15 research outputs found

    YART: una herramienta interactiva para rehabilitación cognitiva

    Get PDF
    La rehabilitación cognitiva, es un método terapéutico destinado a mejorar o compensar los déficits neurocognitivos producidos por procesos que afectan el normal funcionamiento cerebral. Diversas enfermedades neurológicas o afecciones psicológicas pueden acarrear dificultades en las capacidades de atención, memoria, lenguaje, razonamiento, organización, entre otras. A través de este tipo de terapias se procura restaurar esas funciones o compensarlas a través del aprendizaje de otras habilidades. YART es una herramienta de software que permite realizar el seguimiento de pacientes con dificultades de coordinación visuomotora y visuoespacial a través de ejercicios interactivos. Además como funcionalidad complementaria se desarrolló e integró una aplicación de procesamiento de imágenes que, a partir de una cámara monocular de baja resolución, registra una estimación de hacia donde esta mirando el paciente y la correlaciona con el movimiento del puntero en ese momento. Los resultados obtenidos muestran que la herramienta es capaz de estimar el cuadrante hacia donde mira el paciente con una eficacia del 96 %.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    YART: una herramienta interactiva para rehabilitación cognitiva

    Get PDF
    La rehabilitación cognitiva, es un método terapéutico destinado a mejorar o compensar los déficits neurocognitivos producidos por procesos que afectan el normal funcionamiento cerebral. Diversas enfermedades neurológicas o afecciones psicológicas pueden acarrear dificultades en las capacidades de atención, memoria, lenguaje, razonamiento, organización, entre otras. A través de este tipo de terapias se procura restaurar esas funciones o compensarlas a través del aprendizaje de otras habilidades. YART es una herramienta de software que permite realizar el seguimiento de pacientes con dificultades de coordinación visuomotora y visuoespacial a través de ejercicios interactivos. Además como funcionalidad complementaria se desarrolló e integró una aplicación de procesamiento de imágenes que, a partir de una cámara monocular de baja resolución, registra una estimación de hacia donde esta mirando el paciente y la correlaciona con el movimiento del puntero en ese momento. Los resultados obtenidos muestran que la herramienta es capaz de estimar el cuadrante hacia donde mira el paciente con una eficacia del 96 %.Sociedad Argentina de Informática e Investigación Operativa (SADIO

    Isotropic Polyharmonic B-Splines: Scaling Functions and Wavelets

    Get PDF
    In this paper, we use polyharmonic B-splines to build multidimensional wavelet bases. These functions are nonseparable, multidimensional basis functions that are localized versions of radial basis functions. We show that Rabut's elementary polyharmonic B-splines do not converge to a Gaussian as the order parameter increases, as opposed to their separable B-spline counterparts. Therefore, we introduce a more isotropic localization operator that guarantees this convergence, resulting into the isotropic polyharmonic B-splines. Next, we focus on the two-dimensional quincunx subsampling scheme. This configuration is of particular interest for image processing, because it yields a finer scale progression than the standard dyadic approach. However, up until now, the design of appropriate filters for the quincunx scheme has mainly been done using the McClellan transform. In our approach, we start from the scaling functions, which are the polyharmonic B-splines and, as such, explicitly known, and we derive a family of polyharmonic spline wavelets corresponding to different flavors of the semi-orthogonal wavelet transform; e.g., orthonormal, B-spline, and dual. The filters are automatically specified by the scaling relations satisfied by these functions. We prove that the isotropic polyharmonic B-spline wavelet converges to a combination of four Gabor atoms, which are well separated in the frequency domain. We also show that these wavelets are nearly isotropic and that they behave as an iterated Laplacian operator at low frequencies. We describe an efficient fast Fourier transform-based implementation of the discrete wavelet transform based on polyharmonic B-splines

    Visual intent recognition in a multiple camera environment

    Get PDF
    Activity recognition is an active field of research with many applications for both industrial and home use. Industry might use it as part of a security surveillance system, while home uses could be in applications such as smart rooms and aids for the disabled. This thesis develops one component of a “smart system” that can recognize certain activities related to the subject’s intent, i.e. where subjects concentrate their attention. A visual intent activity recognition system that operates in near real-time is created, based on multiple cameras. To accomplish this, a combination of face detection, facial feature detection, and pose estimation is used to estimate each subject’s gaze direction. To allow for better detection of the subject’s facial features, and thus more robust pose estimation, a multiple camera system is used. A wide-view camera is zoomed out and finds the subject, while a narrow-view camera zooms in to get more details on the face. Neural networks are then used to locate the mouth and eyes. A triangle template is matched to these features and used to estimate the subject’s pose in real-time. This method is used to determine where the subjects are looking and detect the activity of looking intently at a given location. A four-camera system recognizes the activity as occurring when at least one of two subjects is looking at the other. Testing showed that, on average, the pose estimate was accurate to within 5.08 degrees. The visual intent activity recognition system was able to correctly determine when one subject was looking at the other over 95% of the time

    Novel image processing algorithms and methods for improving their robustness and operational performance

    Get PDF
    Image processing algorithms have developed rapidly in recent years. Imaging functions are becoming more common in electronic devices, demanding better image quality, and more robust image capture in challenging conditions. Increasingly more complicated algorithms are being developed in order to achieve better signal to noise characteristics, more accurate colours, and wider dynamic range, in order to approach the human visual system performance levels. [Continues.

    Face pose estimation in monocular images

    Get PDF
    People use orientation of their faces to convey rich, inter-personal information. For example, a person will direct his face to indicate who the intended target of the conversation is. Similarly in a conversation, face orientation is a non-verbal cue to listener when to switch role and start speaking, and a nod indicates that a person has understands, or agrees with, what is being said. Further more, face pose estimation plays an important role in human-computer interaction, virtual reality applications, human behaviour analysis, pose-independent face recognition, driver s vigilance assessment, gaze estimation, etc. Robust face recognition has been a focus of research in computer vision community for more than two decades. Although substantial research has been done and numerous methods have been proposed for face recognition, there remain challenges in this field. One of these is face recognition under varying poses and that is why face pose estimation is still an important research area. In computer vision, face pose estimation is the process of inferring the face orientation from digital imagery. It requires a serious of image processing steps to transform a pixel-based representation of a human face into a high-level concept of direction. An ideal face pose estimator should be invariant to a variety of image-changing factors such as camera distortion, lighting condition, skin colour, projective geometry, facial hairs, facial expressions, presence of accessories like glasses and hats, etc. Face pose estimation has been a focus of research for about two decades and numerous research contributions have been presented in this field. Face pose estimation techniques in literature have still some shortcomings and limitations in terms of accuracy, applicability to monocular images, being autonomous, identity and lighting variations, image resolution variations, range of face motion, computational expense, presence of facial hairs, presence of accessories like glasses and hats, etc. These shortcomings of existing face pose estimation techniques motivated the research work presented in this thesis. The main focus of this research is to design and develop novel face pose estimation algorithms that improve automatic face pose estimation in terms of processing time, computational expense, and invariance to different conditions

    Joint optimization of manifold learning and sparse representations for face and gesture analysis

    Get PDF
    Face and gesture understanding algorithms are powerful enablers in intelligent vision systems for surveillance, security, entertainment, and smart spaces. In the future, complex networks of sensors and cameras may disperse directions to lost tourists, perform directory lookups in the office lobby, or contact the proper authorities in case of an emergency. To be effective, these systems will need to embrace human subtleties while interacting with people in their natural conditions. Computer vision and machine learning techniques have recently become adept at solving face and gesture tasks using posed datasets in controlled conditions. However, spontaneous human behavior under unconstrained conditions, or in the wild, is more complex and is subject to considerable variability from one person to the next. Uncontrolled conditions such as lighting, resolution, noise, occlusions, pose, and temporal variations complicate the matter further. This thesis advances the field of face and gesture analysis by introducing a new machine learning framework based upon dimensionality reduction and sparse representations that is shown to be robust in posed as well as natural conditions. Dimensionality reduction methods take complex objects, such as facial images, and attempt to learn lower dimensional representations embedded in the higher dimensional data. These alternate feature spaces are computationally more efficient and often more discriminative. The performance of various dimensionality reduction methods on geometric and appearance based facial attributes are studied leading to robust facial pose and expression recognition models. The parsimonious nature of sparse representations (SR) has successfully been exploited for the development of highly accurate classifiers for various applications. Despite the successes of SR techniques, large dictionaries and high dimensional data can make these classifiers computationally demanding. Further, sparse classifiers are subject to the adverse effects of a phenomenon known as coefficient contamination, where for example variations in pose may affect identity and expression recognition. This thesis analyzes the interaction between dimensionality reduction and sparse representations to present a unified sparse representation classification framework that addresses both issues of computational complexity and coefficient contamination. Semi-supervised dimensionality reduction is shown to mitigate the coefficient contamination problems associated with SR classifiers. The combination of semi-supervised dimensionality reduction with SR systems forms the cornerstone for a new face and gesture framework called Manifold based Sparse Representations (MSR). MSR is shown to deliver state-of-the-art facial understanding capabilities. To demonstrate the applicability of MSR to new domains, MSR is expanded to include temporal dynamics. The joint optimization of dimensionality reduction and SRs for classification purposes is a relatively new field. The combination of both concepts into a single objective function produce a relation that is neither convex, nor directly solvable. This thesis studies this problem to introduce a new jointly optimized framework. This framework, termed LGE-KSVD, utilizes variants of Linear extension of Graph Embedding (LGE) along with modified K-SVD dictionary learning to jointly learn the dimensionality reduction matrix, sparse representation dictionary, sparse coefficients, and sparsity-based classifier. By injecting LGE concepts directly into the K-SVD learning procedure, this research removes the support constraints K-SVD imparts on dictionary element discovery. Results are shown for facial recognition, facial expression recognition, human activity analysis, and with the addition of a concept called active difference signatures, delivers robust gesture recognition from Kinect or similar depth cameras

    Face pose estimation in monocular images

    Get PDF
    People use orientation of their faces to convey rich, inter-personal information. For example, a person will direct his face to indicate who the intended target of the conversation is. Similarly in a conversation, face orientation is a non-verbal cue to listener when to switch role and start speaking, and a nod indicates that a person has understands, or agrees with, what is being said. Further more, face pose estimation plays an important role in human-computer interaction, virtual reality applications, human behaviour analysis, pose-independent face recognition, driver s vigilance assessment, gaze estimation, etc. Robust face recognition has been a focus of research in computer vision community for more than two decades. Although substantial research has been done and numerous methods have been proposed for face recognition, there remain challenges in this field. One of these is face recognition under varying poses and that is why face pose estimation is still an important research area. In computer vision, face pose estimation is the process of inferring the face orientation from digital imagery. It requires a serious of image processing steps to transform a pixel-based representation of a human face into a high-level concept of direction. An ideal face pose estimator should be invariant to a variety of image-changing factors such as camera distortion, lighting condition, skin colour, projective geometry, facial hairs, facial expressions, presence of accessories like glasses and hats, etc. Face pose estimation has been a focus of research for about two decades and numerous research contributions have been presented in this field. Face pose estimation techniques in literature have still some shortcomings and limitations in terms of accuracy, applicability to monocular images, being autonomous, identity and lighting variations, image resolution variations, range of face motion, computational expense, presence of facial hairs, presence of accessories like glasses and hats, etc. These shortcomings of existing face pose estimation techniques motivated the research work presented in this thesis. The main focus of this research is to design and develop novel face pose estimation algorithms that improve automatic face pose estimation in terms of processing time, computational expense, and invariance to different conditions.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Face pose estimation in monocular images

    Get PDF
    People use orientation of their faces to convey rich, inter-personal information. For example, a person will direct his face to indicate who the intended target of the conversation is. Similarly in a conversation, face orientation is a non-verbal cue to listener when to switch role and start speaking, and a nod indicates that a person has understands, or agrees with, what is being said. Further more, face pose estimation plays an important role in human-computer interaction, virtual reality applications, human behaviour analysis, pose-independent face recognition, driver s vigilance assessment, gaze estimation, etc. Robust face recognition has been a focus of research in computer vision community for more than two decades. Although substantial research has been done and numerous methods have been proposed for face recognition, there remain challenges in this field. One of these is face recognition under varying poses and that is why face pose estimation is still an important research area. In computer vision, face pose estimation is the process of inferring the face orientation from digital imagery. It requires a serious of image processing steps to transform a pixel-based representation of a human face into a high-level concept of direction. An ideal face pose estimator should be invariant to a variety of image-changing factors such as camera distortion, lighting condition, skin colour, projective geometry, facial hairs, facial expressions, presence of accessories like glasses and hats, etc. Face pose estimation has been a focus of research for about two decades and numerous research contributions have been presented in this field. Face pose estimation techniques in literature have still some shortcomings and limitations in terms of accuracy, applicability to monocular images, being autonomous, identity and lighting variations, image resolution variations, range of face motion, computational expense, presence of facial hairs, presence of accessories like glasses and hats, etc. These shortcomings of existing face pose estimation techniques motivated the research work presented in this thesis. The main focus of this research is to design and develop novel face pose estimation algorithms that improve automatic face pose estimation in terms of processing time, computational expense, and invariance to different conditions.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore