition by gait is not just from body shape, but also by the way the body moves

    Multiple Views Effective for Gait Recognition Based on Contours

    Get PDF
    Gait is one of well recognized biometrics that has been widely used for human identification. However, the current gait recognition might have difficulties due to viewing angle being changed. This is because the viewing angle under which the gait signature database was generated may not be the same as the viewing angle when the probe data are obtained. This paper present an effective multi-view gait recognition based on motion contour (MVGRMC) approach which tackles the problems mentioned above.  Initially the background modeling is done from a video sequence. Subsequently, the moving foreground objects in the individual image frames are segmented using the background subtraction algorithm. Then, the morphological skeleton operator is used to track the moving silhouettes of a walking , Finally, when a video sequence is fed, the proposed system recognizes the gait features and thereby humans, based on self-similarity measure. The proposed system is evaluated using gait databases and the experimentation on outdoor video sequences demonstrates that the proposed algorithm achieves a pleasing recognition performance. The proposed algorithm can significantly improve the multiple view gait recognition performance when being compared to the similar methods. These results are illustrated with practical examples on popular gait databases. Keywords: Gait Recognition; Biometric; silhouette; Motion analysis; Feature extractio

    Uniscale and multiscale gait recognition in realistic scenario

    Get PDF
    The performance of a gait recognition method is affected by numerous challenging factors that degrade its reliability as a behavioural biometrics for subject identification in realistic scenario. Thus for effective visual surveillance, this thesis presents five gait recog- nition methods that address various challenging factors to reliably identify a subject in realistic scenario with low computational complexity. It presents a gait recognition method that analyses spatio-temporal motion of a subject with statistical and physical parameters using Procrustes shape analysis and elliptic Fourier descriptors (EFD). It introduces a part- based EFD analysis to achieve invariance to carrying conditions, and the use of physical parameters enables it to achieve invariance to across-day gait variation. Although spatio- temporal deformation of a subject’s shape in gait sequences provides better discriminative power than its kinematics, inclusion of dynamical motion characteristics improves the iden- tification rate. Therefore, the thesis presents a gait recognition method which combines spatio-temporal shape and dynamic motion characteristics of a subject to achieve robust- ness against the maximum number of challenging factors compared to related state-of-the- art methods. A region-based gait recognition method that analyses a subject’s shape in image and feature spaces is presented to achieve invariance to clothing variation and carry- ing conditions. To take into account of arbitrary moving directions of a subject in realistic scenario, a gait recognition method must be robust against variation in view. Hence, the the- sis presents a robust view-invariant multiscale gait recognition method. Finally, the thesis proposes a gait recognition method based on low spatial and low temporal resolution video sequences captured by a CCTV. The computational complexity of each method is analysed. Experimental analyses on public datasets demonstrate the efficacy of the proposed methods

    Gait Analysis and Recognition for Automated Visual Surveillance

    No full text
    Human motion analysis has received a great attention from researchers in the last decade due to its potential use in different applications such as automated visual surveillance. This field of research focuses on the perception and recognition of human activities, including people identification. We explore a new approach for walking pedestrian detection in an unconstrained outdoor environment. The proposed algorithm is based on gait motion as the rhythm of the footprint pattern of walking people is considered the stable and characteristic feature for the classification of moving objects. The novelty of our approach is motivated by the latest research for people identification using gait. The experimental results confirmed the robustness of our method to discriminate between single walking subject, groups of people and vehicles with a successful detection rate of 100%. Furthermore, the results revealed the potential of our method to extend visual surveillance systems to recognize walking people. Furthermore, we propose a new approach to extract human joints (vertex positions) using a model-based method. The spatial templates describing the human gait motion are produced via gait analysis performed on data collected from manual labeling. The Elliptic Fourier Descriptors are used to represent the motion models in a parametric form. The heel strike data is exploited to reduce the dimensionality of the parametric models. People walk normal to the viewing plane, as major gait information is available in a sagittal view. The ankle, knee and hip joints are successfully extracted with high accuracy for indoor and outdoor data. In this way, we have established a baseline analysis which can be deployed in recognition, marker-less analysis and other areas. The experimental results confirmed the robustness of the model-based approach to recognise walking subjects with a correct classification rate of 95% using purely the dynamic features derived from the joint motion. Therefore, this confirms the early psychological theories claiming that the discriminative features for motion perception and people recognition are embedded in gait kinematics. Furthermore, to quantify the intrusive nature of gait recognition we explore the effects of the different covariate factors on the performance of gait recognition. The covariate factors include footwear, clothing, carrying conditions and walking speed. As far as the author can determine, this is the first major study of its kind in this field to analyse the covariate factors using a model-based method
    corecore