-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Archivio istituzionale della ricerca - Universita degli Studi di Udine

Structural operational semantics for
non-deterministic processes with quantitative aspects®

Marino Miculan Marco Peressotti
marino.miculan@uniud.it marco.peressotti@uniud.it
Laboratory of Models and Applications of Distributed Systems

Department of Mathematics and Computer Science
University of Udine, Italy

Abstract

Recently, unifying theories for processes combining non-determinism with quantitative
aspects (such as probabilistic or stochastically timed executions) have been proposed with
the aim of providing general results and tools. This paper provides two contributions in this
respect. First, we present a general GSOS specification format and a corresponding notion of
bisimulation for non-deterministic processes with quantitative aspects. These specifications
define labelled transition systems according to the ULTraS model, an extension of the usual
LTSs where the transition relation associates any source state and transition label with state
reachability weight functions (like, e.g., probability distributions). This format, hence called
Weight Function GSOS (WF-GSOS), covers many known systems and their bisimulations
(e.g. PEPA, TIPP, PCSP) and GSOS formats (e.g. GSOS, Weighted GSOS, Segala-GSOS).

The second contribution is a characterization of these systems as coalgebras of a class
of functors, parametric in the weight structure. This result allows us to prove soundness
and completeness of the WF-GSOS specification format, and that bisimilarities induced by
these specifications are always congruences.

1 Introduction

Process calculi and labelled transition systems have proved very successful for modelling and
analysing concurrent, non-deterministic systems. This success has led to many extensions dealing
with quantitative aspects, whose transition relations are endowed with further information like
probability rates or stochastic rates; see [6, 5, 16, 21, 25] among others. These calculi are very
effective in modelling and analysing quantitative aspects, like performance analysis of computer
networks, model checking of time-critical systems, simulation of biological systems, probabilistic
analysis of security and safety properties, etc.

Each of these calculi is tailored to a specific quantitative aspect and for each of them we have
to develop a quite complex theory almost from scratch. This is a daunting and error-prone task,
as it embraces the definition of syntax, semantics, transition rules, various behavioural equiva-
lences, logics, proof systems; the proof of important properties like congruence of behavioural
equivalences; the development of algorithms and tools for simulations, model checking, etc. This
situation would naturally benefit from general frameworks for LTS with quantitative aspects,
i.e., mathematical metamodels offering general methodologies, results, and tools, which can be

arXiv:1410.0893v2 [cs.LO] 30 Jun 2015

*This work is partially supported by MIUR PRIN project 2010LHT4KM, CINA.

https://core.ac.uk/display/53358119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1410.0893v2
mailto:marino.miculan@uniud.it
mailto:marco.peressotti@uniud.it

uniformly instantiated to a wide range of specific calculi and models. In recent years, some of
these theories have been proposed; we mention Segala systems [27], Functional Transition Sys-
tems (FuTS) [23], weighted labelled transition systems (WLTSs) [14, 21], and Uniform Labelled
Transition Systems (ULTraS), introduced by Bernardo, De Nicola and Loreti specifically as “a
uniform setting for modelling non-deterministic, probabilistic, stochastic or mixed processes and
their behavioural equivalences” [5].

A common feature of most of these meta-models is that their labelled transition relations do
not yield simple states (e.g., processes), but some mathematical object representing quantita-
tive information about “how” each state can be reached. In particular, transitions in ULTraS

systems have the form P %> p where p is a state reachability weight function, i.e., a function
assigning a weight to each possible state.! By suitably choosing the set of weights, and how
these functions can be combined, we can recover ordinary non-deterministic LTSs, probabilistic
transition systems, stochastic transition systems, etc. As convincingly argued in [5], the use of
weight functions in place of plain processes simplifies the combination of non-determinism with
quantitative aspects, like in the case of EMPA or PEPA. Moreover, it paves the way for general
definitions and results, an important example being the notion of M-bisimulation [5].

Albeit quite effective, these meta-models are at their dawn, with many results and techniques
still to be developed. An important example of these missing notions is a specification format,
like the well-known GSOS, ntyft/ntyxt and ntree formats for non-deterministic labelled transi-
tion systems. These formats are very useful in practice, because they can be used for ensuring
important properties of the system; in particular, the bisimulations induced by systems in these
formats is guaranteed to be a congruence (which is crucial for compositional reasoning). From
a more foundational point of view, these frameworks would benefit from a categorical character-
ization in the theory of coalgebras and bialgebras: this would allow a cross-fertilizing exchange
of definitions, notions and techniques with similar contexts and theories.

In this paper, we provide two main contributions in this respect. First, we present a
GSOS-style format, called Weight Function GSOS (WF-GSOS), for the specifications of non-
deterministic systems with quantitative aspects. The judgement derived by rules in this style is

of the form P -%4>), where P is a process and v is a weight function term. These terms de-
scribe weight functions by means of an interpretation; hence, a specification given in this format
defines a ULTraS. By choosing the set of weights, the language of weight function terms and
their interpretation, we can readily capture many quantitative notions (probabilistic, stochastic,
etc.), and different kinds of non-deterministic interactions, covering models like PEPA, TIPP,
PCSP, EMPA, among others. Moreover, the WF-GSOS format supports a general definition of
(strong) bisimulation, which can be readily instantiated to the various specific systems.

The second contribution is more fundamental. We provide a general categorical presentation
of these non-deterministic systems with quantitative aspects. Namely, we prove that ULTraS
systems are in one-to-one correspondence with coalgebras of a precise class of functors, para-
metric on the underlying weight structure. Using this characterization we define the abstract
notion of WF-GSOS distributive law (i.e. a natural transformation of a specific shape) for these
functors. We show that each WF-GSOS specification yields such a distributive law (i.e., the
format is sound); taking advantage of Turi-Plotkin’s bialgebraic framework, this implies that the
bisimulation induced by a WF-GSOS is always a congruence, thus allowing for compositional
reasoning in quantitative settings. Additionally, we extend the results we presented in [24] prov-
ing that the WF-GSOS format is also complete: every abstract WF-GSOS distributive law for
ULTraSs can be described by means of some WF-GSOS specification.

1The reader aware of advanced process calculi will be not baffled by the fact that targets are not processes.
Well known previous examples are the LTS abstractions/concretions for mw-calculus, for the applied w-calculus, for
the ambient calculus, etc.

The rest of the paper is structured as follows. In Section 2 we recall Uniform Labelled
Transition Systems, and their bisimulation. In Section 3 we introduce the Weight Function
SOS specification format for the syntactic presentation of ULTraSs. In Section 4 we provide
some application examples, such as a WF-GSOS specification for PEPA and the translations of
Segala-GSOS and WGSOS specifications in the WF-GSOS format. The categorical presentation
of ULTraS and WF-GSOS, with the results that the format is sound and complete and bisimilarity
is a congruence, are in Section 5. Final remarks, comparison with related work and directions

for future work are in Section 6.

2 Uniform Labelled Transition Systems and their bisimu-
lation

In this section we recall and elaborate the definition of ULTraSs, and define the corresponding
notion of (coalgebraically derived) bisimulation; finally we compare it with the notion of M-
bisimulation presented in [5]. Additional examples are provided in the Appendix. Although
we focus on the ULTraS framework, the results and methodologies described in this paper can
be ported to similar formats (like FuTS [23]), and more generally to a wide range of systems
combining computational aspects in different ways.

2.1 Uniform Labelled Transition Systems

ULTras$ are (non-deterministic) labelled transition systems whose transitions lead to state reach-
ability weight functions, i.e. functions representing quantitative information about “how” each
state can be reached. Examples of weight functions include probability distributions, resource
consumption levels, or stochastic rates. In this light, ULTraS can be thought of as a general-
ization of Segala systems [27], which stratify non-determinism over probability. Following the
parallel with Segala systems, ULTraS transitions can be pictured as being composed by two
steps:
A

where the first is a labelled non-deterministic (sub)transition and the second is a weighted one;
from this perspective the weight function plays the role of the “hidden intermediate state”.

Akin to Weighted Labelled Transition Systems (WLTS) [21, 14], weights are drawn from a
fixed set endowed with a commutative monoid structure, where the unit is meant to be assigned
to disabled transitions (i.e. those yielding unreachable states) and the monoidal addition is used
to compositionally weigh sets of transitions given by non-determinism.

Definition 2.1 (20-ULTraS). Given a commutative monoid 2 = (W, +,0), a (2W-weighted)
Uniform Labelled Transition System is a triple (X, A,—>) where:

o X is a set of states (processes) called state space or carrier;
o A is a set of labels (actions);

e > C X x Ax[X — W] is a transition relation where [X — W] denotes the set of all
weight functions from X to the carrier of 20.

Monoidal addition does not play any réle in the above definition? but it is crucial to define
the notion of bisimulation and in general how the “merging” of two states (e.g. induced by

20riginally, in [5] W is a partial order with bottom. Actually, the order is not crucial to the basic definition
of ULTraS as it is only used by some equivalences considered in that paper.

functions between carriers) affects the transition relation. In fact, bisimulations can be thought as
inducing “state space refinements that are well-behaved w.r.t. the transition relation”. From this
perspective, monoidal addition provides an abstract, uniform and compositional way to “merge”
the outgoing transitions into one: adding their weight; likewise probabilities or stochastic rates
are added in probabilistic or stochastic systems.

Because the monoidal structure supports finite addition only® we can only merge finitely
many transitions. Assuming ULTraSs to have a finite carrier or maps between carriers to define
finite pre-images (i.e. |f~!(y)| € N) is preposterous: since we aim to provide syntactic description
of ULTraSs, state spaces may be infinite (cf. initial semantics) and functions may map arbitrary
many states to the same image, e.g., their behaviour (cf. bisimulations, final semantics). There-
fore, in this paper we shall consider image finite ULTraSs only. This is a mild and common
assumption (e.g. [21, 4, 7]) and our results readily generalise to transfinite bounds (e.g. to deal
with countably-branching systems).

Definition 2.2 (Image finiteness). Let 20 = (W, +,0) be a commutative monoid. For a function
p: X — W the set |p] = {z | p(x) # 0} is called support of p and whenever it is finite p is
said to be finitely supported. The set of finitely supported functions with domain X is denoted
by FanX. A W-ULTraS (X, A,—>) is said to be image finite iff for any state x € X and label

a € A the set {p |z 4> p} is finite and contains only finitely supported weight functions.

Ezample 2.3. A weight function p € EX (for 2 = ({tt, ff},V, ff)) is a predicate describing a
finite subset of X. Thus BX = EX. Likewise, a function p € FinX (for N = (N, +,0)) assigns
to each element of X a multiplicity and hence describes a finite multiset.

Intuitively, elements of Foy X can be seen as “generalised multisets”. Therefore, it is natural
to extend a function f : X — Y to a function Foy(f) : FayX — FauY mapping (finitely
supported) weight functions over X to (finitely supported) weight functions over Y as follows:

Fau(£)(p) E Xy 1Yo X e 1y P(T)- (1)

This definition generalises the extension of a function to the powerset; in fact, 5 (f)(p) = Ay :
Y.V, F1(y) p(x) describes the subset of Y whose elements are image of some element in the
subset of X described by p. Henceforth, we shall refer to Foy(f)(p) as the action of f on p and
denote it by p[f], when confusion seems unlikely.

We can now make the idea of “state space maps being well-behaved w.r.t. the transition
relation” formal:

Definition 2.4 (ULTraS homomorphism). Let (X, A,—>x) and (Y, A,—>y) be two image-finite
W-ULTraS. A homomorphism [: (—>x) — (—>y) is a function f : X — 'Y between their state
spaces such that for any x € X and a € A:

Tz pxp = f(z) 2>y plf]

Given two homomorphisms f : (—>x) — (—y) and ¢ : (—P>y) — (—z), the function
gof : X — Zis a homomorphism go f : (—>x) — (—>z). Homomorphism composition is always
defined, it is associative and has identities. In Section 5 we will show that ULTraSs homomor-
phisms indeed form categories equivalent to categories of coalgebras for a suitable functor. For
the time being, consider the degenerate monoid 1 containing exactly its unit and let A be a
singleton; then a 1-ULTraS (X, A,—>x) is just a relation —>x = Ry on X and any homomor-
phism is exactly a relation homomorphism. In fact, f : X — Y is a 1-ULTraS homomorphism

3Indeed it is possible to assume sums for any family indexed by some set; however, in Section 5 we assume
image-finiteness to guarantee the existence of a final coalgebra.

fi(Px) = (—y) iff (z,2) € Ry, <= (f(z), f(«')) € Ry. For A with more than one label
we get exactly homomorphisms of labelled relations i.e. LTSs.

2.2 Bisimulation

We present now the definition of bisimulation for ULTraS based on the notion of kernel bisimula-
tion (a.k.a. behavioural equivalence) i.e. “a relation which is the kernel of a common compatible
refinement of the two* systems” [28]. This notion naturally stems from the final semantics ap-
proach and, under mild assumptions, coincides with Aczel-Medler’s coalgebraic bisimulation, as
we will see in Section 5.

Definition 2.5 (Refinement). Given (X, A,—>x) a refinement for it is any (Y, A,—>y) such
that there exists an homomorphism f : (—>x) — (—>y).

Homomorphisms provide the right notion of refinement. Consider an equivalence relation
R C X x X, R is stable w.r.t. —>x if, and only if, its equivalence classes are not split by the
transition relation —>x, i.e., iff there is a refinement whose carrier is Y = X/R. Hence, stability
of an equivalence relation corresponds to the canonical projection x : X — X/R being a ULTraS
homomorphism. This observation contains all the ingredients needed to define bisimulations for
ULTraSs. Before we formalise this notion let us introduce some accessory notation.

In the following, we will denote the total weight of p € FayX by [p|| = > wex P(x). The
weight p assigned to C C X is the total weight of the restriction p|C ie. [Lp‘cjj = sec P().
Any relation R between two sets X and Y defines a relation Rgy between finitely supported
weight functions for X and Y as:

A *
(¢,9) € R <= Y(C,D) € R*|¢|,ll = [¥|,]
where R* C PX x PY is the subset closure of R i.e. smallest relation s.t., for C C X, D CY:

(C,D)eR* < (VxeC,VyeY:(z,y) € R=y € D)A
(Ve X,VyeD:(z,y) e R=>xz€C)
Definition 2.6 (Bisimulation). Let (X, A,—>x) and (Y, A,—>y) be two image-finite W-ULTraS.

A relation R between X and Y is a bisimulation if, and only if, for each pair of states x € X
andy €Y, (z,y) € R implies that for each label a € A the following hold:

o if v P x ¢ then there exists y >y ¢ s.t. ($,¢) € Ray.

o if y >y 1) then there exists v > x ¢ s.t. (¢,1) € Ray.

Processes x and y are said to be bisimilar if there exists a bisimulation relation R such that
(z,y) € R.

As ULTraSs can be seen as stacking non-determinism over other computational behaviour,
Definition 2.6 stratifies bisimulation for non-deterministic labelled transition system over bisimu-
lation for systems expressible as labelled transition systems weighted over commutative monoids.
In fact, two processes x and y are related by some bisimulation if, and only if, whether one reaches

4We present bisimulations as relations between two state spaces instead of considering one system in isolation;
we are aware that in the case of ULTraS two systems can be “run in parallel” still the notion of having a common
refinement allows for different homomorphisms even when considering a single system and therefore offers greater
generality.

a weight function via a non-deterministic labelled transition, the other can reach another func-
tion via a transition with the same label, where the two functions are equivalent in the sense that
they assign the same total weight to the classes of states in the relation. For instance, in the case
of weights being probabilities, functions are considered equivalent only when they agree on the
probabilities assigned to each class of states which is precisely the intuition behind probabilistic
bisimulation [22]. More examples will be discussed below and in the Appendix.

Constrained ULTraS Sometimes, the ULTraSs induced by a given monoid are too many,
and we have to restrict to a subclass. For instance, fully-stochastic systems such as (labelled)
CTMCs are a strict subclass of ULTraSs weighted over the monoid of non-negative real numbers
(R{f ,+,0), where weights express rates of exponentially distributed continuous time transitions.
In the case of fully-stochastic systems, for each label, each state is associated with precisely
one weight function. This kind of “deterministic” ULTraSs are called functional in [5], because
the transition relation is functional, and correspond precisely to WLTSs [21, 14]. These are a
well-known family of systems (especially their automata counterpart) and have an established
coalgebraic understanding as long as a (coalgebraically derived) notion of weighted bisimulation
which are shown to subsume several known kinds of systems such as non-deterministic, (fully)
stochastic, generative and reactive probabilistic [21]. Moreover, Definition 2.6 coincides with
weighted bisimulation on functional ULTraSs/WLTSs over the same monoid [21, Def. 4]; hence
Definition 2.6 covers every system expressible in the framework of WLTS. (cf. Appendix A).

Proposition 2.7. Let 20 be a commutative monoid and (X, A,—>x), (Y, A,—>y) be W-LTSs
seen as a functional Q0-ULTraSs. FEvery bisimulation relation between them is a 2W-weighted
bisimulation and vice versa.

Proof (Omitted). See Appendix A. O

Another constraint arises in the case of probabilistic systems, i.e., weight functions are prob-
ability distributions. Since addition is not a closed operation in the unit interval [0, 1], there is
no monoid 2 such that every weight function on it is also a probability distribution. Altough we
could relax Definition 2.1 to allow commutative partial monoids® such as the weight structure of
probabilities ([0, 1], +, 0), not every weight function on [0, 1] is a probability distribution. In fact,
probabilistic systems (among others) can be recovered as ULTraSs over the (Rd, +,0) (i.e. the
free completion of ([0, 1], +,0)) and subject to suitable constraints. For instance, Segala systems
[27] are precisely the strict subclass of Rar -ULTraS such that every weight function p in their
transition relation is a probability distribution i.e. | p|] = 1. Moreover, bisimulation is preserved
by constraints; e.g., bisimulations on the above class of (constrained) ULTraS corresponds to
Segala’s (strong) bisimulations [27, Def. 13].

Proposition 2.8. Let (X, A,—>x) and (Y, A,—>y) be image-finite Segala-systems seen as UL-
TraSs on (Rg, +,0). Every bisimulation relation between them is a strong bisimulation in the
sense of [27, Def. 13] and vice versa.

Proof (Omitted). See Appendix B. O

A similar result holds for generative (or fully) or reactive probabilistic systems and their
bisimulations. In fact, these are functional Rg_-ULTraS st.forallz e X ¢ 2> p = |pJ €

0,1} and a € {0, 1} respectively.
{0,1} Z{m»p}u’)ﬂ {0,1}

5 A commutative partial monoid is a set endowed with a unit and a partial binary operation which is associative
and commutative, where it is defined, and always defined on its unit.

2.3 Comparison with M-bisimulation

Bernardo et al. defined a notion of bisimulation for ULTraS parametrized by a function M which
is used to weight sets of (sequences of) transitions [5, Def. 3.3]. Notably, M’s codomain may be
not the same of that used for weight functions in the transition relation. This offers an extra
degree of freedom with respect to Definition 2.6. We recall the relevant definitions with minor
modifications since the original ones have to consistently weight also sequences of transitions in
order to account also for trace equivalences which are not in the scope of this paper.

Definition 2.9 (M-function). Let (M, L) be a pointed® set and (X, A,—>) be a W-ULTraS. A
function M : X x A x PX — M is an M-function for (X, A,—) if, and only if, it agrees with
termination and class union, i.e.:

o forallz € X, a € A and C € PX, M(z,a,C) = L whenever x %4> or Up’cﬂ =0 for
every x > p;

o forallz,y € X,a€ A and C1,Cy € PX, if M(z,a,C1) = M(y,a,C1) and M(z,a,Cs) =
M(y,a,Cs) then M(x,a,Cy UC2) = M(y,a,C1 U Ch).

Definition 2.10 (M-bisimulation [5]). Let M be an M -function for (X, A,—>). An equivalence
relation R C X x X is a M-bisimulation for —> iff for each pair (x,y) € R, label a € A, and
class C € X/R, M(z,a,C) = M(y,a,C).

Differently from Definition 2.6, M may be not W allowing one to, for instance, consider
stochastic rates up-to a suitable tolerance as a way to account for experimental measurement
errors in the model. A further distinction between bisimulation and M-bisimulation arises from
the fact that ULTraSs come with two distinct ways of terminating. A state can be seen as “ter-
minated” either when its outgoing transitions are always the constantly zero function, or when
it has no transitions at all. In the first case, the state has still associated an outcome, saying
that no further state is reachable; we call these states terminal. In the second case, the LTS
does not even tell us that the state cannot reach any further state; in fact, there is no “meaning”
associated to the state. In this case, we say that the state is stuck.” The bisimulation given
in Definition 2.6 keeps these two terminations as different (i.e., they are not bisimilar), whereas
M-bisimulation does not make this distinction (cf. [5, Def. 3.2] or, for a concrete example based
on Segala systems, [5, Def. 7.2]).

Finally, the two notions differ on the quantification over equivalence classes: in the case
of Definition 2.6 quantification depends on the non-deterministic step whereas in the case of
M-bisimulation it does not.

Under some mild assumptions, the two notions agree. In particular, let us restrict to systems
with just one of the two terminations for each action a—i.e. if for some z, {p | z 2> p} =0
then for all y, A\2.0 ¢ {p | y &> p}, and, symmetrically, if for some z, Az.0 € {p | z 2> p}

then for all y, {p |y &> p} # 0. Then, the bisimulation given in Definition 2.6 corresponds to
a M-bisimulation for a suitable choice of M.

Proposition 2.11. Let (X, A,—>) be a W-ULTraS with at most one kind of termination, for
each label. Fvery bisimulation R is also an M-bisimulation for

M(‘T’aa C) 2 {[p]RmJ | z <> p and UP’CJJ # 0} U {[)‘ZO]RM}

6 A pointed set (sometimes called based set or rooted set) is a set equipped with a distinguished element called
(base) point; homomorphisms are point preserving functions.

"This is akin to sequential programs: a terminal state is when we reach the end of the program; a stuck state
is when we are executing an instruction whose meaning is undefined.

where (M, L) = (B (FaX/Ray), {[A2.0lry })-
Proof (Omitted). See Appendix C. O

Intuitively, Definition 2.6 generalises strong bisimulation for Segala systems (Segala and
Lynch’s probabilistic bisimilarity [27]) and M-bisimulation generalises convex bisimulation [5].

3 WEF-GSOS: A complete GSOS format for ULTraSs

In this section we introduce the Weight Function SOS specification format for the syntactic
presentation of ULTraSs. As it will be proven in Section 5.3, bisimilarity for systems given in
this format is guaranteed to be a congruence with respect to the signature used for representing
processes.

The format is parametric in the weight monoid 2J and, as usual, in the process signature %
defining the syntax of system processes. In contrast with “classic” GSOS formats [19], targets
of rules are not processes but terms whose syntax is given by a different signature, called the
weight signature. This syntax can be thought of as an “intermediate language” for representing
weight functions along the line of viewing ULTraSs as stratified (or staged) systems. An early
example of this approach can be found in [2], where targets are terms representing measures over
the continuous state space. Earlier steps in this direction can be found e.g. in Bartels’” GSOS
format for Segala systems (cf. [4, §5.3] and [24, §4.2]) or in [10, 5] where targets are described
by meta-expressions.

Definition 3.1 (WF-GSOS Rule). Let 20 be a commutative monoid and A a set of labels. Let
Y and © be the process signature and the weight signature, respectively. A WF-GSOS rule over
them is a Tule of the form:

{x' > qﬁa}(léfn {x RS }1<i<n {[qu‘.l’“. 1 :wk} {qﬁ’-”“- ‘ck > yk}
' i< i<me ' beB, ek 1<ksp LRIk 1<k<q

f(SCl,...,ZL'n) % ’l/)
where:

e f is an n-ary symbol from ¥;

o X ={x;|1<i<n},Y={yx|1<k<q} are sets of pairwise distinct process variables;

e d={¢f |1 <i<n, a€d; 1 <j<mi}isa set of pairwise distinct weight function
variables;

o {wp, €W |1<k<p} are weight constants;

o {€h |1 <k<q,wp €C} is a set of clubs of W, i.e. subsets of W being monoid ideals
whose complements are sub-monoids of 20 ;

e a,b,ce€ A are labels and A; N B; =0 for 1 <i < mn;

e 1 is a weight term for the signature © such that var(y)) C X UY U .

A rule like above is triggered by a tuple (C4,...,Cy) of enabled labels and by a tuple (v1,...,vp)
of weights if, and only if, A; C C;, BiNC; =0, and w; =vj for 1 <i<mn and1<j<p.

Intuitively, the four families of premises can be grouped in two kinds: the first two families
correspond to the non-deterministic (and labelled) behaviour, whereas the other two correspond
to the weighting behaviour of quantitative aspects. The former are precisely the premises of

GSOS rules for LTSs (up-to targets being functions), and describe the possibility to perform
some labelled transitions. The latter are inspired by Bartels’ Segala-GSOS [4, §5.3] and Klin’s
WGSOS [21] formats; a premise like || ¢]] = w constrains the variable ¢ to those functions whose

total weight is exactly the constant w; a premise like (b‘@ 5 y binds the process variable y to
those elements being assigned a weight in €. This kind of premises are meant to single out
elements from weight functions domain in a way that is coherent w.r.t. function actions (hence
independent from carrier maps and variable substitutions). To this end, selection may depend
on weights only and has to be unaffected by sums, i.e., z = f(x) = f(2') is selected if and only if
at least x or 2’ is. Clubs are the finest substructures of commutative monoids that are “isolated”
w.r.t. the monoidal operation in the sense that:

e are commutative monoid ideals, i.e. subsets € with a module structure;
e their complement € in 20 is a sub-monoid of 2.

Because of the first assumption v + w € € = v € €V w € € and because of the second
v,wé¢ € = v+ w ¢ € In other words, if something is selected depending on its weight, no
matter what is added to, it will remain selected and vice versa: v+ w € € <— v e €V w € €.
Note that no club can contain the unit 0 (otherwise € =)) and this ensures selections to be
confined within the weight function supports (hence to be finite).

Remark 3.2. The empty set trivially is a club. Not all complements of submonoids are clubs, for
instance even natural numbers under addition are a submonoid of (N, +,0) but odd numbers are
not a club; the only non-empty club in (N,4,0) is N\ {0}. Elements with an opposite cannot
be part of a club: if x € € then z + (—2) = 0 is in € and hence € cannot be a submonoid of 2J.

Like Segala-GSOS (but unlike WGSOS), there are no variables denoting the weight of each
Yy since this information can be readily extracted from (b?:jk, e.g. by some operator from © that
“evaluates” qﬁ?:jk on yi. Targets of transitions defined by these rules are terms generated from
the signature ©. In order to characterize transition relations for ULTraSs, we need to evaluate
these terms to weight functions. This is obtained by adding an interpretation for weight terms,
besides a set of rules in the above format.

Before defining interpretations and specifications, we need to introduce some notation. For
a signature S and a set X of variable symbols, let 7° X denote the set of terms freely generated
by S over the variables X (in the following, S will be either ¥ or ©). A substitution for
symbols in X is any function ¢ : X — Y its action extends to terms defining the function
TS(0) : T°X — T°Y (i.e. simultaneous substitution). When confusion seems unlikely we use
the more evocative notation t[o] instead of T%(o)(t).

Definition 3.3 (Interpretation). Let 20 be a commutative monoid, ¥ and © be the process and
the weight signature respectively. A weight term interpretation for them is a family of functions

{-bx : TO(X + Fan (X)) = BFanT™(X)
indexed over sets of variable symbols, and respecting substitutions, i.e.:
Vo X = Y9 € TO(X) : {¢hxlo] = {elol}y.

Different from [24] interpretations allow one term to represent finitely many weight functions.
This generalization offers more freedom in the use of the format by reducing the constrains on
what can be encoded in weight function terms and simplifies the proof for completeness.

We are ready to introduce the WF-GSOS specification format. Basically, this is a set of
WEF-GSOS rules, subject to some finiteness conditions to ensure image-finiteness, together with
an interpretation.

Definition 3.4 (WF-GSOS specification). Let 20 be a commutative monoid, A the set of labels, ¥
and © the process and the weight signature respectively. An image-finite WF-GSOS specification
over W, A, and O is a pair (R,{-}) where {-} is a weight term interpretation and R is a
set of rules compliant with Definition 3.1 and such that only finitely many rules share the same
operator in the source (£), the same label in the conclusion (c), and the same trigger (A1, ..., Ayn),

(Wi, ..., wp).
Every WF-GSOS specification induces an ULTraS over ground process terms.

Definition 3.5 (Induced ULTraS). The ULTraS induced by an image-finite WF-GSOS specifi-
cation (R, {-]}) over 2,3, © is the 2-ULTraS (T=0, A,—>) where —> is defined as the smallest
subset of T x A x FagT*() being closed under the following condition.

Let p = £(p1,...,pn) € T=0. Since the ground X-terms p; are structurally smaller than
p assume (by structural recursion) that the set {p | p; > p} — and hence the trigger A =
(Ar,..., An), W= (wi,...,wq) — is determined for everyi € {1,...,n} and a € A. For any rule
R € R whose conclusion is of the form £(x1,...,x,) = ¢ and triggered by A and @ let X, Y,
D be the set of process and weight function variables involved in R as per Definition 3.1. Then,
for any substitution o : X UY — T>0 and map 0 : ® — FouT>(such that:

1. o(x;) =p; forz; € X;
2. 0(¢3;) = p for each premise x; > ¢f; and ||¢f;]| = wi of R, and for any p such that

1]
pi > p and |p|| = wy;

3. o(yr) = qx for each premise qb‘;:jk‘ck S yr of R and for any q, € T*0 s.t. 0(9ir;) (ak) €
Qk;

there is p <> p where p € {Y[0]} xuy[o] is an instantiated interpretation of the target ©-term

.

The above definition is well-defined since it is based on structural recursion over ground X-
terms (i.e. the process p in each triple (p,a, p)); in particular, terms have finite depth and only
structurally smaller terms are used by the recursion (i.e. the assumption of p; 4> p being defined
for each p; in p = £(p1,...,pn)). Moreover, for any trigger, operator, and conclusion label only
finitely many rules have to be considered.

Finally we can state the main result for the proposed format.

Theorem 3.6 (Congruence). The bisimulation on the ULTraS induced by a WF-GSOS specifi-
cation is a congruence with respect to the process signature.

The proof is postponed to Section 5.3, where we will take advantage of the bialgebraic frame-
work.

Remark 3.7 (Expressing interpretations). Weight term interpretation can be defined in many
ways, e.g. by structural recursion on ©-terms. For instance, every substitution-respecting family

of maps:
hx : OFnT>(X) = BFuT*(X) bx: X — BFuT>(X)

uniquely extends to an interpretation by structural recursion on ©-terms where hx and bx define
the inductive and base cases respectively. These maps can be easily given by means of a set of
equations, as in [24, §4.1].

10

a,r a,r a,r a,r
PL—Q P, —Q P—>Q a ¢ L P—>Q

a,r a,r a,r a,r T,r a€lL
(a,r). P ——> P P +P,—>Q Pi+P,——>Q P\L—Q P\L —> Q
a,r1 a,ra a,r a,r
PIHQIRPQHQQGEL Pl?Q a%L P27Q a¢L
PID{]PZOJ’HQIDQQZ P1B§P2%QBL<]P2 P1[>L<]P2%P1BL<]Q
L L

Figure 1: Structural operational semantics for PEPA.

4 Examples and applications of WF-GSOS specifications

In this section we provide some examples of applications of the WF-GSOS format. First, we show
how a process calculus can be given a WF-GSOS specification; in particular, we consider PEPA,
a well known process algebra with quantitative features. Then we show that Klin’s Weighted
GSOS format for weighted systems [21] and Bartels’ Segala-GSOS format for Segala systems [4]
are subsumed by our WF-GSOS format; this corresponds to the fact that ULTraSs subsume both
weighted and Segala systems.

4.1 WF-GSOS for PEPA

In PEPA [16, 17], processes are terms over the grammar:
Pu=(a,r).P|P+P|PBIP[P\L (2)

where a ranges over a fixed set of labels A, L over subsets of A and r over RT. The semantics of
process terms is usually defined by the inference rules in Figure 1 where a € A, 7,771,720, R € RT
(passive rates are omitted for simplicity) and R depends only on rq, 3 and the intended meaning
of synchronisation. For instance, in applications to performance evaluation [16], rates model time
and R is defined by the minimal rate law:

. n 72
Ta (Pl) Ta(Pg)

R -min(ry (Py), e (P2)) (3)

where 7, denotes the apparent rate of a [16].

PEPA can be characterized by a specification in the WF-GSOS format where the process
signature ¥ is the same as (2) and weights are drawn from the monoid of positive real numbers
under addition extended with the +o00 element (only for technical reasons connected with the {-[}
and process variables—differently from other stochastic process algebras like EMPA [6], PEPA
does not allow instantaneous actions, i.e. with rate +00). The intermediate language of weight
terms is expressed by the grammar:

0:=1]On(0) |01 @02 |61 |1 0a|E|P

where r € Rar , L C A, ¢ range over weight functions Fyy X, and P over processes in T>X for
some set X. Note that the grammar is untyped since it describes the terms freely generated
by the signature © = {L1: 0, : 1,® : 2,||1: 2}, over weight function variables and processes.
Intuitively L is the constantly 0 function, {», reshapes its argument to have total weight r, & is the
point-wise sum and ||, parallel composition e.g. by (3). The formal meaning of these operators
is given below by the definition (by structural recursion on ©-terms) of the interpretation {-J}
which is introduced alongside WF-GSOS rules for presentation convenience. Each operator is

11

interpreted as a singleton (PEPA describes functional ULTraSs) and hence we will describe {-|}
as if a weight function is returned.

For each action @ € A and rate r € RT, a process (a,r).P presents exactly one a-labelled
transition ending in the weight function assigning r to the (sub)process denoted by the variable
P and 0 to everything else. Hence, the action aziom is expressed as follows:

0 otherwise

ooy i vkx () #0
Or(@)hx (8) = { [Hebx]
e 1P <> ouP) {Or(@)hx(®) {

where ¢, normalises® {PJ}x to equally distribute the weight r over its support; in particular,
since process variables will be interpreted as “Dirac-like” functions <, (P) corresponds to the
weight function assigning r to X-term denoted by P.

Conversely to the action axiom, (a,r).P can not perform any action but a:

atb L) =0
(a,7).P 2> 1

This rule is required to obtain a functional ULTraS and is implicit in Figure 1 where disabled
transitions are assumed with rate 0 as in any specification in the Stochastic GSOS or Weighted
GSOS formats. Without this rule, transitions would have been disabled in the non-deterministic
layer i.e. (a,7).P -4 .

Stochastic choice is resolved by the stochastic race, hence the rate of each competing transition
is added point-wise as in Figure 1 (and in the SGSOS and WGSOS formats). This passage belongs
to the stochastic layer of the behaviour (hence to the interpretation, in our setting) whereas the
selection of which weight functions to combine is in the non-deterministic behaviour represented
by the rules and, in particular, to the labelling. Therefore, the choice rules become:

Py 2> 1 Py > ¢
P+ P, 2> ¢ @ o

{v @ olx(t) ={vhx @) +{olx(t)

Likewise, process cooperation depends on the labels to select the weight function to be combined.
This is done in the next two rules: one when the two processes cooperate, and the other when
one process does not interact on the channel:

P 2> ¢ PZ%(’anGL P 2> 1 P b o

a¢ L
PPy 2> 6|1 62 PP, 2> (61|l P2) @ (Py ||z ¢2)

The combination step depends on the minimal rate law (3):

Tt s min(Lvbx), Lokxl) i ¢ =10 B2t
0 otherwise

{0l ol x(t) = {

Each process is interpreted as a weight function over process terms. This is achieved by
a Dirac-like function assigning +o0o to the X-term composed by the aforementioned variable:
{P}x(t) = +o0 if P =1, 0 otherwise. The infinite rate characterizes instantaneous actions as if

8Since the interpretation {=| is being defined by structural recursion and has to cover all the language freely
generated from ©, we can not use the (slightly more intuitive) “Dirac” operator d,(P) where P is restricted to
be a process variable instead of a ©-term. Likewise, indexing 4, p also over processes would break substitution
independence i.e. naturality.

12

all the mass is concentrated in the variable; e.g., in interactions based on the minimal rate law,
processes are not consumed. For the same reason, if we were dealing with concentration rates
and the multiplicative law, we would assign 1 to P.

The remaining rules for hiding are straightforward:

P 2> ¢ I P 2> ¢

— " — % 4el
P\L > ¢ P\L Zp ¢

This completes the definition of {-} by structural recursion and hence the WF-GSOS spec-
ification of PEPA. It is easy to check that the induced ULTraS is functional and correspond to
the stochastic system of PEPA processes, that bisimulations on it are stochastic bisimulations
(and vice versa) and that bisimilarity is a congruence with respect to the process signature.

4.2 Segala-GSOS

In [4], Bartels proposed a GSOS specification format? for Segala systems (hence Segala-GSOS),
i.e. ULTraS where weight functions are exactly probability distributions. We recall Bartels’
definition, with minor notational differences.

Definition 4.1 ([4, §5.3]). A GSOS rule for Segala systems is a rule of the form

a b,
T; — ‘-1} {:c } g =
{ i = O 1<i<n, a€A;, 1<j<m? i 7 1<i<n, beB; {4 yk}lgksq
F(21,...,%0) = Wy -ty 4 A W - b

where:

e f is an n-ary symbol from ¥;

o X ={z;|1<i<n},Y={y |1 <k<g} andV:{¢?j|1§i§n, ac€A;, 1<5<
m¢} are pairwise distinct process and probability distribution variables respectively;
a,b,c € A are labels and A; N B; =0 for anyi € {1,...,n};

t1,...,tm are target terms on variables X, Y and V; the latter are associated with colours
from a finite palette to indicate different instances;

o {w; € (0,1] |1 <i<m} describe a linear composition of the targets terms i.e. are weights
associated to the target terms and such that wy + - - + wy, = 1.

A rule like above is triggered by a tuple (C1,...,Cy) of enabled labels if, and only if, A; C C;
and B; N C; = 0 for each i € {1,...,n}. A GSOS specification for Segala systems is a set of
rules in the above format containing finitely many rules for any source symbol £, conclusion label
c and trigger C.

Segala-GSOS specifications can be easily turned into WF-GSOS ones. The first two families
of premises are translated straightforwardly to the corresponding ones in our format; the third
can be turned into those of the form |[¢] > y. Targets of transitions describe finite probability
distributions and are evaluated to actual probability distributions by a fixed interpretation of a
form similar to Definition 3.3. Some care is needed to handle copies of probability variables. In
practice, duplicated variables are expressed by adding “colouring” operators to ©; their number
is finite and depends only on the set of rules since multiplicities are fixed and finite for rules
in the above format. Let V be the set of “coloured” variables from V where the colouring is

9Segala-GSOS specifications yield distributive laws for Segala systems but it still is an open problem whether
every such distributive law arises from some Segala-GSOS specification.

13

used to distinguish duplicated variables (cf. [4, §5.3]). Given a substitution v from V to (finite)
probability distributions over 7= (X +Y), each t; is interpreted as the probability distribution:

R 2 IS on) () i £ = tilow/t] for ti € T(X +Y)
' 0 otherwise

and each target term wy - t1 + - - - +wy, - t,, is interpreted as the convex combination of t, . tm.

4.3 Weighted GSOS

In [21], Klin and Sassone proposed a GSOS format!? for Weighted LTSs that is parametric in
the commutative monoid 20 and hence called 20-GSOS. The format subsumes many known
formats for systems expressible as W LT'S: for instance, Stochastic GSOS specifications are in

the R} -GSOS format and GSOS for LTS are in the B-GSOS format where 2 = ({tt, £}, V, £f).
Definition 4.2 ([21, Def. 13]). 4 2-GSOS rule is an expression of the form:

by, uk

a
{-Ti — wai}) Ty, —— P Yk
1<i<n, a€4; 1<k<m

c,B(utye.um)

(@1, .., zp) —2tm)

where:
e f is an n-ary symbol from ¥;
e X ={x; |1 <i<n},Y={yp|1<k<m} and {ur | 1 <k <m} are pairwise distinct
process and weight variables;
{we; €W | 1<i<n, a€ A;} are weight constants such that w;, #0 for 1 <k < m;
o B: W™ —= W is a multiadditive function on 20;
e a,b,c€ A are labels and A; C A for 1 <i<mn;
o tis a X-term such that Y C var(t) C X UY;

A rule is triggered by a n-tuple c of enabled labels s.t. A; C C; and by a family of weights
{Vai | 1 < i< ny, a €A;} 8.t we; =vg;. AW-GSOS specification is a set of rules in the above
format such that there are only finitely many rules for the same source symbol, conclusion label
and trigger.

Each rule describes the weight of t in terms of weights assigned to each yy (i.e. ux) occurring
in it; if two rules share the same symbol, label, trigger and target then their contribute for t is
added.

To turn a 20-GSOS specification into WF-GSOS ones, the first step is to make weight function
explicit, by means of premises like z; > ¢¢ (since WLTS are functional ULTraS, i.e. m¢ = 1).
Then, each premise x; —*<1 wy; is translated into ||¢¢ || = we:. If W is positive (i.e., whenever
a+b =0 then a =b=0) then W\ {0} is a club and the translation of a 20-GSOS into a WF-
GSOS is straightforward. More generally, it suffices to combine rules sharing the same source,
label and trigger into a single WF-GSOS rule with the same source, label and trigger. Its target
is a suitable weight term containing the functions § and targets t of the original rules; every
occurrence of variables yj, and wy, is replaced with the corresponding function variable (i.e. qbfl’;)
In order to deal with multiple copies of the same weight variable, we wrap each occurrence in a
different “colouring” operator, like in the case of Segala-GSOS.

10Weighted GSOS specifications are proved to yield GSOS distributive laws for Weighted LTSs but it is currently
an open question whether the format is also complete.

14

5 A coalgebraic presentation of ULTraS and WF-GSOS

The aim of this section is to prove some important results about WF-GSOS specifications.
We first provide a characterization of ULTraSs as coalgebras for a specific behavioural functor
(Section 5.2), and their bisimulations as cocongruences. Then, leveraging this characterization
in Section 5.3 we apply Turi and Plotkin’s bialgebraic theory [29], which allows us to define
the categorical notion of WF-GSOS distributive laws; these laws describe the interplay between
syntax and behaviour in any GSOS presentation of ULTraS. We will prove that every WF-GSOS
specification yields a WF-GSOS distributive law, i.e., the format is sound. As a consequence,
we obtain that the bisimilarities induced by these specifications are always congruence relations.
Finally, in Section 5.4 we prove that WF-GSOS specification are also complete: every abstract
WEF-GSOS distributive law can be described by means of a WF-GSOS specification.

5.1 Abstract GSOS

In [29], Turi and Plotkin detailed an abstract presentation of well-behaved structural operational
semantics for systems of various kinds. There syntax and behaviour of transition systems are
modelled by algebras and coalgebras respectively. For instance, an (image-finite) LTS with labels
in A and states in X is seen as a (successor) function h : X — (7 X)# mapping each state
to a function yielding, for each label a, the (finite) set of states reachable from x via a-labelled
transitions i.e. {y | z = y}:
y € h(z)(a) <= z5y.

Functions like h are coalgebras for the (finite) labelled powerset functor (’Pf)A over the category
of sets and functions Set. In general, state based transition systems can be viewed as B-coalgebra
i.e. sets (carriers) enriched by functions (structures) like h : X — BX for some suitable covariant
functor B : Set — Set. The Set-endofunctor B is often called behavioural since it encodes the
computational behaviour characterizing the given kind of systems. A morphism from a B-
coalgebra h : X — BX to g : Y — BY is a function f : X — Y such that the coalgebra
structure h on X is consistently mapped to the coalgebra structure g on Y i.e. go f = Bf o h.
Therefore, B-coalgebras and their homomorphisms form the category B-CoAlg.

Two states z,y € X are said to be behaviourally equivalent with respect to the coalgebraic
structure h : X — BX if they are equated by some coalgebraic morphism from h. Behavioural
equivalences are generalised to two (or more) systems in the form of kernel bisimulations [28]
i.e. as the pullbacks of morphisms extending to a cospan for the B-coalgebas structures associated
with the given systems as pictured below.

P1 R P2
/\/\

X1 X2

hll P Jhg

BX, gl BX»

Bfl\ BY /sz

If the cospan f1, fo is jointly epic, i.e. jo f1 = ko fo = j =k for any j,k : C — Z, (in
general if {f;} is an epic sink, hence {p;} is a monic source) then the set Y is isomorphic to the
equivalence classes induced by R. We refer the interested reader to [26] for more information on
the coalgebraic approach to process theory.

Dually, process syntax is modelled via algebras for endofunctors. Every algebraic signature
¥ defines an endofunctor ¥X = [[.ov X ar(f) on Set such that every model for the signature is

15

an algebra for the functor i.e. a set X (carrier) together with a function g : X — X (structure).
A morphism from a Y-algebras g : XX — X to h: XY — Y is a function f: X — Y such that
fog=nhoXf. The set of X-terms with variables from a set X is denoted by T>X and the set
of ground ones admits an obvious ¥-algebra a : ST>0 — T*(which is the initial X-algebra in
the sense that for every other X-algebra g, there exists a unique morphism from a to g i.e. the
inductive extension of the underlying function f : 70 — X. The construction T~ is a functor,
moreover, it is the monad freely generated by X.

In [29], Turi and Plotkin showed that structural operational specifications for LTSs in the
well-known image finite GSOS format [7] correspond to natural transformations of the following
form:

M\ :¥(Id x B) = BT™*.

These transformations, hence called GSOS' distributive laws, contain the information needed to
connect Y-algebra and B-coalgebra structures over the same carrier set and capture the inter-
play between syntax and dynamics at the core of the SOS approach. These structures are called
A-bialgebras and are formed by a carrier X endowed with a X-algebra g and a B-coalgebra h
structure s.t.:

g h
X —— X —— BX
S(idx, h)l ngb
A
S(X x BX) — =~ BTTx

where ¢’ : T*X — X is the canonical extension of ¢ by structural recursion. In particular,
every A-distributive law gives rise to a B-coalgebra structure over the set of ground Y-terms 7()
and to a X-algebra structure on the carrier of the final B-coalgebra. These two structures are
part of the initial and final A-bialgebra respectively and therefore, because the unique morphism
from the former to the latter is both a ¥-algebra and a B-coalgebra morphism, observational
equivalence on the system induced over T>() is a congruence with respect to the syntax X.

5.2 ULTraSs as coalgebras

Since ULTraSs alternate non-deterministic steps with quantitative steps, the corresponding be-
havioural functor can be obtained by composing the usual functor (7)# : Set — Set of non-
deterministic labelled transition systems with the functors capturing the quantitative computa-
tional aspects: Foy. It is easy to see that the action of a set function on a weight function (1)
preserves identities and composition rendering Foy an endofunctor over Set.

For any 20 and any A, A-labelled image-finite 20-ULTraSs and their homomorphisms clearly
form a category: ULTSgy 4. Objects and morphisms of this category are in 1-1 correspondence
with (7 Fap)“-coalgebras and their homomorphisms respectively.

Proposition 5.1. ULTSgy 4 = (B Fan)4-CoAlg.

Proof. Any image-finite 20-ULTraS (X, A,—>) determines a coalgebra (X,h) where, for any

v € X and a € A: h(x)(a) £ {p | # %> p}. Image-finiteness guarantees that these sets are
finite and that their elements are finitely supported weight functions from X to the carrier of
2. Then, it is easy to check that the correspondence is bijective. O

A similar result holds for the bisimulation given in Definition 2.6. Categorically, a relation
between X and Y is a (jointly monic) span X < R — Y. In our case, this span has to be subject
to some conditions, as shown next.

16

Proposition 5.2. Let (X1, A,—>1) and (X2, A, —>2) be two image-finite W3- ULTraSs; let (X1, h1),
(X2, ha) be the corresponding coalgebras according Proposition 5.1. A relation between X1 and Xo
is a bisimulation iff there exists a coalgebra (Y, g) and two coalgebra morphisms fi : (X1,h1) —
(Y, g) and fa: (X2,ha) = (Y, g) such that f1, f2 are jointly epic and R is their pullback, i.e. the
diagram below commutes.

R

e

X1 X2

hlj T~ th,

(B Fan X1)4 g (B Fan X2)4
~ “
(B Fap f1)4 (B FapY)4 (B Fan fa)?

Proof (Omitted). See Appendix C. O

Intuitively, the system (Y, g) “subsumes” both (X1, h1) and (Xa, ho) via f1, f2; then, R relates
the states which are mapped to the same behaviour in Y ((z1,22) € R iff fi(z1) = fa(z2)).

Coalgebraic bisimulation In Concurrency Theory also Aczel-Medler’s coalgebraic bisimula-
tion [1] is widely used. In fact, it is known that kernel bisimulations and coalgebraic bisimulations
coincide if the behavioural functor is weak pullback preserving (wpp). This is the case for many
behavioural functors, but not for Fyy in general [21]. Actually, the fact that Fay (and (7} Fan)?)
preserves weak pullbacks depends on the underlying monoid only.

Definition 5.3. A commutative monoid is called positive (sometimes zerosumfree, positively
ordered) whenever x +y = 0 = x =y = 0 holds true. It is called refinement if for each
71+ T2 = ¢1 + ¢ there is a 2 X 2 matriz (m; ;) s.t. r; =m;1+mi2 and ¢; =mq j +ma ;.

Lemma 5.4. Coalgebraic bisimulation and behavioural equivalence on ULTraSs coincides if 03
is a positive refinement monoid.

Proof. (B)“ is wpp, and under the lemma hypothesis also JFay is wpp, by [15]. Therefore,
(P Fau)? is wpp, hence every behavioural equivalence is a coalgebraic bisimulation on (7 Fay)“-
coalgebras. We conclude by Proposition 5.1. |

This condition, can be easily verified and in fact holds for several monoids of interest, e.g.:
({tt, £}, v, &), (N,+,0), (R{,+,0), (N,max,0), and (A*,-,&). A simple counter example is
({0,a,b,1},+,0) where = +y = 1 whenever z # 0 # y for it is positive but not refinement
(cf. 7= (a,a) and ¢ = (b,))).

5.3 WF-GSOS specifications are WF-GSOS distributive laws

In this subsection we put the WF-GSOS format within the bialgebraic framework [29]. As a
consequence, we obtain that the bisimilarity induced by the ULTraS defined by this specification
is a congruence.

In particular, we prove that every WF-GSOS specification represents a distributive law of
the signature over the ULTRaS behavioural functor, i.e., a natural transformation of the form

A Sd x (BFw)?) = (BFuT™)" (4)

17

where A is the set of labels, 20 is the commutative monoid of weights, ¥ = [[,.y, 1d*® ig the
syntactic endofunctor induced by the process signature X, and T is the free monad for ¥. We
will call natural transformations of this type WF-GSOS distributive laws.

Before stating the soundness theorem, we note that every natural transformation A as above
induces a (Bfm)A—coalgebra structure over ground X-terms. Namely, this is the only function
hy : T=0 — (B Fan(T*0))# such that:

hyoa = (BFanT™(a?))* o Ax o B(id, hy) (5)
where a# : T>T>() — T*() is the inductive extension of a.

We can now provide the soundness result for WF-GSOS specifications with respect to WF-

GSOS distributive laws, and between systems and coalgebras they induce over ground X-terms.

Theorem 5.5 (Soundness). A specification (R,{-}) yields a natural transformation X as in (4)
such that hy and the ULTraS induced by (R, {-[}) coincide.
Proof. For any set X, define the function Ax as the composite:

o =N x A
S(X x (BFw X)) B (BT + P X)) LS (1 Fop o x4

where 1 : B = B and [R]x is defined as follows: for all ¢’ € T®(X + FayyX), £ € ¥, c € A,
trigger A= (A1, .. Ap), @ = (w1,...wp), v, € X and ®;(a) = {¢f; € FawX | 1 < j < mf} for
n=ar(f)and i € {1,...,n}, let

U € [RIx(£((2), @1), .., (27, Pn)))

if, and only if, there exists in R a (possibly renamed) rule

{x- = (b"}}zéfn {z L4 }1<i<n {[qu‘.’k‘ |l :wk} {(b‘% ‘ek > yk}
' S 1<i<me ’ beB; et 1<k<p L 1<k<q

fxy,...,xn) <> P
such that m? # 0 iff a € A; and there exists a substitution o such that ¢’ = o], ox; = f,
oYk = Y, 00Y = 0, [¢iF, | = wi and ¢7F; (oyr) € €. Then, naturality can be proved
separately for the two components: the former can be tackled as in [29, Th. 1.1] and the latter
readily follows from Definition 3.3.
Correspondence of hy with the induced ULTraS follows by noting that the latter is given by
structural recursion on 3-terms by applying precisely A as given above (cf. (5) and Definition 3.5).

O

Now, by general results from the bialgebraic framework, every behavioural equivalence on hy
is also a congruence on 7). In order to obtain this result we need the following (simple yet
important) property.

Proposition 5.6. The category of (Pf]-'gn)A—coalgebms has a final object.

Proof. By [3] every finitary Set endofunctor admits a final coalgebra. By definition Fyy is finitary.
The thesis follows from 7 = F, and from finitarity being preserved by functor composition. [

Corollary 5.7 (Congruence). Behavioural equivalence on the coalgebra over T induced by
(R, {-}) is a congruence with respect to the signature X.

Proof. The syntactic endofunctor ¥ admits an initial algebra and, by Proposition 5.6, the be-
havioural endofunctor (B Jay)# admits a final coalgebra. The same holds for their free monad
and cofree copointed functor respectively. The specification (R, {-[}) defines, by Theorem 5.5, a
distributive law which uniquely extends to a distributive law distributing the free monad over
the cofree copointed functor; then the thesis follows from [29, Cor. 7.3]. O

18

A

S(1d x (B Fap)*) (B FuT)4
P (Lem. 5.9) (M;wTE)A

T (o) —
(BT (Id + Fay))d ———— (FPFT™)4

[R] (“T@(RHFM))AT (Nat.) (BMFWTE)AT (=) (uFmTz)A
(RET® (14 + Fay))* ——— (B2 Fay)

/ (73[29)14
(77f§)A (Def ﬂ_l}) (’Pf,u}_mTz)X)

(BTE(1d + Fan))A DA (B FanT>)A
-

Figure 2: Factorization for A-distributive laws as WF-GSOS specifications.

5.4 WF-GSOS distributive laws are WF-GSOS specifications

In this subsection we give the important result that the WF-GSOS format is also complete with
respect to distributive laws of the form (4).

Theorem 5.8 (Completeness). Every WF-GSOS distributive law \ arises from some WF-GSOS
specification (R, {-]}).

The proof of this Theorem follows the methodology introduced by Bartels for proving ade-
quacy of Bloom’s GSOS specification format [4, §3.3.1]. The (rather technical) proof will take
the rest of this subsection, so for sake of conciseness we omit to recall some results which can be
found in loc. cit..

The thesis follows from proving that, for every A, there exists an image-finite set of WF-SOS
rules R (and suitable interpretations 6 and &) making the diagram in Figure 2 commute. The
lower part of the diagram defines the interpretation {-} out of £ and 6 completing the WF-GSOS
specification for A. The middle and right parts of the diagram trivially commute.

The upper part of the diagram commutes because of the following lemma which states that
every WF-GSOS distributive law arises from an interpretation and a natural transformation
having the same type of those defined by image-finite sets of WF-GSOS rules.

Lemma 5.9. Let 3, A and 20 be a signature, a set of labels and a commutative monoid, respec-
tively. Let A be a WF-GSOS distributive law as in (4). There exist © and an interpretation fac-
torizing X i.e. there exists p : B(Id x (B Fap)?) = (BT (Id+ Fap))? such that A = (uoBp0)? o p.

Proof (sketch). In Set it is easy to encode finitely supported functions as terms. For instance let
O extend X with operators for describing collections and weight assignments (e.g. (- — w) where
w € W\ {0}). Then, we can turn A into p by simply encoding its codomain. Then 6 simply
evaluates these terms back to weight functions everything else to the (). |

Following Bartels’ methodology, the left part of the diagram commutes by reducing p to
simpler, but equivalent, families of natural transformations and eventually deriving a syntactical
specification which is then shown to be equivalent to an image-finite set of WF-GSOS rules
and an intermediate interpretation £. The use of another signature = besides © gives us an
extra degree of freedom and simplifies the proof. In particular, it allows us to encode natural
transformations of type Foy = P Fay (yielded by the aforementioned reduction) in £ and handle
them downstream to the interpretation {-[}. This expressiveness gain is one of the reasons for
the introduction of non-determinism in Definition 3.3.

19

First, note that, by [4, Lem. A.1.1], p as above is equivalent to:
p:2(Id x (B Fm)?) x A= BT(1d + Fay)
which is equivalent to a family of natural transformations
ot (Id x (BFw)*)N = BTO(1d + Fay) (6)

indexed by £ € ¥ and ¢ € A and where N = {1,...,ar(f)}. In fact, ¥ is a polynomial functor
and Id x A= A-1d is an |A|-fold coproduct.
By [4, Lem. A.1.7], each ax . is equivalent to a natural transformation

dsc (BFap)VN = BTO(N +1d + Foy) (7)
and, by the natural isomorphism

(AN = (B +)N = e a0, v (BHF
each @z . is equivalent to a family of natural transformations

Bt,c.E ('Per]:Qn)E = BTN +1d + Fay) (8)

where the added index corresponds to the vector of sets of labels (1, ..., Eu¢)) composing the
trigger of a WF-GSOS rule. By the natural isomorphism

7)f+]:an = /Per [Hocon Fan = vapfmn [lev 7)f+'7:§n

where F3 X £ {¢ € FpX | [[¢]] = v}, each B¢ . g is equivalent to a family of natural transfor-
mations

Voo 8w Heer Hoewey B Fan = BTN +1d + Fan) (9)

where w : E — P;“QU. Since total weight premises associate pairs from E to weights, maps like
w can be seen as families of triggering weights.
By [4, Lem. A.1.3] and by the natural isomorphism

T = queT@l Idw*

where [¢|, denotes the number of occurrences of * € 1 in the O-term 1 (cf. [4, Lem. A.1.5]) each
V¢, E,w corresponds to a family of natural transformations

6f,c,E,1U,1l) : HeGE Hva(e) /Per]:é}B = /Per((Id +]:QB)W)‘*) (10)

where the added index 1) ranges over some subset of T®(1 + N) (cf. target terms of WF-GSOS
rules).

Then, following [4, §3.3.1, Cor. A.2.8] it is easy to check that each d¢ ¢ g, describes a
non-empty, finite set of derivation rules as

¢j,vj S T, ((I)ej) Yi € €j,v; (¢j,vj)
(21,5 2y1.) € Os.eBw,p((Pe)ecE)

where pg e Ny e; € E,1 < j <p, 1<1i<gq,v; €wle)each zx € {y; | 1 <1i < g} for
1 <k < 1]« and each €;,,; is a natural transformation:
R Per(Id + Fap).

Natural transformations of this type can be easily encoded in the term 1 by suitable extensions
of © and therefore each s ¢ £ w,» can be shown to be equivalent to a d-specification i.e. a non-
empty, finite set of derivation rules as above except for each z; being a term wrapping ¢; ., with
the symbol denoting €;,. These terms are then evaluated by the interpretation €9 as expected.

20

This proof points out the trade-off that has to be made in presence of specifications with
interpretation such as WF-GSOS or MGSOS [2]. In fact, clubs were not mentioned in the above
reduction of p since each ¢; ,; was handled by the interpretation {. However, the following result

shows that clubs (hence, premises like qb‘c 3 y), characterize natural transformations of type
Fo = B

Lemma 5.10. For any natural transformation v : Fgy = B there ewists a club &, characterizing
it: © € vx(p) <= o(x) € €.

Proof (sketch). Intuitively, natural transformations of this type are “selecting a finite subset
from each weight function domain” and it is easy to check that elements can be only singled
out by their weight. Likewise, finiteness and naturality prevent the selection of anything outside
function supports. Then, the problem readily translates into finding the finest topology on the
weight monoid that “plays well” with Fyy i.e. such that monoidal addition, seen as a continuous
map from the product topology, preserves opens (i.e. any admissible selection). Clubs are a base
for this topology since, by definition, these are the only substructures isolated w.r.t. Fog-action.
Hence selections made by v are completely characterized by a single club &,,. O

Finally, we have to translate the set of rules we got so far into the WF-GSOS format; we
do it by reversing the chain that led us from p to § and J-specification. By Lemma 5.10 every
d-specification is equivalent to a -y-specification

@i vicwle;
¢j € Do, loill =vi i " 2w Ji{;][21] yi}+N
Zk 3165 1Y ’
1/1(,21, - ,Z|¢|*) € ’Yf,c,E,w((‘I)e)eEE) »

fininte

where ¢;[¢;] is a term build with the Z-operator denoting the natural transformation ; :]-';,Jl% =
PrFop and &7 acts as €% on these terms, as the identity on those generated from © (distributing
the powerset as expected) and maps everything else to). A 7-specification defines a natural
transformation as in (9) and every family of v-specifications characterizing a natural transfor-
mation as in (8) is equivalent to a S-specification i.e. a set of derivation rules

{(bj €, loill=v; ¢ 2w z;ee{¢j[<j],yi}+N}
P
image finite

Y(z1,-- 5 21p),) € Br.e,E((Pe)ecE)
finite up to vectors of total weights ¥ = (vg,...,vp). Since E C A x N, every family of j-
specifications describing a natural transformation as in (7) is equivalent to a set

‘ [

< My ,bn 3@
N =0 @ € <I>zj,aj U¢jﬂ =vj @ oY (e{i; f]ay }+>N
— Zk j j1 Yi El
P mp) € Grel(@r, b)) | o

im.fin.

containing finitely many rules for every E and 9. This set corresponds to an a-specification
i.e. an image-finite set like the following:

< >y (M, bn) #(lj,a;),
z2k€{¢; ¢ imn},
P

P, (bn) =0 ¢j € iy(ay) ol =v; &,
1/)(21, RN Zw,‘*) S O[f7c(<<x17 (I)1>, RN <:C‘f|, @‘f|>>)

im.fin.

Finally, every family of a-specifications equivalent to a natural transformation as p corresponds
to an image-finite set of WF-GSOS rules and an interpretation. Therefore we conclude that for
any p there exist R and ¢ as in Figure 2.

21

6 Conclusions and future work

In this paper we have presented WF-GSOS, a GSOS-style format for specifying non-deterministic
systems with quantitative aspects. A WF-GSOS specification is composed by a set of rules for the

derivation of judgements of the form P -%p), where 1) is a term of a specific signature, together
with an interpretation for these terms as weight functions. We have shown that a specification in
this format defines an ULTraS, and it is expressive enough to subsume other more specific formats
such as Klin’s Weighted GSOS for WLTS [21], and Bartel’s Segala-GSOS for Segala systems [4,
§5.3], and those subsumed by them e.g. Klin and Sassone’s Stochastic GSOS [21] and Bloom’s
GSOS [7]. WF-GSOS induces naturally a notion of (strong) bisimulation, which we have com-
pared with M-bisimulation used in ULTraS. We have also provided a general categorical presen-
tation of ULTraSs as coalgebras of a precise class of functors, parametric on the underlying weight
structure. This presentation allows us to define categorically the notion of abstract GSOS for
ULTraS, i.e., natural transformations of a precise type. We have proved that WF-GSOS specifica-
tion format is adequate (i.e., sound and complete) with respect to this notion. Taking advantage
of Turi-Plotkin’s bialgebraic framework, we have proved that the bisimulation induced by a WF-
GSOS is always a congruence; hence our specifications can be used for compositional and modular
reasoning in quantitative settings (e.g., for ensuring performance properties). Moreover, the for-
mat is at least as expressive as every GSOS specification format for systems subsumed by ULTraS.

Related works In this paper we have shown that commutative monoids are enough to define
ULTraSs, their homomorphisms and bisimulations. The original work [5] assumed weights to
be organised into a partial order with bottom (W, <, 1), but the order plays no réle in the
definition besides distinguishing the point L used to express unreachability. A monoidal sum is
eventually and implicitly assumed by the notion of M-bisimulation and, because of the definition
of M-function, this operation is assumed to be be monotone in both its components and to have
1 as unit. In other words, M-bisimulation implicitly assumes weights to form a commutative
positively ordered monoid (W, +, <,0). Any such a monoid is positive and hence it has a natural
order a I b <= Jc.a + c = b; this order is the weakest one rendering the monoid W positively
ordered, in the sense that for any such ordering <, it is < C <.

We note that in [5], weights used to define ULTraSs are decoupled from those of M-functions;
e.g., the formers can be in ([0,1],<,0) and the latters in (RJ,+,0). However, the notion of
constrained ULTraS is sill needed to precisely capture probabilistic systems or, in other words,
the use of partial orders may still require to embed the systems under study into a larger class of
ULTraSs. We remark that (R, +,0) is the smaller completion of ([0, 1], <,0) under + and in this
sense the embedding can be seen as canonical. Therefore, defining ULTraSs in terms of commuta-
tive monoids is a conservative generalisation that additionally provides a natural notion of homo-
morphisms and hence bisimulations. As a side note, existence of bottoms does not allow weights
to have opposites, e.g., to model opposite transitions like in calculi for reversible computations.

Although in this paper we have taken ULTraSs as a reference, WF-GSOS can be interpreted in
other meta-models, such as FuTSs [23]. Like ULTraSs, FuTSs have state-to-function transitions,
but admit several distinct domains for weight functions and more free structure besides the strict
alternation between non-deterministic and quantitative steps. In their more general form, they
can be understood as coalgebras for functors of shape:

FE,@ = (‘Fwo,ko -“]:in,o)Ao X (]:QB]:QB)An (11)

n,kn 1,0

where each 20; ; in 99 is a commutative monoid and each A; in A is a set. We remark that,
although in [23] weights are drawn from semirings, commutative monoids are sufficient to define
Fop and hence define FuTS, homomorphisms and eventually bisimulations. Moreover, Lemma 5.4

22

readily generalises to (11): if weights are drawn only from positive refinement monoids then any
such functor is wpp. No rule format for FuTSs has been published yet; we believe the WF-
GSOS specification format to be a step in this direction because of the similarities between the
behavioural functors involved. This would allow us to formulate compositionality results for
(meta)calculi defining FuTSs, e.g., the framework for stochastic calculi proposed in [13]. Indeed
since ULTraSs can be viewed as FuTSs (assuming commutative monoids as a common ground)
any specification format for the latter that is both correct and complete w.r.t. the suitable
abstract GSOS law will necessarily subsume WF-GSOS.

The systems considered in this paper can be seen as generalised Segala systems. We showed
how the proposed format subsumes Bartels’ Segala-GSOS; however, this is not the only spec-
ification format for this kind of systems. In [11] Gebler et al. proposed a ntufv/ntpzy rule
format for describing Segala systems. Since Turi-Plotkin seminal paper [29] it is well known
that GSOS and coGSOS (i.e tree-rule formats such as that in [11]) correspond to distributive
laws of completely different shapes: the former distribute monads over copointed endofunctors
whereas the latter distribute pointed endofunctors over comonads. These different shapes have
obvious implications on the data available to the derivation rules: monads provide views “inside
terms” whereas comonads provide views “inside executions”. Their common generalisation are
laws distributing monads over comonads but has limited practical benefits because it does not
translate to any concrete rule format that would be complete for any specification containing
both GSOS and coGSOS [20].

Future work The categorical characterization of ULTraS systems paves the way for further
interesting lines of research. One is to develop Hennessy-Milner style modal logics for quantitative
systems at the generality level of the ULTraS framework. In fact, Klin has shown in [18] that
HML and CCS are connected by a (contravariant) adjunction. A promising direction is to follow
this connection taking advantage of the bialgebraic presentation of ULTraSs provided in this
paper. Another is to explore the implications of the recent developments in the coalgebraic
understanding of unobservable moves [9, 8] in the context of this work. An intermediate step
in this direction is to develop a suitable monad structure for P Fyy which is, in general, not
a monad (cf. D where D is the probability distribution monad). This alone will allow us to
define e.g. trace and testing equivalences in a principled coalgebraic way.

Acknowledgements We thank Rocco De Nicola, Daniel Gebler, the anonymous reviewers and
the QAPL’14 participants for useful discussions on the conference version of this paper. This
work is partially supported by MIUR PRIN project 2010LHT4KM, CINA.

References
[1] P. Aczel and N. Mendler. A final coalgebra theorem. In D. H. Pitt, D. E. Rydeheard, P. Dybjer, A. M. Pitts,
and A. Poigné, editors, Proc. CTCS, volume 389 of LNCS Science, pages 357-365, 1989. Springer.

[2] G. Bacci and M. Miculan. Structural operational semantics for continuous state stochastic transition systems.
J. CSS, 81(5):834-858, 2015.

[3] M. Barr. Terminal coalgebras in well-founded set theory. T'CS, 114(2):299-315, 1993.

[4] F. Bartels. On Generalised Coinduction and Probabilistic Specification Formats. PhD thesis, CWI, Amster-
dam, 2004.

[5] M. Bernardo, R. De Nicola, and M. Loreti. A uniform framework for modeling nondeterministic, probabilistic,
stochastic, or mixed processes and their behavioral equivalences. Inf. Comput., 225:29-82, 2013.

[6] M. Bernardo and R. Gorrieri. A tutorial on EMPA: A theory of concurrent processes with nondeterminism,
priorities, probabilities and time. T'CS, 202(1-2):1-54, 1998.

[7] B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced. J. ACM, 42(1):232-268, 1995.

23

(8]
[9]
(10]

(11]

(12]
(13]

14]
(15]
(16]
(17]

(18]

(19]
20]

(21]

(22]
23]

[24]

(25]
[26]
27]

28]
[29]

F. Bonchi, S. Milius, A. Silva, and F. Zanasi. Killing epsilons with a dagger: A coalgebraic study of systems
with algebraic label structure. T'CSS, 2015.

T. Brengos, M. Miculan, and M. Peressotti. Behavioural equivalences for coalgebras with unobservable
moves. CoRR, abs/1411.0090, 2014.

L. Cardelli and R. Mardare. The measurable space of stochastic processes. In Proc. QEST, pages 171-180.
IEEE Computer Society, 2010.

M. David Lee, D. Gebler, and P. R. D’Argenio. Tree rules in probabilistic transition system specifications
with negative and quantitative premises. In B. Luttik and M. A. Reniers, editors, EXPRESS/SOS, volume 89
of EPTCS, pages 115-130, 2012.

R. De Nicola, D. Latella, M. Loreti, and M. Massink. Rate-based transition systems for stochastic process
calculi. In Proc ICALP, pages 435-446. Springer, 2009.

R. De Nicola, D. Latella, M. Loreti, and M. Massink. A uniform definition of stochastic process calculi. J.
ACM, 46(1):5, 2013.

M. Droste, W. Kuich, and H. Vogler. Handbook of weighted automata. Springer, 2009.
H. P. Gumm and T. Schréder. Monoid-labeled transition systems. ENTCS, 44(1):185-204, 2001.
J. Hillston. A compositional approach to performance modelling. Cambridge University Press, 1996.

J. Hillston. Process algebras for quantitative analysis. In LICS, pages 239-248. IEEE Computer Society,
2005.

B. Klin. Bialgebraic methods and modal logic in structural operational semantics. Inf. Comput., 207(2):237—
257, 2009.

B. Klin. Bialgebras for structural operational semantics: An introduction. T'CS, 412(38):5043-5069, 2011.

B. Klin and B. Nachyla. Distributive laws and decidable properties of SOS specifications. In J. Borgstrom
and S. Crafa, editors, EXPRESS/SOS, volume 160 of EPTCS, pages 79-93, 2014.

B. Klin and V. Sassone. Structural operational semantics for stochastic and weighted transition systems.
Inf. Comput., 227:58-83, 2013.

K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Inf. Comput., 94(1):1-28, 1991.

D. Latella, M. Massink, and E. P. de Vink. A definition scheme for quantitative bisimulation. In Proc. QAPL,
2015. To appear in EPCTS.

M. Miculan and M. Peressotti. GSOS for non-deterministic processes with quantitative aspects. In
N. Bertrand and L. Bortolussi, editors, Proc. QAPL, volume 154 of EPCTS, pages 17-33, 2014.

C. Priami. Stochastic pi-calculus. Comput. J., 38(7):578-589, 1995.
J. J. M. M. Rutten. Universal coalgebra: a theory of systems. T'CS, 249(1):3-80, 2000.

R. Segala and N. A. Lynch. Probabilistic simulations for probabilistic processes. Nord. J. Comput., 2(2):250—
273, 1995.

S. Staton. Relating coalgebraic notions of bisimulation. LMCS, 7(1), 2011.

D. Turi and G. Plotkin. Towards a mathematical operational semantics. In Proc. LICS, pages 280-291.
IEEE Computer Society Press, 1997.

24

A Weighted transition Systems

Weighted labelled transition systems (e.g. [14, 21]) are LTS whose transition are assigned a
weight drawn from a commutative monoid 20 = (W, 0, +). Henceforth we will write 20-LTS for
20-Weighted LTS or in general WLT'S if no specific monoid is intended.

Definition A.1 ([21, Def. 2]). Given a commutative monoid 20 = (W, +,0), a W-weighted LTS
is a triple (X, A, p) where:

e X is a set of states (processes);
e A is a set of labels (actions);
e p: X x Ax X — W is a weight function, mapping each triple of X x A x X to a weight.

(X, A, p) is said to be image-finite iff for each x € X and a € A, the set {y € X | p(x,a,y) # 0}
is finite.

It is well-known that, for suitable choices of 20 and constraints, WLTS subsume several kind
of systems such as:

o ({tt,ff},V, ff) for non-deterministic systems;

(R, +,0) for rated systems [21, 12] (e.g. CTMCs);

(R{,+,0)and Vz € X,a € A > yex P(@,a,y) € {0,1} for generative (or fully) probabilistic
systems;

(R, +,0) and Vx ZaeA,yeX P(z,a,y) € {0, 1} for reactive probabilistic systems;

(R{,max, 0) for “capabilities” (weights denotes the capabilities of a process and similar
capabilities add up to a stronger one);

e ctc.

Moreover, Klin defined in [21] a notion for WLTS (based on cocongruences) which uniformly
instantiates to known bisimulations for systems expressible in the WLTS framework.

Definition A.2 ([21, Def. 4]). Given two 2-LTS (X, A, ¢) and (Y, A,), a W-bisimulation is
a relation R C X xY s.t. for each pair (x,y) C X XY, (x,y) € R implies that for each a € A

and each (C, D) of R*:
Z Qﬁ(l‘, a, C) = Z w(?h a,d).

ceC ceD

WLTS are precisely functional ULTraS and, as stated in Proposition 2.7, every weighted
bisimulation for a WLTS is a bisimulation for the corresponding functional ULTraS and vice
versa.

Proof of Proposition 2.7. Trivially, there is a 1-1 correspondence between 20-LTS and functional
20-ULTraS. Then, Proposition 2.7 readily follows by observing that, for any given pair of 2J-
LTS/ULTraS (X, A,—>x) (Y, A,—>y), Definition 2.6 degenerates in Definition A.2 because for

any = — ¢ there is exactly one y — ¢. [l

25

The coalgebraic understanding of WLTS makes the correspondence even more immediate. In
fact, there exists a bijective map between 20-LTS with labels in A and (Fyy)“-coalgebras (cf. [21,
Prop. 8]) and every 20-weighted bisimulation arise from a cocongruence (cf. [21, Prop. 9]). Then,
consider the natural transformations F : (Fap)? = (BFaw)? and G = (B Fa)? = (Fay)™:

Fx(¢)(a) £ {p(a)} Gx(®)(a) £ e:X. Y pla)

pE®(a)

which lift the 20-LTS behaviour to ULTraS and back. These extends by composition to the
functors, F' and G, between the categories of coalgebras for (Fay)? and (7 Fan)?.

(Fan)A-CoAlg

F G
(P Fay)A-CoAlg

The two are not adjoint but, the former is faithful and injective on objects whereas the latter is
full and surjective on objects. Moreover GG preserves the final coalgebra.

The natural transformations F' and G give rise to the arrows G-F and F-G (pictured below)
by pre- and post- composition and such that the first is injective and the second is surjective.

Nat(S(Id x (Fan)?, (FanT=)A)
G-F F-G
Nat(S(Id x (P Fap)?, (B FanTE)A)

The functors above prove that on the same monoid ULTraS are a strict superclass of WLTS.
By a quick cardinality reasoning it is possible to extend the inclusion result to the case where
the monoid is allowed to change. In fact, for any 20 = (W, +,0) s.t. |W| > 1 there is no
monoid ¥ = (V,-,1) such that 20WI") = |V|*. Unfortunately we cannot rule out the possibility
of “determinizing” every ULTraS to some WLTS while preserving and reflecting behavioural
equivalences.

B Segala Systems

In their general format, Segala systems [27] are state machines (originally introduced as au-
tomata) whose transitions can be pictured as being made of two steps belonging to two different
behavioural aspects: the first sub-step is non-deterministic and the second one is probabilistic.
The following definitions are taken from [27] with minor notational differences and by restricting
to finite probability distributions (whereas the original definition is given to discrete at most
countable probability spaces) for conciseness and uniformity with the restriction to image-finite
systems made in the paper.

Definition B.1. A Segala system is a triple (X, A,—>) where:

o X is a set of states (processes);

26

o A is a set of labels (actions);

e > C X x AxD(X) a transition relation between states and discrete probability spaces
over pairs of labels and states.

Definition B.2 ([27, Def. 14]). Let (X, A,—>x) and (Y, A,—>y) be two Segala systems. A
bisimulation is a relation R C X XY such that for each (x,y) € X XY, (z,y) € R implies that for
each a € A for each x <> ¢ there isy > v s.t. for each (C,D) € R*) .o ¢(c) = > 4cp ¥(d)

and symmetrically for y.

Proof of Proposition 2.8. Clearly DX C]:R(TX and hence Segala systems are constrained UL-
TraS. Then, Proposition 2.8 readily follows by observing that the two notions coincide on the
non-deterministic part and then on the summations over elements of R* i.e. the extension of

R O

C Omitted proofs

Proof of Proposition 2.11. The function M is well-given because M(z,a,C) = L =1 whenever
x %> or, for each x 2> p, p(C) = 0, and M(z,a,C1) = M(y,a,C1) and M(z,a,Cs) =
M(y, a, Cs) implies M(z,a,C1 U Cs) = M(y, a,C; UCy) by definition of Rgy.

By Definition 2.6, whenever z -2 ¢ then y 2> 9 s.t. ¢(C) = ¥(C) for each C € X/R
i.e. ¢Royy) and the symmetric case for y. Therefore (z,y) € R implies that ®, , = {[#] Ry, |
T 4> ¢} and Dy, = {[Vry | ¥ 2> ¥} are equal for each a € A. We can safely add L
to both ®,, and ®,, since, whenever both z and y terminate, they are either both stuck

or both terminal. In fact, equality and inequality are preserved while adding L since ®,, =
) = L¢ ®,, (and vice versa) by hypothesis. For each C' € X/R (z,y € X and a € A) let
Uyuo 2 (Do \{[plRy | p(C) =0})U{L}. Clearly &, ,U = UCeX/R U, ac and if (z,y) € R
then ¥, . c = U, 4c. Complementarly, if (z,y) ¢ R then there exists some ¢ € &, , s.t. for
no ¢ € &, , ¢Rayt) or vice versa; w.l.o.g. assume the former. Hence there exists C' € X/R such
that ¢(C) # ¢(C) whence ¥, . ¢ # Uy q,c. Finally, we conclude by M(z,a,C) = U, , ¢ for
eachz € X, a € Aand C € X/R. O

Proof of Proposition 5.2. Let 20 = (W, +,0) be a commutative monoid and let (X, A, —>x),
(Y, A,—y), (X, «) and (Y, 8) be two ULTraS over 20 and their corresponding coalgebras (Propo-
sition 5.1). Recall that a function f : X — Y is a also coalgebra morphism f : o — (3 iff, for
each x € X, and a € A:

flx) >y <= = > x ¢ NP = ¢[f]

where ¢[f] denotes the action of f on ¢ (i.e. the function Ay : Y. 37, -1 (,) ¢(2)) and function
equality is defined point-wise as usual. Firstly, we prove that if R is a kernel relation of some
jointly epic cospan of coalgebra mophism from « and S then it is a bisimulation. Let the

aforementioned cospan be (X, «) L (Z,7) L (Y,B), (Z,A,—>z) the ULTraS for v and assume
2 and y such that f(z) = ¢g(y). By definition of coalgebra morphism, f(x) = z implies:

x> xd = z D> yzp=9[fl=A:Z Z o(x).
zef~1(c)

27

Likewise g(y) = z implies:

y Dy = z PDzp=ilg=A:2 Z P(y).
y€g—1(c)

Therefore f(z) = g(y) implies:

T xd =y By YAVCEZZ Y do)=2Z Y Yy

zef-1(C) yeg~1(C)
Yoy = x> xeAVCEZZ Y d@)=Z >, ¥(y)
z€f—1(C) yeg—1(C)

Then, we conclude by noting that if R is the kernel of f, g there is a bijective correspondence
between its equivalence classes and elements in Z since every class is in the image of f or g by
the jointly epic assumption.

For the converse, given a bisimulation R for (X, A,—>x) (Y, A,—>y) let Z be the set of the
equivalence classes in R and consider the ULTraS (Z, A, —>) defined as follows:

C > zAD:Z. Y ¢(') <= zHxdrzeC
x'€D

C > zAD:Z. Y W(y) <= ySHypAyeC
y'€eD

The two statements are redundant since x,y € C <= xRy and hence iff for every % x ¢ there
is y =y 1 s.t. ¢ =g 1 and vice versa. Finally, class membership defines a jointly epic coalgebra
cospan from the coalgebras associated to (X, A,—>x) and (Y, A,—>y) to the one associated to
(Z,A,—>z) by simply mapping each z € X and each y € Y to its class. O

28

	1 Introduction
	2 Uniform Labelled Transition Systems and their bisimulation
	2.1 Uniform Labelled Transition Systems
	2.2 Bisimulation
	2.3 Comparison with M-bisimulation

	3 WF-GSOS: A complete GSOS format for ULTraSs
	4 Examples and applications of WF-GSOS specifications
	4.1 WF-GSOS for PEPA
	4.2 Segala-GSOS
	4.3 Weighted GSOS

	5 A coalgebraic presentation of ULTraS and WF-GSOS
	5.1 Abstract GSOS
	5.2 ULTraSs as coalgebras
	5.3 WF-GSOS specifications are WF-GSOS distributive laws
	5.4 WF-GSOS distributive laws are WF-GSOS specifications

	6 Conclusions and future work
	A Weighted transition Systems
	B Segala Systems
	C Omitted proofs

