1,310 research outputs found

    Design and characterization of downconversion mixers and the on-chip calibration techniques for monolithic direct conversion radio receivers

    Get PDF
    This thesis consists of eight publications and an overview of the research topic, which is also a summary of the work. The research described in this thesis is focused on the design of downconversion mixers and direct conversion radio receivers for UTRA/FDD WCDMA and GSM standards. The main interest of the work is in the 1-3 GHz frequency range and in the Silicon and Silicon-Germanium BiCMOS technologies. The RF front-end, and especially the mixer, limits the performance of direct conversion architecture. The most stringent problems are involved in the second-order distortion in mixers to which special attention has been given. The work introduces calibration techniques to overcome these problems. Some design considerations for front-end radio receivers are also given through a mixer-centric approach. The work summarizes the design of several downconversion mixers. Three of the implemented mixers are integrated as the downconversion stages of larger direct conversion receiver chips. One is realized together with the LNA as an RF front-end. Also, some stand-alone structures have been characterized. Two of the mixers that are integrated together with whole analog receivers include calibration structures to improve the second-order intermodulation rejection. A theoretical mismatch analysis of the second-order distortion in the mixers is also presented in this thesis. It gives a comprehensive illustration of the second-order distortion in mixers. It also gives the relationships between the dc-offsets and high IIP2. In addition, circuit and layout techniques to improve the LO-to-RF isolation are discussed. The presented work provides insight into how the mixer immunity against the second-order distortion can be improved. The implemented calibration structures show promising performance. On the basis of these results, several methods of detecting the distortion on-chip and the possibilities of integrating the automatic on-chip calibration procedures to produce a repeatable and well-predictable receiver IIP2 are presented.reviewe

    Digital Power Detector for WCDMA Transmitter

    Get PDF
    A 3G mobile phone must have the ability to control its output power with high precision. A power detector is used to measure the actual power outputted by the power amplifier to the antenna. With higher data rates the traditional implementations with peak detectors have become very difficult to use, which is why true RMS detectors are needed. In this thesis the digital part of a true RMS detector for W-CDMA has been designed. The analog parts of the power detector form a quadrature demodulator that transforms the radio signal down to DC where it is occupies a band from 0 to 2 MHz. The measured power amplifier output signal is sampled at 1 MHz which prohibits direct calculation of the RMS voltage in the detector. Instead the detector uses the wave form generator output as a reference to determine the amplification in the transmitter chain which can then be used to find the output power (wave form generator output has constant known power). This requires time alignment of the two signals which is done using a least mean square method of correlation. Using the reference up-sampled to 104 MHz allows very good accuracy despite the low sample rate of the power amplifier signal. To overcome distortion in the power amplifier an additional distortion reducing algorithm has been developed. An estimate of the output power can be delivered after 100 ÎŒs and has a standard deviation of its error of 0.05 dB. The error from changing modulation type is limited to a maximum 0.04 dB, well below the specified 0.1 dB. The solution is accurate and modulation independent

    Proceedings of the Second International Mobile Satellite Conference (IMSC 1990)

    Get PDF
    Presented here are the proceedings of the Second International Mobile Satellite Conference (IMSC), held June 17-20, 1990 in Ottawa, Canada. Topics covered include future mobile satellite communications concepts, aeronautical applications, modulation and coding, propagation and experimental systems, mobile terminal equipment, network architecture and control, regulatory and policy considerations, vehicle antennas, and speech compression

    Low-noise amplifiers for integrated multi-mode direct-conversion receivers

    Get PDF
    The evolution of wireless telecommunication systems during the last decade has been rapid. During this time the design driver has shifted towards fast data applications instead of speech. In addition, the different systems may have a limited coverage, for example, limited to urban areas only. Thus, it has become important for a mobile terminal to be able to use different wireless systems, depending on the application chosen and the location of the terminal. The choice of receiver architecture affects the performance, size, and cost of the receiver. The superheterodyne receiver has hitherto been the dominant radio architecture, because of its good sensitivity and selectivity. However, superheterodyne receivers require expensive filters, which, with the existing technologies, cannot be integrated on the same chip as the receiver. Therefore, architectures using a minimum number of external components, such as direct conversion, have become popular. In addition, compared to the superheterodyne architecture, the direct-conversion architecture has benefits when multi-mode receivers, which are described in this thesis, are being designed. In this thesis, the limitations placed on the analog receiver by different system specifications are introduced. The estimations for the LNA specifications are derived from these specifications. In addition, the limitations imposed by different types of receiver architectures are described. The inductively-degenerated LNA is the basis for all the experimental circuits. The different components for this configuration are analyzed and compared to other commonly-used configurations in order to justify the use of an inductively-degenerated LNA. Furthermore, the design issues concerning the LNA-mixer interface in direct-conversion receivers are analyzed. Without knowing these limitations, it becomes difficult to understand the choices made in the experimental circuits. One of the key parts of this thesis describes the design and implementation of a single-chip multi-mode LNA, which is one of the key blocks in multi-mode receivers. The multi-mode structures in this thesis were developed for a direct-conversion receiver where only one system is activated at a time. The LNA interfaces to a pre-select filter and mixers and the different LNA components are analyzed in detail. Furthermore, the design issues related to possible interference from additional systems on single-chip receivers are analyzed and demonstrated. A typical receiver includes variable gain, which can be implemented both in the analog baseband and/or in the RF. If the variable gain is implemented in the RF parts, it is typically placed in the LNA or in a separate gain control stage. Several methods that can be used to implement a variable gain in the LNA are introduced and compared to each other. Furthermore, several of these methods are included in the experimental circuits. The last part of this thesis concentrates on four experimental circuits, which are described in this thesis. The first two chips describe an RF front-end and a direct-conversion receiver for WCDMA applications. The whole receiver demonstrates that it is possible to implement A/D converters on the same chip as sensitive RF blocks without significantly degrading receiver performance. The other two chips describe an RF front-end for WCDMA and GSM900 applications and a direct-conversion receiver for GSM900, DCS1800, PCS1900 and WCDMA systems. These ICs demonstrate the usability of the circuit structure developed and presented in this thesis. The chip area in the last multi-mode receiver is not significantly increased compared to corresponding single-system receivers.reviewe

    Analog free-space optical links.

    Get PDF
    Free-space optics (FSO) communications is a technology that uses modulated infrared optical beams to transmit information line-of-sight through the atmosphere. There has been a substantial increase in the use of FSO technology over the last few years, mainly for "last mile" applications, because FSO links provide the transmission capacity to overcome bandwidth bottlenecks between backbone optical fiber links and metropolitan concentrations of end users. Optical fiber has been traditionally deployed for the transmission of both digital and analog signals. While transmission techniques for analog radio frequency (RF) intensity-modulated signals over optical fibers is well-established, prior to the investigations presented in this dissertation, there is no report of research on the efficiency of FSO for transmission of analog signals in the technical literature. This dissertation research investigated the effectiveness of FSO to transport modulated RF analog signals and compares key performance measures against those of fiber optic links. In addition, a new method to setup temporary IS-95 CDMA microcells or permanent IS-95 CDMA macrocells using FSO was proposed and its viability investigated. Finally, a new transmission technique for transmitting multiple RF signals (channels) over a single FSO link using wavelength division multiplexing (WDM) technology for potential CATV applications was demonstrated

    Personal area technologies for internetworked services

    Get PDF

    Ultra-Wideband Secure Communications and Direct RF Sampling Transceivers

    Get PDF
    Larger wireless device bandwidth results in new capabilities in terms of higher data rates and security. The 5G evolution is focus on exploiting larger bandwidths for higher though-puts. Interference and co-existence issues can also be addressed by the larger bandwidth in the 5G and 6G evolution. This dissertation introduces of a novel Ultra-wideband (UWB) Code Division Multiple Access (CDMA) technique to exploit the largest bandwidth available in the upcoming wireless connectivity scenarios. The dissertation addresses interference immunity, secure communication at the physical layer and longer distance communication due to increased receiver sensitivity. The dissertation presents the design, workflow, simulations, hardware prototypes and experimental measurements to demonstrate the benefits of wideband Code-Division-Multiple-Access. Specifically, a description of each of the hardware and software stages is presented along with simulations of different scenarios using a test-bench and open-field measurements. The measurements provided experimental validation carried out to demonstrate the interference mitigation capabilities. In addition, Direct RF sampling techniques are employed to handle the larger bandwidth and avoid analog components. Additionally, a transmit and receive chain is designed and implemented at 28 GHz to provide a proof-of-concept for future 5G applications. The proposed wideband transceiver is also used to demonstrate higher accuracy direction finding, as much as 10 times improvement

    System and Circuit Design Aspects for CMOS Wireless Handset Receivers

    Get PDF

    Minimum power design of RF front ends

    Get PDF
    This thesis describes an investigation into the design of RF front ends with minimum power dissipation. The central question is: "What are the fundamental limits for the power dissipation of telecommunication front ends, and what design procedures can be followed that approach these limits and, at the same time, result in practical circuits?" After a discussion of the state of the art in this area, the elementary operations of a front end are identified. For each of these elementary operations, the fundamental limits for the power dissipation are discussed, divided into technology imposed limits and physics imposed limits. A traditional DECT front end design is used to demonstrate the large difference between the fundamental limits and the power dissipation of existing circuits. To improve this situation, first the optimum distribution of specifications across individual subcircuits needs to be determined, such that the requirements for a specific system can be fulfilled. This is achieved through the introduction of formal transforms of the specifications of subcircuits, which correspond with transforms of the subcircuit itself. Using these transforms, the optimum distribution of gain, noise, linearity and power dissipation can be determined. As it turns out, this optimum distribution can even be represented by a simple, analytical expression. This expression predicts that the power dissipation of the DECT front end can be reduced by a factor of 2.7 through an optimum distribution of the specifications. Using these optimum specifications of the subcircuits, the boundaries for further power dissipation reduction can be determined. This is investigated at the system, circuit and technology level. These insights are used in the design of a 2.5GHz wireless local area network, implemented in an optimized technology ("Silicon on Anything"). The power dissipation of the complete receiver is 3.5mW, more than an order of magnitude below other wireless LAN receivers in recent publications. Finally, the combination of this minimum power design method with a platform based development strategy is discussed

    UNE PLATEFORME RADIO LOGICIELLE OUVERTE POUR LES SYSTÈMES 3G+

    Get PDF
    This paper describes a software-radio architecture developed for providing real-time wide-band radio communication capabilities in a form attractive for advanced 3G systems research. It is currently being used to implement signaling methods and protocols similar, but not limited to, evolving 3G radio standards (e.g. umts, cdma2000). An overview of the hardware system is provided along with example software implementations on both high-perfo-mance DSP systems and conventional microprocessor
    • 

    corecore