65 research outputs found

    GSOS for non-deterministic processes with quantitative aspects

    Get PDF
    Recently, some general frameworks have been proposed as unifying theories for processes combining non-determinism with quantitative aspects (such as probabilistic or stochastically timed executions), aiming to provide general results and tools. This paper provides two contributions in this respect. First, we present a general GSOS specification format (and a corresponding notion of bisimulation) for non-deterministic processes with quantitative aspects. These specifications define labelled transition systems according to the ULTraS model, an extension of the usual LTSs where the transition relation associates any source state and transition label with state reachability weight functions (like, e.g., probability distributions). This format, hence called Weight Function SOS (WFSOS), covers many known systems and their bisimulations (e.g. PEPA, TIPP, PCSP) and GSOS formats (e.g. GSOS, Weighted GSOS, Segala-GSOS, among others). The second contribution is a characterization of these systems as coalgebras of a class of functors, parametric on the weight structure. This result allows us to prove soundness of the WFSOS specification format, and that bisimilarities induced by these specifications are always congruences.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    Structural operational semantics for non-deterministic processes with quantitative aspects

    Get PDF
    General frameworks have been recently proposed as unifying theories for processes combining non-determinism with quantitative aspects (such as probabilistic or stochastically timed executions), aiming to provide general results and tools. This paper provides two contributions in this respect. First, we present a general GSOS specification format and a corresponding notion of bisimulation for non-deterministic processes with quantitative aspects. These specifications define labelled transition systems according to the ULTraS model, an extension of the usual LTSs where the transition relation associates any source state and transition label with state reachability weight functions (like, e.g., probability distributions). This format, hence called Weight Function GSOS (WF-GSOS), covers many known systems and their bisimulations (e.g. PEPA, TIPP, PCSP) and GSOS formats (e.g. GSOS, Weighted GSOS, Segala-GSOS, among others). The second contribution is a characterization of these systems as coalgebras of a class of functors, parametric on the weight structure. This result allows us to prove soundness and completeness of the WF-GSOS specification format, and that bisimilarities induced by these specifications are always congruences.Comment: Extended version of arXiv:1406.206

    Bisimulation of Labelled State-to-Function Transition Systems Coalgebraically

    Get PDF
    Labeled state-to-function transition systems, FuTS for short, are characterized by transitions which relate states to functions of states over general semirings, equipped with a rich set of higher-order operators. As such, FuTS constitute a convenient modeling instrument to deal with process languages and their quantitative extensions in particular. In this paper, the notion of bisimulation induced by a FuTS is addressed from a coalgebraic point of view. A correspondence result is established stating that FuTS-bisimilarity coincides with behavioural equivalence of the associated functor. As generic examples, the equivalences underlying substantial fragments of major examples of quantitative process algebras are related to the bisimilarity of specific FuTS. The examples range from a stochastic process language, PEPA, to a language for Interactive Markov Chains, IML, a (discrete) timed process language, TPC, and a language for Markov Automata, MAL. The equivalences underlying these languages are related to the bisimilarity of their specific FuTS. By the correspondence result coalgebraic justification of the equivalences of these calculi is obtained. The specific selection of languages, besides covering a large variety of process interaction models and modelling choices involving quantities, allows us to show different classes of FuTS, namely so-called simple FuTS, combined FuTS, nested FuTS, and general FuTS

    A Definition Scheme for Quantitative Bisimulation

    Get PDF
    FuTS, state-to-function transition systems are generalizations of labeled transition systems and of familiar notions of quantitative semantical models as continuous-time Markov chains, interactive Markov chains, and Markov automata. A general scheme for the definition of a notion of strong bisimulation associated with a FuTS is proposed. It is shown that this notion of bisimulation for a FuTS coincides with the coalgebraic notion of behavioral equivalence associated to the functor on Set given by the type of the FuTS. For a series of concrete quantitative semantical models the notion of bisimulation as reported in the literature is proven to coincide with the notion of quantitative bisimulation obtained from the scheme. The comparison includes models with orthogonal behaviour, like interactive Markov chains, and with multiple levels of behavior, like Markov automata. As a consequence of the general result relating FuTS bisimulation and behavioral equivalence we obtain, in a systematic way, a coalgebraic underpinning of all quantitative bisimulations discussed.Comment: In Proceedings QAPL 2015, arXiv:1509.0816

    Structural operational semantics for stochastic and weighted transition systems

    No full text
    We introduce weighted GSOS, a general syntactic framework to specify well-behaved transition systems where transitions are equipped with weights coming from a commutative monoid. We prove that weighted bisimilarity is a congruence on systems defined by weighted GSOS specifications. We illustrate the flexibility of the framework by instantiating it to handle some special cases, most notably that of stochastic transition systems. Through examples we provide weighted-GSOS definitions for common stochastic operators in the literature

    A uniform definition of stochastic process calculi

    Get PDF
    We introduce a unifying framework to provide the semantics of process algebras, including their quantitative variants useful for modeling quantitative aspects of behaviors. The unifying framework is then used to describe some of the most representative stochastic process algebras. This provides a general and clear support for an understanding of their similarities and differences. The framework is based on State to Function Labeled Transition Systems, FuTSs for short, that are state-transition structures where each transition is a triple of the form (s; α;P). The first andthe second components are the source state, s, and the label, α, of the transition, while the third component is the continuation function, P, associating a value of a suitable type to each state s0. For example, in the case of stochastic process algebras the value of the continuation function on s0 represents the rate of the negative exponential distribution characterizing the duration/delay of the action performed to reach state s0 from s. We first provide the semantics of a simple formalism used to describe Continuous-Time Markov Chains, then we model a number of process algebras that permit parallel composition of models according to the two main interaction paradigms (multiparty and one-to-one synchronization). Finally, we deal with formalisms where actions and rates are kept separate and address the issues related to the coexistence of stochastic, probabilistic, and non-deterministic behaviors. For each formalism, we establish the formal correspondence between the FuTSs semantics and its original semantics

    Coalgebraic modelling of timed processes

    Get PDF

    Rooted branching bisimulation as a congruence for probabilistic transition systems

    Get PDF
    Ponencia presentada en el 13 International Workshop on Quantitative Aspects of Programming Languages and Systems. London, United Kingdom, April 11-12, 2015.We propose a probabilistic transition system specification format, referred to as probabilistic RBB safe, for which rooted branching bisimulation is a congruence. The congruence theorem is based on the approach of Fokkink for the qualitative case. For this to work, the theory of transition system specifications in the setting of labeled transition systems needs to be extended to deal with probability distributions, both syntactically and semantically. We provide a scheduler-free characterization of probabilistic branching bisimulation as adapted from work of Andova et al. for the alternating model. Counter examples are given to justify the various conditions required by the format.Fil: Lee, Matías David. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: De Vink, Erik P. Eindhoven University of Technology; The Netherlands.Fil: De Vink, Erik P. Centrum Wiskunde & Informatica; The Netherlands.Ciencias de la Computació

    Lean and Full Congruence Formats for Recursion

    Full text link
    In this paper I distinguish two (pre)congruence requirements for semantic equivalences and preorders on processes given as closed terms in a system description language with a recursion construct. A lean congruence preserves equivalence when replacing closed subexpressions of a process by equivalent alternatives. A full congruence moreover allows replacement within a recursive specification of subexpressions that may contain recursion variables bound outside of these subexpressions. I establish that bisimilarity is a lean (pre)congruence for recursion for all languages with a structural operational semantics in the ntyft/ntyxt format. Additionally, it is a full congruence for the tyft/tyxt format.Comment: To appear in: Proc. LICS'17, Reykjavik, Iceland, IEE
    corecore