

Bisimulation of labelled state-to-function transition systems
coalgebraically
Citation for published version (APA):
Latella, D., Massink, M., & de Vink, E. P. (2015). Bisimulation of labelled state-to-function transition systems
coalgebraically. Logical Methods in Computer Science, 11(4), 1-40. https://doi.org/10.2168/LMCS-11(4:16)2015

DOI:
10.2168/LMCS-11(4:16)2015

Document status and date:
Published: 01/01/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.2168/LMCS-11(4:16)2015
https://doi.org/10.2168/LMCS-11(4:16)2015
https://research.tue.nl/en/publications/673c73d1-b774-44bc-a43a-55453eaa6287

Logical Methods in Computer Science
Vol. 11(4:16)2015, pp. 1–40
www.lmcs-online.org

Submitted Sep. 16, 2015
Published Dec. 22, 2015

BISIMULATION OF

LABELLED STATE-TO-FUNCTION TRANSITION SYSTEMS

COALGEBRAICALLY

DIEGO LATELLA a, MIEKE MASSINK b, AND ERIK P. DE VINK c

a,b CNR – Istituto di Scienza e Tecnologie dell’Informazione ‘A. Faedo’, Pisa
e-mail address: {Diego.Latella, Mieke.Massink}@isti.cnr.it

c Department of Mathematics and Computer Science, Eindhoven University of Technology ,
Centrum voor Wiskunde en Informatica, Amsterdam
e-mail address: evink@win.tue.nl

Abstract. Labeled state-to-function transition systems, FuTS for short, are characterized
by transitions which relate states to functions of states over general semirings, equipped
with a rich set of higher-order operators. As such, FuTS constitute a convenient modeling
instrument to deal with process languages and their quantitative extensions in particular.
In this paper, the notion of bisimulation induced by a FuTS is addressed from a coalgebraic
point of view. A correspondence result is established stating that FuTS-bisimilarity
coincides with behavioural equivalence of the associated functor. As generic examples, the
equivalences underlying substantial fragments of major examples of quantitative process
algebras are related to the bisimilarity of specific FuTS. The examples range from a
stochastic process language, PEPA, to a language for Interactive Markov Chains, IML, a
(discrete) timed process language, TPC, and a language for Markov Automata, MAL. The
equivalences underlying these languages are related to the bisimilarity of their specific FuTS.
By the correspondence result coalgebraic justification of the equivalences of these calculi is
obtained. The specific selection of languages, besides covering a large variety of process
interaction models and modelling choices involving quantities, allows us to show different
classes of FuTS, namely so-called simple FuTS, combined FuTS, nested FuTS, and general
FuTS.

1. Introduction

In the last couple of decades, qualitative process languages have been enriched with quantita-
tive information. In the qualitative case, process languages equipped with formal operational
semantics have proven to be successful formalisms for the modeling of concurrent systems and
the analysis of their behaviour. Generally, the operational semantics of a qualitative process
language are given by means of a labeled transition system (LTS), with states being process
terms and actions decorating the transitions between states. Typically, based on the induced

2012 ACM CCS: [Theory of computation]: Semantics and reasoning—Program semantics; [Software
and its engineering]: Software organization and properties—Formal methods.

Key words and phrases: quantitative process algebra, FuTS, function of finite support, bisimulation,
coalgebra, behavioral equivalence .

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-11(4:16)2015
c© D. Latella, M. Massink, and E. P. de Vink
CC© Creative Commons

http://creativecommons.org/about/licenses

2 D. LATELLA, M. MASSINK, AND E. P. DE VINK

transition system relation, a notion of process equivalence is defined, providing means to
compare systems and to reduce their representation to enhance subsequent verification.

Extensions of qualitative process languages allow a deterministic as well as stochastic
representation of time, or the use of discrete probability distributions for resolving (some)
forms of non-determinism. Among them, languages based on stochastic modeling of action
duration or delays, usually referred to as stochastic process algebras, or stochastic process
calculi (SPC), are one of the quantitative enrichments of process languages that have
received particular attention. For SPC, the main aim has been the integration of qualitative
descriptions with quantitative ones in a single mathematical framework, building on the
combination of LTS and continuous-time Markov chains (CTMC). The latter is one of the
most successful approaches to modeling and performance analysis of (computer) systems
and networks. An overview of SPC, equivalences and related analysis techniques may,
for example, be found in [28, 5, 6]. A common feature of many SPC is that actions are
augmented with the rates of exponentially distributed random variables that characterize
their duration. Alternatively, actions are assumed to be instantaneous, in which case random
variables are used for modeling delays, as in [27]. Although exploiting the same class of
distributions, the models and techniques underlying the definition of the calculi turn out to
be significantly different in many respects. A prominent difference concerns the modeling, by
means of the choice operator, of the race condition arising from the CTMC interpretation
of process behaviour, and its relationship to the issue of transition multiplicity. In the
quantitative setting, multiplicities can make a crucial distinction between processes that
are qualitatively equivalent. Several different approaches have been proposed for handling
transition multiplicity. The proposals range from multi-relations [31, 27], to proved transition
systems [45], to LTS with numbered transitions [24, 28], and to unique rate names [19], just
to mention a few.

In [15, 17, 16], Latella, Massink et al. proposed a variant of LTS, called Rate Transition
Systems (RTS). In LTS, a transition is a triple (P, α, P ′) where P and α are the source
state and the label of the transition, respectively, while P ′ is the target state reached from P
via a transition labeled with α. In RTS, a transition is a triple of the form (P, α,P).
The first and second component are the source state and the label of the transition, as
in LTS, while the third component P is a continuation function (or simply a continuation
in the sequel), which associates a non-negative real value with each state P ′. A non-zero
value for state P ′ represents the rate of the exponential distribution characterizing the
average time for the execution of the action represented by α, necessary to reach P ′ from P
via the transition. If P maps P ′ to 0, then state P ′ cannot be reached from P via this
transition. The use of continuations provides a clean and simple solution to the transition
multiplicity problem and make RTS particularly suited for SPC semantics. In order to
provide a uniform account of the many SPC proposed in the literature, in previous joint
work of the first two authors, see [18], State-to-Function Labeled Transition Systems (FuTS)
have been introduced as a natural generalization of RTS. In FuTS the codomain of the
continuations are arbitrary semirings, rather than just the non-negative reals. This provides
increased flexibility while preserving basic properties of primitive operations like sum and
multiplication. Furthermore, FuTS are equipped with a rich set of (generic) operations on
continuation functions, which makes the framework very well suited for a compositional
definition of the operational semantics of process calculi, including SPC and models where
both non-deterministic behaviour and stochastic delays are model led, like in the Language
of Interactive Markov Chains [27], or even in combination with probabilistic distributions

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 3

over behaviours, as in languages for Markov Automata [53], besides calculi for deterministic
(discrete) timed systems [3].

In this paper we extend the work presented in [18] in two directions. The first contribution
concerns the extension of the FuTS framework by introducing the notions of combined FuTS
and nested FuTS. Given label sets L i and semirings R i, a combined FuTS takes the general

format S = (S, 〈 →i 〉ni=1) with transition relations →i ⊆ S × L i × FS(S,R i). In the
degenerated case of n = 1, we speak of a simple FuTS, which coincides with the definition
of FuTS proposed in [18]. Here, FS(S,R i) is the set of total functions from S to R i

with finite support, a sub-collection of functions also occurring in other work combining
coalgebra and quantitative modeling (see, e.g. [35, 10]). So, a combined FuTS is characterized
by the presence of multiple transition relations which allow for a clean definition of the
FuTS semantics of languages which integrate different aspects of behaviour, such as non-
determinism vs. stochastic time, as is characteristic for Interactive Markov Chains. Using a
single transition relation in such a setting requires additional proof obligations ensuring type
correctness of transition elements, in particular the continuations, as can be seen in [18], for
example. Instead, for combined FuTS this is ensured by construction. The general format of
a so-called nested FuTS over the label set L and semirings R1, . . .Rn, for n > 1, is a tuple

S = (S, →) with → ⊆ S × L× FS((. . . FS(S,R1) . . .) ,Rn). For the purposes of the

present paper, n = 2 suffices; the nested FuTS we consider here are of the form S = (S, →)

with → ⊆ S × L× FS(FS(S,R1),R2). For nested FuTS the transition relation relates
functions over states, instead of just states, to continuations. This makes it easy, for instance,
to represent non-deterministic choices between probabilistic distributions over behaviours,
as it is the case for (the non-timed fragment of languages for) Markov Automata. Finally,
product construction for combined FuTS and sequencing construction for nested FuTS) can
easily be combined giving rise to what one may call general FuTS (or just FuTS, in the
sequel), which prove useful for a concise definition of the operational semantics of Markov
Automata languages.

We will briefly show how the various types of FuTS can be used conveniently for a clean
and compact definition of the fragments of interest of major process languages (more details
on this can be found in [18], which the interested reader is referred to). For combined FuTS,
as well as nested FuTS and general FuTS, we also present FuTS bisimilarity, a general
notion of bisimilarity, which will also be shown to coincide with the standard bisimilarity of
the relevant process languages.

The second direction of investigation presented in this paper consists of a coalgebraic

treatment of the various type of FuTS. We will see that a combined FuTS (S, 〈 →i 〉ni=1)
is a coalgebra of the product of the functors FS(·,R i)

L i . For this to work, we need the

relations →i to be total and deterministic for the coalgebraic modeling as a function. This
is not a severe restriction at all in the presence of continuation functions: as we will see, the
zero-continuation function, which maps every state s′ to 0 will be associated to a state s
and a transition, in order to indicate that no state s′ is reachable from s via that transition,
in the usual LTS-sense; if s allows a transition to some state s1 as well as to a state s2, then
the continuation function will simply yield a non-zero value for s1 and for s2. Therefore, it
is no essential limitation to restrict our investigations to total and deterministic FuTS. For
example, by using Boolean functions, we can model non-deterministic behaviour, as done in

4 D. LATELLA, M. MASSINK, AND E. P. DE VINK

Section 7. Similarly, we see that a (two-level) nested FuTS (S,→) is a coalgebra of functor
FS(FS(·,R1),R2)L.

Next, the notion of S-bisimilarity that arises from a FuTS S is compared to the
coalgebraic notion of behavioral equivalence. Following a familiar argument, we first establish
that the functor associated with a FuTS S possesses a final coalgebra and therefore has an
associated notion of behavioural equivalence. Then it is shown that behavioural equivalence
of the functor coincides with S-bisimilarity, bisimilarity for FuTS. Pivotal for the proof is the
absence of multiplicities in the FuTS treatment of quantities at the level of the transitions.
In fact, quantities are accumulated in the function values of the continuations and hidden
at the higher level of abstraction. It is noted, in the presence of a final coalgebra for FuTS
a more general definition of behavioural equivalence based on cospans coincides with the
one given here, cf. [37, 51]. Finally, it is worth noting that for the coalgebraic treatment
itself of FuTS we propose here it is not necessary for the co-domain of continuations to
be semirings; working with monoids would be sufficient. However, the richer structure of
semirings is convenient, if not essential, when using continuations and their operators in the
formal definition of the FuTS semantics of SPC.

Using the bridge established by the FuTS bisimulation vs. coalgebraic behavioral equiv-
alence correspondence results, we continue by showing for two well-known stochastic process
algebras, viz. Hillston’s PEPA [31] and Hermanns’s IML [27], that the standard notions
of PEPA strong equivalence and IML strong bisimilarity coincide with bisimilarity of the
associated proper simple and combined FuTS, respectively. In turn, this means that the
standard notions of strong equivalence and strong bisimilarity coincide with behavioural
equivalence when cast in a coalgebraic framework.

PEPA stands out as one of the prominent Markovian process algebras, and IML
specifically provides separate prefix constructions for actions and for delays. In passing,
the issue of transition multiplicity has to be dealt with. Appropriate lemmas are provided
relating the relation-based cumulative treatment with FuTS to the multi-relation-based
explicit treatment of PEPA and IML. It is noted that in our treatment below we restrict to
the key-fragment of these two SPC. We furthermore provide a combined FuTS semantics
for a simple language of deterministically-timed processes, viz. TPC [3] and we show the
coincidence between FuTS bisimilarity and the standard equivalence of timed bisimilarity
for the language. Finally, we provide a general FuTS semantics for a process language which
incorporates non-determinism, discrete probabilities and Markovian randomized delays, i.e.
a language for Markov Automata [22, 23]. Also in this case we prove that FuTS bisimulation
and Markov Automata bisimulation coincide, adding to the claim that FuTS bisimulation is
a natural notion of process identification for SPC.

Related work on coalgebra includes the papers [56, 35, 50]. Additionally, these papers cover
measures and congruence formats, a topic not touched upon in the present paper. For what
concerns the discrete parts, regarding the correspondence of bisimulations, our work is in
line with the approach of the papers mentioned. In the treatment below the bi-algebraic
perspective of SOS and bisimulation [55] is left implicit. In [41] an approach similar to ours
has been applied to the ULTraS model, a model which shares some features with simple
FuTS. In ULTraS posets are used instead of semirings, although a monoidal structure is then
implicitly assumed when process equivalences are taken into consideration [7]. Furthermore,
in [41] a general GSOS specification format is presented which allows for a ‘syntactic’
treatment of continuations involving so-called weight functions. An interesting direction of

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 5

research combining coalgebra and quantities studies various types of weighted automata,
including linear weighted automata, and associated notions of bisimulation and languages,
as well as algorithms for these notions [11, 34, 49, 10]. Klin considers weighted transition
systems, labelled transition systems that assign a weight to each transition and develops
Weighted GSOS, a (meta-)syntactic framework for defining well-behaved weighted transition
systems. For commutative monoids the notion of a weighted transition system compares
with our notion of a FuTS, and, when cast in the coalgebraic setting, the associated concept
of bisimulation coincides with behavioral equivalence. Weights of transitions of weighted
transition systems are computed by induction on the syntax of process terms and by taking
into account the contribution of all those GSOS rules that are triggered by the relevant
(apparent) weights. Note that such a set of rules is finite. So, in a sense, the computation of
the weights is distributed among (the instantiations of) the relevant rules with intermediate
results collected (and integrated) in the final weight. In comparison, as mentioned before,
in the FuTS approach, the relevant values are manipulated in a more direct way, using the
higher-order operators on continuation functions, applying them directly to the continuations
in the transitions within the same the semantics definition rules. So, in a sense, the FuTS
approach is better suited for a compositional definition of the operational semantics of a
wide range of process calculi due to the suitable choice of a rich set of generic operations
on continuation functions. In [39] the investigation on the relationship for nested FuTS
between FuTS bisimilarity, and behavioural equivalence, and also coalgebraic bisimilarity is
presented. In particular, it is shown that the functor type involved preserves weak pullbacks
when the underlying semiring satisfies the zero-sum property.

The process languages with stochastic delays we consider in the sequel, involve a multi-
way CSP-like parallel operator; components proceed simultaneously when synchronization
on an action from the synchronization alphabet that indexes the parallel operator is possible.
However, here we do not distinguish between internal and external non-determinism, cf. [33],
since an explicit representation of such a distinction is not relevant for the subject of this
paper. A coalgebraic treatment of this distinction is proposed in [57], which uses a functor
for so-called non-deterministic filter automata, viz. P(P(A))× [A 7→ Pf (·)] involving partial
functions from a set of actions A to a finite power-set. Via currying, this can be brought
into the form FS(·,B)L for L = P(P(A)) × A, fitting the format of the functor for the
(simple) FuTS considered here. In [12] processes are interpreted as formal power-series over
a semiring in the style of [47]. This allows to compare testing equivalence for a CSP-style
language and bisimulation in a Moore automaton. Note that the notions of equivalence
addressed in this paper, as often in coalgebraic treatments of process relations, are all strong
bisimilarities.

An extended abstract of part of this paper has appeared as [38] where the coalgebraic
view of the FuTS approach and its application to PEPA and IML was originally presented.
The workshop contribution [40] gives an account of bisimulation of FuTS of specific type
and provides a general correspondence result with of FuTS-bisimulation and behavioral
equivalence. The present paper covers these ideas in a structured way, going from simple
FuTS to combined FuTS and nested FuTS. It includes the presentation of the use of
combined FuTS for the definition of the semantics of a language of deterministically timed

6 D. LATELLA, M. MASSINK, AND E. P. DE VINK

processes and the treatment of nested FuTS for the integration of stochastically timed,
non-deterministic and probabilistic processes, as in Markov Automata.

For the present paper we assume the reader to have some familiarity with SPC and the
application of FuTS for the definition of their semantics. The reader is referred to [18]
for an introduction on the subject. Furthermore, in [39] an illustrative definition of a
simple, qualitative, process calculus in the FuTS framework is shown. Section 2 provides
basic concepts and notation. Simple FuTS are introduced in Section 3, followed by their
coalgebraic treatment in Section 4. Simple FuTS are illustrated by the case of PEPA in
Section 5 which also covers the correspondence of the respective notions of bisimulation.
Section 6 introduces combined FuTS as well as their coalgebraic representation. Sections 7
and 8 treat IML and TPC. For both SPC, semantics based on combined FuTS are given,
and FuTS bisimulation is compared to standard bisimulation. Next, Section 9 introduces
nested as well as general FuTS, again tying up with behavior equivalence. In Section 10,
a general FuTS is used for the semantics of a Markov Automata language, for which the
notion of bisimulation is related to the standard one. Section 11 wraps up and discusses
closing remarks.

2. Preliminaries

A tuple R = (R,+, 0, ∗, 1) is called a semiring if (R,+, 0) is a commutative monoid with
neutral element 0, (R, ∗, 1) is a monoid with neutral element 1, ∗ distributes over +, and
0 ∗ r = r ∗ 0 = 0 for all r ∈ R. As examples of a semiring we will use the Booleans
B = { false, true } with disjunction as sum and conjunction as multiplication, the non-
negative reals R≥0 with the standard operations, and the powerset construct 2X for a set X
with intersection and union as sum and multiplication, respectively. We will consider, for a
semiring R and a function ϕ : X → R, (countable) sums

∑
x∈X′ ϕ(x) in R, for X ′ ⊆ X.

For such a sum to exist we require ϕ to be of finite support, i.e. the support set spt(ϕ) =
{x ∈ X | ϕ(x) 6= 0 } is finite. We use the notation ⊕ϕ to denote the value

∑
x∈X ϕ(x) in R.

We use the notation FS(X,R) for the collection of all functions of finite support from
the set X to the semiring R. A construct [x1 7→ r1, . . . , xn 7→ rn], or more compactly
[xi 7→ ri]

n
i=1, with xi ∈ X all distinct and ri ∈ R, denotes the mapping that assigns ri to xi,

i = 1, . . . , n, and assigns 0 to all x ∈ X \ {x1, . . . , xn}. In particular [], or more precisely []R,
is the constant function x 7→ 0 and DRx = [x 7→ 1] is the Dirac function on R for x ∈ X; in
the sequel we will often drop the subscript or superscript R from []R and DRx , when the
semiring R is clear from the context.

For ϕ,ψ ∈ FS(X,R), the function ϕ + ψ is the pointwise sum of ϕ and ψ, i.e. (ϕ +
ψ)(x) = ϕ(x) + ψ(x) ∈ R. Clearly, ϕ + ψ is of finite support as are ϕ and ψ. Slightly more
generally, for functions ϕi ∈ FS(X,R) where i = 1, . . . , n, we define the function

∑ n
i=1ϕi in

FS(X,R) by
(∑ n

i=1ϕi
)
(x) =

∑ n
i=1ϕi(x). Given an injective operation | : X×X → X, we

define ϕ | ψ : X → R, by (ϕ | ψ)(x) = ϕ(x1) ∗ ψ(x2) if x = x1 | x2 for some x1, x2 ∈ X, and
(ϕ | ψ)(x) = 0 otherwise. Injectivity of the operation | guarantees that ϕ | ψ is well-defined.
Again, ϕ | ψ is of finite support as are ϕ and ψ. Such an operation is used in the setting of

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 7

syntactic processes P that may have the form P1 | P2 for two processes P1 and P2 and a
syntactic operator |.

We recall some basic definitions from coalgebra. See e.g. [46] for more details. For a functor
F : Set → Set on the category Set of sets and functions, a coalgebra X of F is a set X
together with a mapping α : X → F(X). A homomorphism between two F-coalgebras
X = (X,α) and Y = (Y, β) is a function f : X → Y such that F(f) ◦α = β ◦ f . An
F-coalgebra (ΩF , ωF) is called final or terminal, if there exists, for every F-coalgebra
X = (X,α), a unique homomorphism [[·]]XF : (X,α)→ (ΩF , ωF). Two elements x1, x2 of an
F -coalgebra X are called behavioural equivalent with respect to F if [[x1]]XF = [[x2]]XF , denoted
x1 ≈SF x2. In the notation [[·]]XF as well as ≈XF , the indication of the specific coalgebra X will
be omitted when clear from the context.

A functor F is called accessible if it preserves κ-filtered colimits for some cardinal num-
ber κ. However, in the category Set, we have the following characterization of accessibility:
for every set X and any element ξ ∈ FX, there exists a subset Y ⊆ X with |Y | < κ, such
that ξ ∈ FY . It holds that a functor has a final coalgebra if it is κ-accessible for some
cardinal number κ. See [2, 1].

A number of proofs of results on process languages P in this paper rely on so-called guarded
induction [36]. Typically, constants X, also called process variables, are a syntactical
ingredient in these languages. As usual, if X := P , i.e. the constant X is declared to have the
process P as its body, we require P to be prefix-guarded, i.e. any occurrence of a constant
in the body P is in the scope of a prefix-construct of the language. Guarded induction
assumes the existence of a ‘complexity’ function c : P → N such that c(P) = 1 if P is a
prefix construct, c(P1 • P2) > max{ c(P1), c(P2) } for all other syntactic operators • of P,
and, in particular, c(X) > c(P) if X := P . For all concrete process languages treated in this
paper such a complexity function can be given straightforwardly. See [14] for more detail.

For convenience we collect here a number of abbreviations used in the sequel: CTMC
and DTMC for the standard notions of Continuous-Time Markov Chains and Discrete-Time
Markov Chains, respectively; LTS for Labelled Transition System, RTS for Rate Transition
System, and FuTS for Labelled State-to-Function Transition System, the extension of LTS we
focus on in this paper; SPC for Stochastic Process Calculus, referring to the class of process
algebras featuring a choice construct based on a non-negative exponential distribution; for
specific process calculi and semantic models, viz. PEPA for Performance Evaluation Process
Algebra, IMC for Interactive Markov Chains and IML for the IMC-based language used in
this paper, TPC for an example Timed Process Calculus, MA for Markov Automata and
MAL for the MA-based language used in this paper.

3. Simple State-to-Function Labelled Transition Systems

Below we introduce simple FuTS, i.e. FuTS with a single transition relation, which are
sufficient for the definition of the semantics of many of the relevant stochastic process
languages proposed in the literature (see [18] for details).

Definition 3.1. A simple FuTS S, in full ‘a simple state-to-function labelled transition

system’, over label set L and semiring R, is a tuple S = (S, →) where → is the transition

relation, with → ⊆ S × L× FS(S,R).

8 D. LATELLA, M. MASSINK, AND E. P. DE VINK

Figure 1: Simple FuTS for a probabilistic process.

In the sequel we omit the word ‘simple’ when this cannot give rise to confusion. Similar
as for state-to-state transitions of LTS, for state-to-function transitions of FuTS we write

s
`
→ v for (s, `, v) ∈ →. Note that a (simple) FuTS over a label set L and a semiring R is

reminiscent of a weighted automaton [21]. However, for a FuTS no output function is given,
as is for a weighted automaton. To stress the relationship between LTS and FuTS we stick
to the terminology and notion stemming from LTS.

For a FuTS S = (S,→) the set S is called the set of states or the carrier set. We refer

to → as the state-to-function transition relation of S or just as the transition relation. A

FuTS S is called total and deterministic if, for all s ∈ S and ` ∈ L, we have s
`
→ v for

exactly one v ∈ FS(S,R). In such a situation, the state-to-function relation → corresponds
to a function S → L → FS(S,R). For the remainder of the paper, all FuTS we consider
will be total and deterministic. It is noted that Definition 3.1 slightly differs in formulation
from the one provided in [18].

As an example, Figure 1 displays a simple FuTS over the action set A and the semi-
ring R≥0 of the non-negative real numbers with standard sum and multiplication. The
functions v0 to v3 used in the example have the property that ⊕vi(s) = 1, for i = 0, . . . , 3.
More explicitly, we have

s0

a
→ [s0 7→ 1

2 , s1 7→ 1
2] s2

a
→ [s2 7→ 1

2 , s3 7→ 1
2] s3

a
→ [s0 7→ 1

2 , s3 7→ 1
2]

s1

a
→ [s1 7→ 1

2 , s2 7→ 1
2] s1

b
→ [s0 7→ 1

6 , s2 7→ 1
2 , s3 7→ 1

3]

si
b
→ []B for i = 0, 2, 3

Usually, such a FuTS over R≥0, with its weights adding up to 1, is called a (reactive)
probabilistic transition system [24].

Below it will be notationally convenient to consider a (total, deterministic and simple) FuTS
as a tuple (S, θ) with transition function θ : S → L → FS(S,R), rather than using the

form (S,→) that occurs more frequently for concrete examples in the literature. We will
use the notation with transition functions θ : S → L → FS(S,R) to introduce the notion
of bisimilarity for a simple FuTS.

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 9

Definition 3.2. Let S = (S, θ) be a simple FuTS over label set L and semiring R. An
equivalence relation R ⊆ S × S is called an S-bisimulation if R(s1, s2) implies∑

t′∈[t]R
θ (s1)(`)(t′) =

∑
t′∈[t]R

θ (s2)(`)(t′) (3.1)

for all t ∈ S and ` ∈ L, where we use the notation [t]R to denote the equivalence class
of t ∈ S with respect to R. Two elements s1, s2 ∈ S are called S-bisimilar if R(s1, s2) for
some S-bisimulation R for S. Notation x1 'S x2.

Note that the sums in equation (3.1) exist since the functions θ (s1)(`), θ (s2)(`) ∈ FS(S,R)
are of finite support.

4. Simple FuTS coalgebraically

In this section we will cast simple FuTS in the framework of coalgebras and prove a
correspondence result of FuTS bisimilarity and behavioural equivalence for functors of the
form FS(·,R)L on Set, with R a semiring and L a set of labels.

Definition 4.1. Let L be a set of labels and R a semiring. Functor ULR : Set→ Set assigns
to a set X the function space FS(X,R)L of all functions ϕ : L → FS(X,R) and assigns to
a mapping f : X → Y the mapping ULR(f) : FS(X,R)L → FS(Y,R)L where

ULR(f)(ϕ)(`)(y) =
∑

x∈ f−1(y) ϕ(`)(x)

for all ϕ ∈ FS(X,R)L, ` ∈ L and y ∈ Y .

Working in the context of FuTS we include the label set L in the notation for the functor ULR .
The functor FS(·,X) itself, for X not necessarily a semiring, but a commutative monoid or
field instead, have been studied frequently in the literature, see e.g. [25, 34, 10].

Again we rely on ϕ(`) ∈ FS(X,R) having a finite support for the sum to exist and for
ULR to be well-defined. We observe that for any simple FuTS (S, θ) over L and R we have
θ : S → L → FS(S,R). Thus (S, θ) can be interpreted as a ULR -coalgebra. In the sequel,
we will abbreviate ULR with U whenever L and R are clear from the context.

As we aim at comparing our notion of bisimilarity for simple FuTS with behavioural
equivalence for the functor ULR , U for short, given a set of labels L and a semiring R, we
need to check that U possesses a final coalgebra. For this, one may adapt the proof for the
functor FS(·,M) : Set→ Set where M is a monoid (rather than a semiring) as sketched
in [48, 49] to the setting here. An alternative route to showing the existence of a final
coalgebra is to verify accessibility. We directly apply the results of [2, Section 5].

Lemma 4.2. For a set of labels L and a semiring R, the functor U has a final coalgebra.

Proof. It suffices to show that the Set-functor U is accessible for some suitable cardinal
number. In fact, U is |L|×ω -accessible: Consider ϕ : L → FS(X,R) in the image of the
set X. Let Y` ⊆ X be the support of ϕ(`) ∈ FS(X,R) and Y =

⋃
`∈L Y` ⊆ X. Then ϕ can

be seen as an element of L → FS(Y,R), since outside of Y it holds that ϕ equals 0 ∈ R.

10 D. LATELLA, M. MASSINK, AND E. P. DE VINK

Next we establish, for a given simple FuTS S, the correspondence of S-bisimulation as given
by Definition 3.2 and behavioural equivalence induced by U . The proof is similar to [10,
Theorem 1].

Theorem 4.3. Let S = (S, θ) be a simple FuTS over the label set L and semiring R, and
U as in Definition 4.1. Then s1 'S s2 ⇔ s1 ≈U s2, for all s1, s2 ∈ S.

Proof. Let s1, s2 ∈ S. We first prove s1 'S s2 ⇒ s1 ≈U s2. So, assume s1 'S s2. Let
R ⊆ S × S be an S-bisimulation with R(s1, s2). Note (S, θ) is a U-coalgebra. We turn the
collection of equivalence classes S/R into a U-coalgebra SR = (S/R, %R) where

%R([s]R)(`)([t]R) =
∑

t′ ∈ [t]R
θ(s)(`)(t′)

for s, t ∈ S, and ` ∈ L. This is well-defined since R is an S-bisimulation: if R(s, s′) then we
have

∑
t′∈[t]R

θ(s)(`)(t′) =
∑

t′∈[t]R
θ(s′)(`)(t′). The canonical mapping εR : S → S/R is a

U-homomorphism: For ` ∈ L and t ∈ S, we have

U (εR)(θ(s))(`)([t]R)

=
∑

t′ ∈ ε−1
R ([t]R) θ(s)(`)(t′) by definition of U

=
∑

t′ ∈ [t]R
θ(s)(`)(t′) by definition of εR

= %R([s]R)(`)([t]R) by definition of %R

= %R(εR(s))(`)([t]R) by definition of εR

Thus, U(εR) ◦ θ = % ◦ εR, i.e. εR is a U-homomorphism. Therefore, by uniqueness of a

final morphism, we have [[·]]SU = [[·]]SRU ◦ εR. In particular, with respect to S, this implies
[[s1]]U = [[s2]]U since εR(s1) = εR(s2). Thus, s1 ≈U s2.

For the reverse, s1 ≈U s2 ⇒ s1 'S s2, assume s1 ≈U s2, i.e. [[s1]]U = [[s2]]U , for
s1, s2 ∈ S. Since the map [[·]]U : (S, θ) → (Ω, ω) is a U-homomorphism, the equivalence
relation RS with RS (s′, s′′) ⇔ [[s′]]U = [[s′′]]U is an S-bisimulation: Suppose RS (s′, s′′),
i.e. s′ ≈U s′′, for some s′, s′′ ∈ S. Pick ` ∈ L, t ∈ S and assume [[t]]U = w ∈ Ω. Since
[[·]]U : (S, θ) → (Ω, ω) is a U-homomorphism we have that ω ◦ [[·]]U = U([[·]]U) ◦ θ. Hence,
for s ∈ S, it holds that

ω([[s]]U)(`)(w) = U([[·]]U)(θ(s))(`)(w) =
∑

t′∈ [[·]]−1
U (w) θ(s)(`)(t′) (4.1)

Therefore we have∑
t′ ∈ [t]RS

θ(s′)(`)(t′)

=
∑

t′ ∈ [[·]]−1
U (w) θ(s

′)(`)(t′) by definition of RS and w

= ω([[s′]]U)(`)(w) by equation (4.1)

= ω([[s′′]]U)(`)(w) s′ ≈U s′′ by assumption

=
∑

t′ ∈ [[·]]−1
U (w) θ(s

′′)(`)(t′) by equation (4.1)

=
∑

t′ ∈ [t]RS
θ(s′′)(`)(t′) by definition of RS and w

Thus, if RS (s′, s′′) then
∑

t′ ∈ [t]RS
θ(s′)(`)(t′) =

∑
t′ ∈ [t]RS

θ(s′′)(`)(t′) for all t ∈ S and

` ∈ L, and therefore RS is an S-bisimulation. Since [[s1]]U = [[s2]]U , it follows that RS (s1, s2).
Thus RS is an S-bisimulation relating s1 and s2. Conclusion, it holds that s1 'S s2.

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 11

In the next section we will provide FuTS semantics for a fragment of PEPA, a representative
process language. For this language we will establish that its standard notion of strong
equivalence as known in the literature coincides with the notion of strong bisimulation as
induced by the FuTS semantics. The results of this section form the basis for showing that
the standard notions of strong equivalence on the one hand, and behavioural equivalence on
the other hand, are all the same. The notion of bisimulation for FuTS plays an intermediary
role: it bridges between the standard notion of concrete equivalence and the abstraction
notions from coalgebra.

5. FuTS Semantics of PEPA

In this section we consider a significant fragment of the Performance Evaluation Process
Algebra, PEPA, [31] –which we still call PEPA for simplicity– including the parallel operator
implementing the scheme of so-called minimal apparent rates, and provide a FuTS semantics
for it. We point out that there is no technical difficulty in extending the FuTS approach
to the full language; we do not do so here since its treatment does not yield a conceptual
benefit for this paper. We present a FuTS semantics for PEPA in line with [18] and show
that PEPA’s notion of equivalence ∼pepa , called strong equivalence in [31], fits with the
bisimilarity induced by the FuTS semantics.

Definition 5.1. The set Ppepa of PEPA processes is given by the grammar below:

P ::= nil | (a, λ).P | P + P | P ��A P | X
where a ranges over the set of actions A, λ over R>0, A over the set of finite subsets of A,
and X over the set of constants X .

For X ∈ X , the notation X := P indicates that the process P is associated with the process
constant X. It is required that each occurrence of a process constant in the body P of the
definition X := P is guarded by a prefix.

PEPA, like many other SPC, e.g. [29, 8], couples actions and rates. The prefix (a, λ)
of the process (a, λ).P expresses that the duration of the execution of the action a ∈ A is
sampled from a random variable with an exponential distribution of rate λ. The CSP-like
parallel composition P ��A Q of a process P and a process Q for a set of actions A ⊆ A
allows for the independent, asynchronous execution of actions of P or Q not occurring in
the subset A, on the one hand, and requires the simultaneous, synchronized execution of
P and Q for the actions occurring in A, on the other hand. The transition rules of the
FuTS-semantics of the fragment of PEPA we consider here is given in Figure 2, on which we
comment below.

Characteristic for the PEPA language is the choice to model parallel composition, or
cooperation in the terminology of PEPA, scaled by the minimum of the so-called apparent
rates. By doing so, PEPA’s strong equivalence becomes a congruence [31]. Informally, the
apparent rate ra(P) of an action a for a process P is the sum of the rates of all possible
a-executions for P . The apparent rate ra(P) can easily be defined recursively on the structure
of P (see [31, Definition 3.3.1] for details). Accordingly, in the sequel we will refer to ra(P)
as the ‘syntactic’ apparent rate. When considering the parallel composition P ��A Q, with
cooperation set A, an action a occurring in A has to be performed by both P and Q. The
rate of such an execution is governed by the slowest of the two processes, on average, in
this respect. (One cannot take the slowest process per sample, because such an operation

12 D. LATELLA, M. MASSINK, AND E. P. DE VINK

(NIL)
nil

δa→pepa []R≥0

(RAPF1)
(a, λ).P

δa→pepa [P 7→ λ]
(RAPF2)

b 6= a

(a, λ).P
δb→pepa []R≥0

(CHO)
P

δa→pepa P Q
δa→pepa Q

P + Q
δa→pepa P + Q

(CNS)
P

δa→pepa P X := P

X
δa→pepa P

(PAR1)
P

δa→pepa P Q
δa→pepa Q a /∈ A

P ��A Q
δa→pepa (P ��A DQ) + (DP ��A Q)

(PAR2)
P

δa→pepa P Q
δa→pepa Q a ∈ A

P ��A Q
δa→pepa arf(P,Q) · (P ��A Q)

Figure 2: FuTS Transition Deduction System for PEPA.

cannot be expressed as an exponential distribution in general.) Thus ra(P ��A Q) for a ∈ A
is the minimum min{ ra(P), ra(Q) }. Now, if P schedules an execution of a with rate r1

and Q schedules a transition of a with rate r2, in the minimal apparent rate scheme the
combined execution yields the action a with rate r1 · r2 · arf(P,Q). Here, the ‘syntactic’
scaling factor arf(P,Q), the apparent rate factor, is defined by

arf(P,Q) =
min{ ra(P), ra(Q) }

ra(P) · ra(Q)

assuming ra(P), ra(Q) > 0, otherwise arf(P,Q) = 0. Organizing the product r1 ·r2 ·arf(P,Q)
differently as r1/ra(P) · r2/ra(Q) ·min{ ra(P), ra(Q) } we see that for P ��A Q the minimum
of the apparent rates min{ ra(P), ra(Q) } is adjusted by the relative probabilities r1/ra(P)
and r2/ra(Q) for executing a by P and Q, respectively.

The FuTS we consider for the semantics of PEPA has been proposed originally in [18]. The
transition relation is given by the rules in Figure 2. The set of labels involved is ∆A defined
by ∆A = { δa | a ∈ A}. In the context of the FuTS semantics considered in this paper, we
conventionally use the special symbol δ for denoting that there is a random delay, with an
negative exponential distribution, associated with the action. The underlying semiring for
the FuTS for PEPA is the semiring R≥0 of non-negative reals.

Definition 5.2. The simple FuTS Spepa = (Ppepa ,→pepa) over ∆A and R≥0 has as transition
relation the smallest relation satisfying the axioms and rules of Figure 2.

We discuss the rules of Spepa . The FuTS semantics provides nil
δa→pepa []R≥0

, for every

action a, with []R≥0
the 0-function of R≥0. Therefore we have θpepa(nil)(δa)(P

′) = 0 for

every a ∈ A and P ′ ∈ Ppepa , or, in standard terminology, nil has no transition. For the rated
action prefix (a, λ) we distinguish two cases: (i) execution of the prefix in rule (RAPF1);
(ii) no execution of the prefix in rule (RAPF2). In the case of rule (RAPF1) the label δa
signifies that the transition involves the execution of the action a. The continuation [P 7→ λ]
is the function that assigns the rate λ to the process P . All other processes are assigned 0,
i.e. the zero-element of the semiring R≥0. In the second case, rule (RAPF2), for labels δb
with b 6= a, we do have a state-to-function transition, but it is a degenerate one. The two
rules for the prefix, in particular having the ‘null-continuation’ rule (RAPF2), support the
unified treatment of the choice operator in rule (CHO) and the parallel operator in rules
(PAR1) and (PAR2). The treatment of constants is as usual.

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 13

The semantics of the choice operator is defined by rule (CHO), where the continuation
of process P + Q is given by direct composition—using pointwise sum—of the continuation
P of P and the continuation Q of Q.

Regarding the parallel operator ��A , with respect to some cooperation set A ⊆ A there
are two rules. Now the distinction is between interleaving and synchronization. In the
case of a label δa involving an action a not in the subset A, either the P -operand or the
Q-operand of P ��A Q makes progress. For example, the effect of the pattern P ��A DQ

is that the value P(P ′) · 1 is assigned to a process P ′ ��A Q, the value P(P ′) · 0 = 0 to a
process P ′ ��A Q′ for all Q′ 6= Q, and the value 0 for a process not of the form P ′ ��A Q′.
Note that the syntactic constructor ��A : Ppepa × Ppepa → Ppepa is clearly injective; so, for
all functions P and Q in FS(Ppepa ,R≥0), we can define P ��A Q, as described in Section 2.
Here, as in all other rules, the right-hand sides of the transitions only involve functions
in FS(Ppepa ,R≥0) and operators on them.

For the synchronization case of the parallel construct, assuming P
δa→pepa P and

Q
δa→pepa Q, the ‘semantic’ scaling factor arf(P,Q) is applied to P ��A Q. This scaling

factor for continuation in FS(Ppepa ,R≥0), is, very much similar to its ‘syntactic’ counterpart,
given by

arf(P, Q) =
min{⊕P, ⊕Q }
⊕P · ⊕Q

provided ⊕P,⊕Q > 0, and arf(P, Q) = 0 otherwise. For a process R = R1 ��A R2 we
obtain the value arf(P, Q) · (P ��A Q)(R1 ��A R2) = arf(P, Q) ·P(R1) ·Q(R2).

The following lemma establishes the relationship between the ‘syntactic’ and ‘semantic’
apparent rate factors defined on processes and on continuation functions, respectively.

Lemma 5.3. Let P ∈ Ppepa and a ∈ A. Suppose P
δa→pepa P. Then ra(P) = ⊕P.

The proof of the lemma is straightforward (relying on the obvious definition of ra(P), omitted
above, which can be found in [31]). It is also easy to prove, by guarded induction, that the
FuTS Spepa given by Definition 5.2 is total and deterministic.

Lemma 5.4. The FuTS Spepa is total and deterministic.

In view of the lemma it is justified to write Spepa = (Ppepa , θpepa). We use the abbreviated
notation 'pepa for denoting 'Spepa , the bisimulation equivalence induced by Spepa .

Example 5.5. To illustrate the ease to deal with multiplicities in the FuTS semantics,
consider the PEPA processes P1 = (a, λ).P and P2 = (a, λ).P + (a, λ).P for some P ∈ Ppepa .

We have that P1

δa→pepa [P 7→ λ] by rule (RAPF1), but P2

δa→pepa [P 7→ 2λ] by rule
(RAPF1) and rule (CHO). The latter makes us to compute [P 7→ λ] + [P 7→ λ], which
equals [P 7→ 2λ]. Thus, in particular we have P1 6'Spepa P2. Intuitively it is clear that, in
general we cannot have P + P ∼ P for any reasonable quantitative process equivalence ∼ in
the Markovian setting. Having twice as many a-labelled transitions, the average number for
(a, λ).P +(a, λ).P of executing the action a per time unit is double the average of executing a
for (a, λ).P .

The standard operational semantics of PEPA [31, 32] is given in Figure 3. The transition
relation −→pepa ⊆ Ppepa × (A×R>0)×Ppepa is the least relation satisfying the rules. For an

14 D. LATELLA, M. MASSINK, AND E. P. DE VINK

(RAPF)
(a, λ).P

a,λ−−−→pepa P
(CHO1)

P
a,λ−−−→pepa P ′

P + Q
a,λ−−−→pepa P

′
(CHO2)

Q
a,λ−−−→pepa Q′

P + Q
a,λ−−−→pepa P

′

(PAR1a)
P

a,λ−−−→pepa P ′ a /∈ A

P ��A Q
a,λ−−−→pepa P

′ ��A Q
(PAR1b)

Q
a,λ−−−→pepa Q

′ a /∈ A

P ��A Q
a,λ−−−→pepa P ��A Q′

(PAR2)
P

a,λ1−−−−→ P ′ Q
a,λ2−−−−→ Q′ a ∈ A

P ��A Q
a,λ−−−→pepa P ′ ��A Q′

λ = arf(P,Q)·λ1·λ2

(CNS)
P

a,λ−−−→pepa P ′ X := P

X
a,λ−−−→pepa P ′

Figure 3: Standard Transition Deduction System for PEPA.

appropriate treatment of the rates, the transition relation is considered as a multi-transition

system, where also the number of possible derivations of a transition P
a,λ−−−→pepa P

′ matters.
We stress that such bookkeeping is not needed in the FuTS-approach. In rule (PAR2) we
use the ‘syntactic’ apparent rate factor for PEPA processes.

The so-called total conditional transition rate q[P,C, a] of a PEPA-process [31, 32] for a
subset of processes C ⊆ Ppepa and a ∈ A is given by

q[P,C, a] =
∑

Q∈C
∑
{| λ | P a,λ−−−→pepa Q |}.

Here, {| P a,λ−−−→pepa Q |} is the multiset of transitions P
a,λ−−−→pepa Q and {| λ | P a,λ−−−→pepa

Q |} is the multiset of all λ’s involved. The multiplicity of P
a,λ−−−→pepa Q is to be interpreted

as the number of different ways the transition can be derived using the rules of Figure 3.
We are now ready to define PEPA’s notion of strong equivalence.

Definition 5.6. An equivalence relation R ⊆ Ppepa × Ppepa is called a strong equivalence if

q[P1, [Q]R, a] = q[P2, [Q]R, a]

for all P1, P2 ∈ Ppepa such that R(P1, P2), all Q ∈ Ppepa and all a ∈ A. Two processes
P1, P2 ∈ Ppepa are strongly equivalent if R(P1, P2) for a strong equivalence R, notation
P1 ∼pepa P2.

The next lemma couples, for a PEPA-process P , an action a and a continuation function
P ∈ FS(Ppepa ,R≥0), the evaluation P(P ′) with respect to the FuTS-semantics to the
cumulative rate for P of reaching P ′ by a transition involving the label a in the standard
operational semantics. The lemma is pivotal in relating FuTS bisimulation and standard
bisimulation for PEPA in Theorem 5.8 below.

Lemma 5.7. Let P ∈ Ppepa and a ∈ A. Suppose P
δa→pepa P. The following holds:

P(P ′) =
∑
{| λ | P a,λ−−−→pepa P

′ |} for all P ′ ∈ Ppepa .

Proof. Guarded induction on P . We only treat the cases for the parallel composition. Note,
the operation ��A : Ppepa × Ppepa → Ppepa with ��A (P1, P2) = P1 ��A P2 is injective. Recall,
for P1,P2 ∈ FS(Ppepa ,R≥0), we have (P1 ��A P2)(P1 ��A P2) = P1(P1) ·P2(P2).

Suppose a /∈ A. Assume P1

δa→pepa P1, P2

δa→pepa P2, P1 ��A P2

δa→pepa P. We
distinguish three cases.

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 15

Case (I), P ′ = P ′1 ��A P2, P ′1 6= P1. Then we have∑
{| λ | P1 ��A P2

a,λ−−−→pepa P ′ |}
=

∑
{| λ | P1

a,λ−−−→pepa P ′1 |} by rule (PAR1a)

= P1(P ′1) by the induction hypothesis

= P1(P ′1) ·DP2(P2) since DP2(P2) = 1

= (P1 ��A DP2)(P ′1 ��A P2) + (DP1 ��A P2)(P ′1 ��A P2)

definition ��A on FS(Ppepa ,R≥0), DP1(P ′1) = 0

= P(P ′) by rule (PAR1)

Case (II), P ′ = P1 ��A P ′2, P ′2 6= P2: similar.
Case (III), P ′ = P1 ��A P2. Then we have:∑

{| λ | P1 ��A P2
a,λ−−−→pepa P ′ |}

=
(∑
{| λ | P1

a,λ−−−→pepa P1 |}
)

+
(∑
{| λ | P2

a,λ−−−→pepa P2 |}
)

by rules (PAR1a) and (PAR1b)

= P1(P1) + P2(P2) by the induction hypothesis

= (P1 ��A DP2)(P1 ��A P2) + (DP1 ��A P2)(P1 ��A P2)

definition ��A on FS(Ppepa ,R≥0), DP1(P1), DP2(P2) = 1

= P(P ′) again by rule (PAR1)

Suppose a ∈ A. Assume P1

δa→pepa P1, P2

δa→pepa P2, P1 ��A P2

δa→pepa P. Without loss
of generality, P ′ = P ′1 ��A P ′2 for suitable P ′1, P

′
2 ∈ Ppepa .

∑
{| λ | P1 ��A P2

a,λ−−−→pepa P ′ |}
=

∑
{| arf(P1, P2) · λ1 · λ2 | P1

a,λ1−−−−→pepa P ′1, P2
a,λ2−−−−→pepa P ′2 |}

by rule (PAR2)

= arf(P1, P2) ·
(∑
{| λ1 | P1

a,λ1−−−−→pepa P ′1 |}
)
·
(∑
{| λ2 | P2

a,λ2−−−−→pepa P ′2 |}
)

by distributivity

= arf(P1, P2) ·P1(P ′1) ·P2(P ′2) by the induction hypothesis

= arf(P1,P2) ·P1(P ′1) ·P2(P ′2) by Lemma 5.3

= arf(P1,P2) · (P1 ��A P2)(P ′1 ��A P ′2) definition ��A on FS(Ppepa ,R≥0)

= P(P ′) by rule (PAR2)

The other cases are simpler and omitted here.

With the lemma in place we can prove the following correspondence result for Spepa -
bisimilarity and strong equivalence as given by Definition 5.6.

16 D. LATELLA, M. MASSINK, AND E. P. DE VINK

Theorem 5.8. For PEPA-processes P1, P2 ∈ Ppepa , it holds that P1 'pepa P2 iff P1 ∼pepa P2.

Proof. Let R be an equivalence relation on Ppepa . Choose P,Q ∈ Ppepa and a ∈ A. Suppose

P
δa→pepa P. Thus θpepa(P)(δa) = P. We have

q[P, [Q]R, a] =
∑

Q′ ∈ [Q]R

∑
{| λ | P a,λ−−−→pepa Q

′ |} by definition q[P, [Q]R, a]

=
∑

Q′ ∈ [Q]R
P(Q′) by Lemma 5.7

=
∑

Q′ ∈ [Q]R
θpepa(P)(a)(Q′) by definition θpepa

Therefore, for PEPA-processes P1 and P2 it holds that q[P1, [Q]R, a] = q[P2, [Q]R, a] for
all Q ∈ Ppepa , a ∈ A iff

∑
Q′∈[Q]R

θpepa(P1)(a)(Q′) =
∑

Q′∈[Q]R
θpepa(P2)(a)(Q′) for all

Q ∈ Ppepa , a ∈ A. Thus, the equivalence relation R is a strong equivalence (Definition 5.6)
iff R is an Spepa -bisimulation (Definition 3.2), from which the theorem follows.

By the theorem the FuTS semantics for PEPA of Definition 5.2 is correct with respect
to PEPA’s standard semantics of Figure 3. However, because of the use of continuation
functions, the former does not involve implicit counting, decorations or multisets. From
the general results on FuTS of the previous section, we also obtain a coalgebraic semantics
for PEPA for which behavioral equivalence coincides with strong equivalence as defined
in [31].

6. Combined FuTS

In the sequel of this article we will deal with a number of calculi and models that mix
non-deterministic behaviour with stochastic or deterministic time or with probabilistic
behaviour. In this section, we introduce the notion of a combined FuTS, which allows for a
clean definition of the semantics of calculi where different aspects of behaviour are integrated
in an orthogonal way. Prominent examples of such calculi are IML, a language for IMC
where non-determinism is integrated with stochastic continuous delays (see Section 7) and
TPC, a language where where non-determinism is integrated with deterministic discrete
delays (see Section 8).

Definition 6.1. A combined FuTS S, in full ‘a combined state-to-function labeled transition
system’, over a number of label sets L i and semirings R i, i = 1, . . . , n, is a tuple S =

(S, 〈 →i 〉ni=1) with set of states S and such that→i ⊆ S×L i×FS(S,R i), for i = 1, . . . , n.

Combined FuTS of Definition 6.1 extend the simple ones of Definition 3.1. Note, a combined
FuTS is defined over a number of label sets and semirings, and, accordingly, gives rise
to the same number of transition relations. Thus, a combined FuTS can be seen as a
multi-dimensional simple FuTS. The underlying idea is that the behaviour model given by
a combined FuTS is such that one can identify different types of labels, assuming disjoint
label sets L1, . . . , Ln. Then, the continuation function of a transition labeled with an
element of L i is taken from FS(S,R i), expressing the association of the label set Li with
the semiring Ri.

For example, in the case of IML, with set of processes Piml , both non-deterministic
behaviour and stochastically-timed behaviour are treated. Furthermore, action execution is
intended to be instantaneous, while stochastic time is characterized by the rates of negative
exponential distributions. Consequently, it is convenient to use two label sets, namely a set

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 17

of actions A and a singleton set ∆ = {δ} where the symbol δ is used as label to indicate
that the transition involves some exponentially distributed delay. The relevant semirings will
be B, used for modeling the purely non-deterministic aspects of behaviour, and R≥0, used
for the rates characterizing the stochastic aspects of behaviour, as in the case of PEPA, but
here without any association of delay and actions. Consequently, for IML there will be two

transition relations: →1 ⊆ Piml ×A× FS(Piml ,B) modeling non-deterministic behaviour,

and →2 ⊆ Piml ×∆× FS(Piml ,R≥0) modeling stochastic-time behaviour.
It is worth pointing out here that one could use an alternative approach instead of

taking resort to combined FuTS, namely one based on disjoint unions of label sets, and
respectively, continuation functions. Letting

⊕n
i=1Xi denote the disjoint union of sets Xi,

i = 1, . . . , n, one could use a single transition relation

→ ⊆ S ×
n⊕
i=1

L i ×
n⊕
i=1

FS(S,R i)

satisfying the additional property that v ∈ FS(S,R i) if ` ∈ L i, for all transitions s
`
→ v.

As a matter of fact, this approach based on disjoint unions and a single transition relation
has been used in [18]. Technically, the two approaches are equivalent. On the other hand,
in the definition with a single transition relation, type compatibility between labels and
continuation functions yields an additional proof obligation for the well-definedness the
definition of the operational semantics for every specific process calculus (the interested
reader is referred to [18] for details). The use of an approach with multiple transition relations
instead, automatically guarantees type compatibility, viz. by definition. Furthermore, the
approach based on disjoint unions appears less amenable to a category-theoretical treatment.
For the reasons mentioned we stick to the format of Definition 6.1 in this paper.

As we will see, for the purposes of the present paper it is sufficient to consider only total

and deterministic combined FuTS, i.e. those where every transition relation →i is a total
function. Consequently, it will be notationally convenient to consider a combined FuTS S =

(S, 〈 →i 〉ni=1) as a tuple (S, 〈 θi 〉ni=1) with transition functions θi : S → L i → FS(S,R i),

for i = 1, . . . , n, rather than using the form (S, 〈 →i 〉ni=1) that occurs more frequently for
concrete examples in the literature. In the sequel, we occasionally omit the qualification
‘combined’ for a combined FuTS when this cannot cause confusion. All relevant definitions
and results presented in Sections 3 and 4 can be extended straightforwardly to combined
FuTS. We refer to [39] for details on the extension of definitions, results and their proofs.
Here we recall the most important ones.

Definition 6.2. For a combined FuTS S = (S, 〈 θi 〉ni=1), an S-bisimulation is an equivalence
relation R ⊆ S × S such that R(s1, s2) implies∑

t′∈[t]R
θi (s1)(`)(t′) =

∑
t′∈[t]R

θi (s2)(`)(t′)

for all t ∈ S and ` ∈ L i, i = 1, . . . , n. Two elements s1, s2 ∈ S are called S-bisimilar for the
combined FuTS S if R(s1, s2) for some S-bisimulation R for S. Notation s1 'S s2.

Working with total and deterministic FuTS, we can interpret a combined FuTS S =
(S, 〈 θi 〉ni=1) over the label sets L i and semirings R i, i = 1, . . . , n, as a product θ1× · · · × θn :
S →

∏n
i=1 (L i → FS(S,R i)) of functions θi : S → L i → FS(S,R i). To push this idea a

bit further, we want to consider the combined FuTS S = (S, 〈 θi 〉ni=1) as a coalgebra of a
suitable product functor on sets.

18 D. LATELLA, M. MASSINK, AND E. P. DE VINK

Definition 6.3. Let L = 〈L1, . . . ,Ln〉 be an n-tuple of label sets and R = 〈R1, . . . ,Rn〉 be
an n-tuple of semirings. The functor VL

R on Set is defined by VL
R =

∏n
i=1 FS(· ,R i)

L i .

Referring to Definition 4.1, we have FS(· ,R i)
L i = UL i

R i
, for i = 1, . . . , n. Therefore,

VL
R =

∏n
i=1 U

L i
R i

. We note that any combined FuTS S = (S, 〈 θi 〉ni=1) over label sets Li and

semirings Ri, for i = 1, . . . , n, is in fact a VL
R -coalgebra. Reversely, every VL

R -coalgebra, for
L = 〈L1, . . . ,Ln〉 and R = 〈R1, . . . ,Rn〉, corresponds to a combined FuTS over the label
sets Li and semirings Ri, for i = 1, . . . , n. Below we shall use V as an abbreviation for VL

R
whenever L = 〈L1, . . . ,Ln〉 and R = 〈R1, . . . ,Rn〉 are clear from the context. Similarly, for

the sake of readability, we shall often abbreviate UL i
R i

by Ui.

As product of accessible functors, the functor V of Definition 6.3 is accessible and possesses
a final coalgebra, (Ω, ω) say. So, we can speak of the behavioural equivalence ≈V on any
V-coalgebra or, equivalently, of any combined FuTS S. Moreover, writing [[·]]V for the final
morphism of a V-coalgebra S into (Ω, ω), we have

[[·]]V = [[·]]U1 × · · · × [[·]]Un
Next we establish for a given FuTS S over L1, . . . ,Ln and R1 . . . ,Rn the correspondence of
S-bisimulation 'S and the behavioural equivalence ≈V for the functor V. Thus, one may
argue, Definition 6.2 provides an explicit description of behavioral equivalence. The proof
of the theorem below for combined FuTS is an adaptation of the proof of Theorem 4.3 for
simple ones (see [39] for details).

Theorem 6.4. Let S = (S, 〈 θi 〉ni=1) be a FuTS over the label sets L i and semirings R i ,
i = 1, . . . , n, and V as in Definition 6.3. Then s1 'S s2 ⇔ s1 ≈V s2, for all s1, s2 ∈ S.

In the sequel of the paper we will consider combined FuTS, as well as a so-called general
FuTS, for concrete process languages. We will show for each process language that the
notion of bisimulation of its FuTS coincides with the notion of strong bisimulation that is
associated in the literature with the language. Consequently, as a corollary of Theorem 6.4,
we obtain that the notions of strong bisimulations align with behavioral equivalence.

7. FuTS Semantics of IML

In this section we provide a FuTS semantics for a relevant part of IML, the language of
Interactive Markov Chains [27], IMC for short, and compare the notion of bisimulation
induced by its FuTS to the standard notion of bisimulation based on the SOS-semantics as
reported in the literature.

IMC are automata that combine two types of transitions: interactive transitions that
involve the execution of actions, and Markovian transitions that represent the progress of
time governed by exponential distributions. As a consequence, IMC embody both non-
deterministic behaviour and stochastic, i.e. stochastically timed, behaviour. System analysis
using IMC proves to be a powerful approach because of the orthogonality of qualitative and
quantitative dynamics, their logical underpinning and tool support, cf. [9, 30, 13]. Such
orthogonality makes it natural to use a combined FuTS for the semantics of IML. A number
of behavioural equivalences, both strong and weak, are available for IMC [22]. In our
treatment here, we discuss a sublanguage of IML, which we still call IML for simplicity. In
particular we do not deal with internal τ -steps, since we focus on strong bisimilarity here.
The FuTS semantics we consider in the sequel has been originally proposed in [18].

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 19

(NIL1)
a ∈ A

nil
a
→1 []B

(NIL2)
nil

δ
→2 []R≥0

(RPF1)
a ∈ A

λ.P
a
→1 []B

(RPF2)
λ.P

δ
→2 [P 7→ λ]

(APF1)
a.P

a
→1 [P 7→ true]

(APF2)
b 6= a

a.P
b
→1 []B

(APF3)
a.P

δ
→2 []R≥0

(CHO1) P
a
→1 P Q

a
→1 Q

P + Q
a
→1 P + Q

(CHO2) P
δ
→2 P Q

δ
→2 Q

P + Q
δ
→2 P + Q

(PAR1)
P

a
→1 P Q

a
→1 Q a /∈ A

P ‖A Q
a
→1 (P ‖A DQ) + (DP ‖A Q)

(PAR2) P
a
→1 P Q

a
→1 Q a ∈ A

P ‖A Q
a
→1 P ‖A Q

(PAR3)
P

δ
→2 P Q

δ
→2 Q δ /∈ A

P ‖A Q
δ
→2 (P ‖A DQ) + (DP ‖A Q)

(CON1) P
a
→1 P X := P

X
a
→1 P

(CON2) P
δ
→2 P X := P

X
δ
→2 P

Figure 4: FuTS Transition Deduction System for IML.

Definition 7.1. The set Piml of IML processes is given by the grammar

P ::= nil | a.P | λ.P | P + P | P ‖A P | X
where a ranges over the set of actions A, λ over R>0, A over the set of finite subsets of A
and X over the set of constants X .

We assume the same notation and (action) guardedness requirements for constant definitions
and usage as in Section 5 for PEPA.

In line with the discussion above, in IML there are separate prefix constructions for
actions a.P (meaning that the process instantaneously performs action a and then behaves
like P) and for time-delays λ.P (meaning that the process is delayed for a period of time
governed by a random variable with negative exponential distribution with rate λ, and then
behaves like P). No restriction is imposed on the alternative and parallel composition of
processes. For example, in IML, we have the process a.λ.nil + µ.b.nil. With respect to the
FuTS semantics to be defined below, we will see that this process admits both a non-trivial
interactive transition and a non-trivial Markovian transition,

a.λ.nil + µ.b.nil
a
→1 [λ.nil 7→ true] + []B = [λ.nil 7→ true]

a.λ.nil + µ.b.nil
δ
→2 []R≥0

+ [b.nil 7→ µ] = [b.nil 7→ µ]

leading to an interactive continuation and a Markovian continuation, respectively.

Definition 7.2. The FuTS semantics of Piml is given by the FuTS Siml = (Piml ,→1,→2),
a combined FuTS over the label sets A and ∆ = {δ} and the semirings B and R≥0 with

transition relations →1 ⊆ Piml × A × FS(Piml ,B) and →2 ⊆ Piml × ∆ × FS(Piml ,R≥0)
defined as the least relations satisfying the rules of Figure 4.

20 D. LATELLA, M. MASSINK, AND E. P. DE VINK

Actions a ∈ A decorate →1, the special symbol δ, with δ for delay, decorates →2. Note that
rule (APF3) and rule (RPF1) involve the null-functions of R≥0 and of B, respectively, to
express that a process a.P does not trigger a delay and a process λ.P does not execute any
action. In Figure 4 and in the rest of this section we use P,Q ∈ FS(Piml ,B) as typical
interactive continuations, and P,Q ∈ FS(Piml ,R≥0) as typical Markovian continuations.

For the parallel construct ‖A, interleaving applies both for non-synchronized actions a /∈
A as well as for delays. Therefore we have rule (PAR1) pertaining to →1 and rule (PAR3)

pertaining to →2. The same holds for non-deterministic choice, rules (CHO1) and (CHO2),
and constants, rules (CON1) and (CON2). Finally, IML does not provide synchronization of

delays in the parallel construct. Hence, rule (PAR2) only concerns the transition relation→1

capturing synchronization on actions. We recall that for all R ∈ Piml , on the one hand,

(P ‖A Q)(R) =

{
P(R1) ∧Q(R2) if R = R1 ‖A R2 for some R1, R2 ∈ Piml

false otherwise

and, on the other hand,

(P ‖A Q)(R) =

{
P(R1) · Q(R2) if R = R1 ‖A R2 for some R1, R2 ∈ Piml

0 otherwise

where · is the product in R≥0.

Example 7.3. For a.(λ.nil + b.nil), µ.a.nil ∈ Piml and A = {a} we have

a.(λ.nil + b.nil) ‖A µ.a.nil
δ
→2 []R≥0

‖A Dµ.a.nil + Da.(λ.nil+b.nil) ‖A [a.nil 7→ µ]

= []R≥0
‖A [µ.a.nil 7→ 1] + [a.(λ.nil + b.nil) 7→ 1] ‖A [a.nil 7→ µ]

= [a.(λ.nil + b.nil) ‖A a.nil 7→ µ]

For X := a.λ.b.X and Y := a.µ.b.Y , and A = {a, b} we have

X ‖A Y
a
→1 [λ.b.X ‖A µ.b.Y 7→ true] λ.b.X ‖A b.Y

δ
→2 [b.X ‖A b.Y 7→ λ]

b.X ‖A b.Y
b
→1 [X ‖A Y 7→ true] b.X ‖A µ.b.Y

δ
→2 [b.X ‖A b.Y 7→ µ]

λ.b.X ‖A µ.b.Y
δ
→2 [b.X ‖A µ.b.Y 7→ λ, λ.b.X ‖A b.Y 7→ µ]

It is not difficult to verify that Siml is a total and deterministic combined FuTS.

Lemma 7.4. The FuTS Siml is total and deterministic.

Below we use Siml = (Piml , θ1, θ2) and write 'iml rather than 'Siml
, the bisimulation

equivalence induced by Siml .

The standard SOS semantics of IML [27] is given in Figure 5 involving the transition relations

−→ ⊆ Piml ×A× Piml and 99K ⊆ Piml × R>0 × Piml

Below we will use functions T and R based on −→ and 99K, cf. [30]. We have T : Piml ×
A × 2Piml → B given by T(P, a, C) = true if the set {P ′ ∈ C | P a−−→ P ′ } is non-empty,
for all P ∈ Piml , a ∈ A and any subset C ⊆ Piml . For R : Piml × Piml → R≥0 we put

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 21

(APF)
a.P

a−−→ P
(RPF)

λ.P
λ

99K P

(CHO1) P
a−−→ R

P + Q
a−−→ R

(CHO2) Q
a−−→ R

P + Q
a−−→ R

(CHO3) P
λ

99K R

P + Q
λ

99K R
(CHO4) Q

λ
99K R

P + Q
λ

99K R

(PAR1a) P
a−−→ P ′ a /∈ A

P ‖A Q
a−−→ , P ′ ‖A Q

(PAR1b) Q
a−−→ Q′ a /∈ A

P ‖A Q
a−−→ P ‖A Q′

(PAR1c) P
λ

99K P ′

P ‖A Q
λ

99K P ′ ‖A Q
(PAR1d) Q

λ
99K Q′

P ‖A Q
λ

99K P ‖A Q′

(PAR2) P
a−−→ P ′ Q

a−−→ Q′ a ∈ A
P ‖A Q

a−−→ P ′ ‖A Q′

(CON1) P
a−−→ Q X := P
X

a−−→ Q
(CON2) P

λ
99K Q X := P

X
λ

99K Q

Figure 5: Standard Transition Deduction System for IML.

R(P, P ′) =
∑
{| λ | P λ

99K P ′ |}. Here, as common for probabilistic and stochastic process
algebras, the comprehension is over the multiset of transitions leading from P to P ′ with
label λ. Alternatively, one could define an explicit cnt -function, cnt : Piml × R>0 × Piml →
R≥0 returning the number of multiplicities of a transition P

λ
99K P ′, or other means of

decorations. We extend R to Piml × 2Piml by R(P,C) =
∑

P ′ ∈C
∑
{| λ | P λ

99K P ′ |}, for
P ∈ Piml , C ⊆ Piml .

For IML we have the following notion of strong bisimulation [27, 30] that we will compare
with the notion of bisimulation associated with the FuTS Siml .

Definition 7.5. An equivalence relation R ⊆ Piml × Piml is called a strong bisimulation
for IML if, for all P1, P2 ∈ Piml such that R(P1, P2), it holds that

• for all a ∈ A and Q ∈ Piml : T(P1, a, [Q]R) ⇐⇒ T(P2, a, [Q]R)

• for all Q ∈ Piml : R(P1, [Q]R) = R(P2, [Q]R).

Two processes P1, P2 ∈ Piml are called strongly bisimilar if R(P1, P2) for a strong bisimu-
lation R for IML, notation P1 ∼iml P2.

To establish the correspondence of FuTS bisimilarity 'iml for Siml as given by Definition 7.2
and strong bisimilarity ∼iml for IML as given by Definition 7.5, we need to connect the

state-to-function relation →1 and the transition relation −→ as well as the state-to-function

relation →2 and the transition relation 99K .

Lemma 7.6.

(a) Let P ∈ Piml and a ∈ A. If P
a
→1 P then P

a−−→ P ′ ⇐⇒ P(P ′) = true.

(b) Let P ∈ Piml . If P
δ
→2 P then

∑
{| λ | P λ

99K P ′ |} = P(P ′).

22 D. LATELLA, M. MASSINK, AND E. P. DE VINK

Proof.

(a) Guarded induction. Let a ∈ A. We treat two typical cases, viz. λ.P and P1 ‖A P2 for
a /∈ A.

Case λ.P . Suppose λ.P
a
→1 P. Then we have P = []B. We have λ.P

a−−→ P ′ for
no P ′ ∈ Piml , as no transition is provided in −→, and we have P(P ′) = false by definition
of []B, for all P ′ ∈ Piml .

Case P1 ‖A P2, a /∈ A. Suppose P1

a
→1 P1, P2

a
→1 P2 and P1 ‖A P2

a
→1 P. Then

it holds that P = (P1 ‖A DP2) + (DP1 ‖A P2). Recall, for Q ∈ Piml , by definition of
DQ ∈ FS(Piml ,B), DQ(Q′) = true iff Q′ = Q, for Q′ ∈ Piml . We have

P1 ‖A P2
a−−→ P ′

⇔ (P1
a−−→ P ′1 ∧ P ′ = P ′1 ‖A P2) ∨ (P2

a−−→ P ′2 ∧ P ′ = P1 ‖A P ′2)

by analysis of −→
⇔ (P1(P ′1) = true ∧ P ′ = P ′1 ‖A P2) ∨ (P2(P ′2) = true ∧ P ′ = P1 ‖A P ′2)

by the induction hypothesis

⇔ (P1(P ′1) ·DP2(P2) = true ∧ P ′ = P ′1 ‖A P2) ∨
(DP1(P1) ·P2(P ′2) = true ∧ P ′ = P1 ‖A P ′2)

by definition of DP1 and DP2

⇔ ((P1 ‖A DP2)(P ′1 ‖A P2) = true ∧ P ′ = P ′1 ‖A P2) ∨
((DP1 ‖A P2)(P1 ‖A P ′2) = true ∧ P ′ = P1 ‖A P ′2)

by definition of ‖A
⇔ (P1 ‖A DP2)(P ′) = true ∨ (DP1 ‖A P2)(P ′) = true

by definition of ‖A, DP1 and DP2

⇔ ((P1 ‖A DP2) + (DP1 ‖A P2))(P ′) = true

by definition of + on FS(Piml ,B)

⇔ P(P ′) = true

The other cases are standard, or similar and easier.

(b) Guarded induction. We treat the cases for µ.P and P1 ‖A P2.

Case µ.P . Assume µ.P
δ
→2 P, then P = [P 7→ µ]. Moreover, it holds that µ.P admits

a single 99K -transition, viz. µ.P
µ

99K P .

Thus we have
∑
{| λ | µ.P λ

99K P ′ |} = µ = [P 7→ µ](P) = P(P).

Case P1 ‖A P2. Assume P1

δ
→2 P1, P2

δ
→2 P2 and P1 ‖A P2

δ
→2 P. It holds that

P = (P1 ‖A DP2) + (DP1 ‖A P2). We calculate∑
{| λ | P1 ‖A P2

λ
99K P ′ |}

=
∑
{| λ | P1

λ
99K P ′1, P

′ = P ′1 ‖A P2 |} +
∑
{| λ | P2

λ
99K P ′2, P

′ = P1 ‖A P ′2 |}
by analysis of 99K

= (if P ′ = P ′1 ‖A P2 then
∑
{| λ | P1

λ
99K P ′1 |} else 0 end) +

(if P ′ = P1 ‖A P ′2 then
∑
{| λ | P2

λ
99K P ′2 |} else 0 end)

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 23

= (if P ′ = P ′1 ‖A P2 then P1(P ′1) else 0 end) +

(if P ′ = P1 ‖A P ′2 then P2(P ′2) else 0 end)

by induction hypothesis for P1 and P2

= (P1 ‖A DP2)(P ′) + (DP1 ‖A P2)(P ′)

by definition of ‖A, DP1 , DP2 and + on FS(Piml ,R≥0)

= P(P ′)

The remaining cases are left to the reader.

We are now in a position to relate FuTS bisimilarity and standard strong bisimilarity for IML.
In essence, Lemma 7.6 is all we need.

Theorem 7.7. For any two processes P1, P2 ∈ Piml it holds that P1 'iml P2 iff P1 ∼iml P2.

Proof. Let R be an equivalence relation on Piml . Pick P ∈ Piml , a ∈ A and choose

any Q ∈ Piml . Suppose P
a
→1 P. Thus θ1(P)(a) = P. Then we have

T(P, a, [Q]R) ⇔ ∃Q′ ∈ [Q]R : P
a−−→ Q′ by definition of T

⇔ ∃Q′ ∈ [Q]R : P(Q′) = true by Lemma 7.6a

⇔
∑

Q′ ∈ [Q]R
θ1(P)(a)(Q′) = true by definition of θ1

Note, summation in B is disjunction. Likewise, on the Markovian side, we have

R(P, [Q]R) =
∑

Q′ ∈ [Q]R

∑
{| λ | P λ

99K Q′ |} by definition of R

=
∑

Q′ ∈ [Q]R
P(Q′) by Lemma 7.6b

=
∑

Q′ ∈ [Q]R
θ2(P)(δ)(Q) by definition of θ2

We conclude that a strong bisimulation for IML is also an Siml -bisimulation for the
pFuTS Siml , and vice versa. From this the theorem follows.

From the theorem we conclude that also for IML the concrete notion of strong bisimilarity
∼iml is coalgebraically underpinned, as it coincides with the behavioral equivalence 'iml

that comes with the corresponding FuTS Siml .

8. FuTS Semantics of TPC

In this section we consider a simple language of timed processes for which we provide a
combined FuTS. The language is a relevant fragment of the timed process algebra TPC
presented in [3]. The model of time under consideration is discrete and deterministic. The
relevant construct is the time-prefix (n).P , with n ∈ N, n > 0, expressing that the process P
is to be executed after n time steps. We will provide a FuTS semantics and compare the
induced notion of bisimulation to the notion of timed bisimulation underlying the operational
semantics reported in [3].

To the best of our knowledge, this is the first time a deterministically timed model is
dealt with in the coalgebraic framework. As we will see, we resort to 2N as co-domain for
the time continuations, instead of just N, as one may expect. In particular, we use the
semiring 2N with set union as sum and intersection as multiplication. The reason of this
choice is mainly technical and is connected to the proof of the bisimulation correspondence

24 D. LATELLA, M. MASSINK, AND E. P. DE VINK

(NIL1)
a ∈ A

nil
a
→1 []B

(NIL2)
nil

√

→2 []2N

(APF1)
a.P

a
→1 [P 7→ true]

(APF2)
b 6= a

a.P
b
→1 []B

(APF3)
a.P

√

→2 []2N

(TPF1)
a ∈ A

(n).P
a
→1 []B

(TPF2) P

√

→2 P
(n).P

√

→2 [n;P] + [P 7→ {n}] + (n+ P)

(CHO1) P
a
→1 P Q

a
→1 Q

P + Q
a
→1 P + Q

(CHO2) P

√

→2 P Q

√

→2 Q
P + Q

√

→2 P [+] Q

(PAR1)
P

a
→1 P Q

a
→1 Q a /∈ A

P ‖A Q
a
→1 (P ‖A DQ) + (DP ‖AQ)

(PAR2) P
a
→1 P Q

a
→1 Q a ∈ A

P ‖A Q
a
→2 P ‖AQ

(PAR3) P

√

→2 P Q

√

→2 Q
P ‖A Q

√

→2 P [‖A] Q

(CON1) P
α
→1 P X := P

X
α
→1 P

(CON2) P
α
→2 P X := P

X
α
→2 P

Figure 6: FuTS Transition Deduction System for TPC.

theorem (Theorem 8.7 below). Furthermore, the appropriate treatment of delays requires
the extension of the set of operators on continuations.

Definition 8.1. The set Ptpc of TPC processes is given by the grammar below:

P ::= nil | a.P | (n) . P | P + P | P ‖A P | X
where a ranges over the set of actions A, n over N with n > 0, A over the set of finite subsets
of A, and X over the set of constants X .

We assume the same notation and guardedness requirements for constant definition and
usage as for PEPA or IML.

Definition 8.2. The formal semantics of Ptpc is given by the FuTS Stpc = (Ptpc ,→1,→2),
a combined FuTS over the label sets A and Θ with Θ = {

√
} and the semirings B and 2N

with transition relations →1 ⊆ Ptpc ×A× FS(Ptpc ,B) and →2 ⊆ Ptpc ×Θ× FS(Ptpc ,2N)
defined as the least relations satisfying the rules of Figure 6.

Also Stpc is a combined FuTS, having the two state-to-function relations →1 and →2.

Actions a ∈ A decorate →1, the special symbol
√

decorates →2 (with a similar role as δ

for IML). As for →2 the label is always the same, we occasionally suppress it. Note
rule (APF3) and rule (TPF1) involve the null-functions of 2N and of B, respectively, to
express that a process a.P does not trigger a delay and a process (n).P does not execute
an action. In Figure 6 and in the rest of this section we use P,Q ∈ FS(Ptpc ,B) as typical
action continuations, and P,Q ∈ FS(Ptpc ,2N) as typical time continuations.

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 25

The second time prefix rule (TPF2) combines a possible evolution over time of the
process P into its continuation P with the elapse of the prefix. Note, the continuation in
the conclusion of rule (TPF2) is a sum of three parts, viz. [n;P], [P 7→ {n}], and (n+ P).
The auxiliary mappings [n;P] and (n+ P), for timed continuations, are given by

[n;P](Q) =

{
{m} if Q = (n−m).P , 0 < m < n
∅ otherwise

(n+ P)(Q) = {n+m | m ∈ P(Q) }

It is easy to see that, for n ∈ N, Q ∈ Ptpc, and P ∈ FS(Ptpc ,2N), [n;Q] = [(n − i).Q 7→
{i}]n−1

i=1 , and if P(Q) = ∅, then also (n+P)(Q) = ∅. Time progress taking fewer steps than n
is covered by the continuation [n;P]. For m strictly between 0 and n, after m time steps
there remains (n−m).P to be executed. After exactly n time steps, P is to be executed, i.e.
the component [P 7→ {n}] is used). After more than n time steps, say n + m time steps,
process Q is to be executed if m ∈ P(Q). Thus, if no such m exist, i.e. if P(Q) = ∅, this
yields an empty set too.

The rules for the choice and parallel construct of TPC make use of corresponding
operations on FS(Ptpc ,B) and FS(Ptpc ,2N). For P,Q ∈ FS(Ptpc ,B), the functions P +Q
and P ‖A Q are as before. For FS(Ptpc ,2N) the following operators are used:

(P [+] Q)(R) =

{
P(P) ∩Q(Q) if R = P +Q for P,Q ∈ Ptpc

∅ otherwise

and, likewise

(P [‖A] Q)(R) =

{
P(P) ∩Q(Q) if R = P ‖A Q, for P,Q ∈ Ptpc

∅ otherwise

We have that for P ∈ Ptpc there exists a unique P ∈ FS(Ptpc ,2N) such that P →2 P.
Moreover, given the rules for Stpc and the definition of the operators above, it can verified

that, for P,Q ∈ Ptpc and P ∈ FS(Ptpc ,2N) such that P →2 P it holds that P(Q) is either a
singleton or the empty set. See Lemma 8.3 below.

In order to prove the lemma we introduce an auxiliary function md : Ptpc → N,
establishing the so-called maximum delay of a process, given by

md (nil) = 0 md (P1 + P2) = min{md (P1), md (P2) }
md (a.P) = 0 md (P1 ‖A P2) = min{md (P1), md (P2) }

md ((n).P) = n+ md (P) md ((X) = md (P) if X := P

By guarded induction, one straightforwardly verifies the property that md (Q′) < md (Q)

for Q,Q′ ∈ Ptpc and Q ∈ FS(Ptpc ,N) such that Q →2 Q and Q(Q′) 6= ∅. From this
observation is follows that [n;P], [P 7→ {n}] and (n + P) have disjoint supports: We
have that (i) if [n;P](P ′) 6= ∅ then P ′ = (n − m).P for 0 < m < n, hence md (P ′) =
(m−n)+ md (P) > md (P); (ii) if [P 7→ {n}](P ′) 6= ∅ then P ′ = P , hence md (P ′) = md (P);
(iii) if (n+ P)(P ′) 6= ∅ then P(P ′) 6= ∅ hence, using the property above, md (P ′) < md (P).

Lemma 8.3.

(a) The FuTS Stpc is total and deterministic.

(b) If P

√

→2 P then either P(Q) = {n} for some n > 0 or P(Q) = ∅.

Proof. Part (a) goes by guarded induction on P , both for →1 and →2. Part (b) follows by
guarded induction. For the time prefix (n).P we use that [n;P], [P 7→ {n}] and (n + P)

26 D. LATELLA, M. MASSINK, AND E. P. DE VINK

(APF)
a.P

a−−→ P

(PRE)
(n).P n; P

(DEC) n = m+ `
(n).P m; (`).P

(SUM) P n; P ′

(m).P n+m
; P ′

(CHO1) P
a−−→ R

P + Q
a−−→ R

(CHO2) Q
a−−→ R

P + Q
a−−→ R

(ALT) P n; P ′ Q n; Q′

P + Q n; P ′ +Q′

(PAR1a) P
a−−→ P ′ a /∈ A

P ‖A Q
a−−→ P ′ ‖A Q

(PAR1b) Q
a−−→ Q′ a /∈ A

P ‖A Q
a−−→ P ‖A Q′

(PAR2) P
a−−→ P ′ Q

a−−→ Q′ a ∈ A
P ‖A Q

a−−→ P ′ ‖A Q′
(SYN) P n; P ′ Q n; Q′

P ‖A Q n; P ′ ‖A Q′

(CON1) P
a−−→ Q X := P
X

a−−→ Q
(CON2) P n; Q X := P

X n; Q

Figure 7: Standard Transition Deduction System for TPC.

have disjoint supports, as noted above. For the constructs P + Q and P ‖A Q we observe
that the operations [+] and [‖A] preserve the property mentioned, as the intersection of
two singletons holding a positive number is either a singleton with a positive number or the
empty set.

Below we have Stpc = (Ptpc , θ1, θ2) and use 'tpc to denote the bisimulation equivalence
induced by Stpc .

The standard SOS semantics of the TPC fragment of interest is given in Figure 7, involving
the transition relations

−→ ⊆ Ptpc ×A× Ptpc and ; ⊆ Ptpc × N>0 × Ptpc
Note that for timed transitions P n; P ′ it is required that n > 0. Therefore, regarding
rule (DEC), a process (n).P for example with a timed prefix will not yield a zero-time step
(n).P 0; (n).P for which time does not progress. The case for (n).P where n time step
elapse, is covered by rule (PRE).

The definition of timed bisimilarity for TPC we give below is a bit more concise than
the one originally introduced in [3], but the two notions can be easily proven to coincide. We
will compare timed bisimilarity with the notion of bisimulation associated with the combined
FuTS Stpc .

Definition 8.4. An equivalence relation R ⊆ Ptpc ×Ptpc is a timed bisimulation for TPC if,
for all P1, P2 ∈ Ptpc such that R(P1, P2), it holds that for all a ∈ A and n ∈ N
• whenever P1

a−−→ Q1, then P2
a−−→ Q2 for some Q2 ∈ Ptpc with R(Q1, Q2);

• whenever P1
n; Q1, then P2

n; Q2 for some Q2 ∈ Ptpc with R(Q1, Q2).

Two processes P1, P2 ∈ Ptpc are called timed bisimilar, notation P1 ∼tpc P2 if R(P1, P2) for
some timed bisimulation for Ptpc .

To establish the correspondence of FuTS bisimilarity 'tpc for Stpc of Definition 8.2 and
timed bisimilarity ∼tpc for TPC of Definition 8.4, we need to connect the state-to-function

relation →1 and the transition relation −→ as well as the state-to-function relation →2 and
the transition relation ; . The connection is established by Lemma 8.6. First we state an

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 27

auxiliary result, which is commonly referred to as time-determinism (cf. [4]) and which can
be shown straightforwardly by guarded induction.

Lemma 8.5. If P n; P ′ and P n; P ′′, for P, P ′, P ′′ ∈ Ptpc and n > 0, then P ′ = P ′′.

We use time-determinism of TPC in the proof of the following lemma.

Lemma 8.6.

(a) Let P ∈ Ptpc and a ∈ A. If P
a
→1 P then P

a−−→ P ′ ⇐⇒ P(P ′) = true.

(b) Let P ∈ Ptpc. If P

√

→2 P then P n; P ′ ⇐⇒ P(P ′) = {n}.

Proof. Part (a) is similar to the corresponding part of Lemma 7.6. Part (b) can be shown by
guarded induction for which we exhibit two cases (the others being similar or straightforward).

For readability, we suppress the label
√

of →2.

Case (m).P . Suppose (m).P →2 P and P →2 P ′. Then, by (TPF2), we have P(P ′) =
{`}, for 0 < ` < m, iff P ′ = (m− `).P , P(P ′) = {m} iff P ′ = P , and P(P ′) = {`}, for ` > m
iff P ′(P ′) = {` −m}. Now, if (m).P n; P ′ for 0 < n < m, then P ′ = (m − n).P , because
of rules (PRE) and (DEC) and Lemma 8.5. Therefore, P(P ′) = P((m − n).P) = {n}. If
(m).P n; P ′ with n = m, then P ′ = P , as (PRE) applies (and with an appeal to Lemma 8.5).
Therefore, P(P ′) = P(P) = {m} = {n}. Finally, if (m).P n; P ′ for n > m, then we have
P n−m

; P ′, in view of rule (SUM) and because of time-determinism. By induction hypothesis,
we obtain P ′(P ′) = {n−m} and therefore P(P ′) = (m+P ′)(P ′) = {m+n | n ∈ P ′(P ′) } =

{m+n−m} = {n}. Reversely, by rules (PRE) and (DEC) we have (m).P `; (m− `).P , for
0 < ` < m and (m).P m; P . Moreover, if P(P ′) = {`}, for ` > m, then P ′(P ′) = {`−m}.
By induction hypothesis, P `−m

; P ′. Hence, (m).P m+`−m
; P ′, i.e. (m).P `; P ′, by (SUM).

Case P1 + P2. Suppose P1 + P2 →2 P. Then P = P1 [+] P2 for P1,P2 ∈ FS(Ptpc ,2N)

such that P1 →2 P1 and P2 →2 P2. If P1 + P2
n; P ′, then exist P ′1, P

′
2 ∈ Ptpc such that

P1
n; P ′1, P2

n; P ′2 and P ′ = P ′1 +P ′2, because (ALT) is the only rule applicable. By induction
hypothesis, P1(P ′1) = {n} and P2(P ′2) = {n}. Hence P(P ′) = (P1 [+] P2)(P ′1 + P ′2) = {n}.
In the other direction, if P(P ′) = {n}, then P ′ = P ′1 + P ′2 for processes P ′1, P

′
2 ∈ Ptpc such

that P1(P ′1) = {n} and P2(P ′2) = {n}. By induction hypothesis, P1
n; P ′1 and P2

n; P ′2,
from which it follows that P1 + P2

n; P ′1 + P ′2, i.e. P1 + P2
n; P ′, by (SUM).

With Lemma 8.6 in place we are ready to show the correspondence of FuTS bisimilarity and
timed bisimilarity for TPC.

Theorem 8.7. For any two processes P1, P2 ∈ Ptpc it holds that P1 'tpc P2 iff P1 ∼tpc P2.

Proof. Suppose P1 'tpc P2, for P1, P2 ∈ Ptpc. Let R ⊆ Ptpc × Ptpc be a bisimulation with
respect to Stpc such that R(P1, P2). We verify that R meets the two transfer conditions of
Definition 8.4.

If P1
a−−→ Q1, for some a ∈ A and Q1 ∈ Ptpc , then θ1(P1)(a)(Q1) = true by Lemma 8.6.

From the definition of a FuTS bisimulation we obtain∑
Q′ ∈ [Q]R

θ1(P1)(a)(Q′) =
∑

Q′ ∈ [Q]R
θ1(P2)(a)(Q′) (8.1)

for all Q ∈ Ptpc. As we have seen before, we argue that summation of B is disjunction,
and since θ1(P1)(a)(Q1) = true, there must exist Q2 ∈ [Q1]R such that θ1(P2)(Q2) = true.

Hence, R(Q1, Q2) and, by Lemma 8.6, P2
a−−→ Q2.

28 D. LATELLA, M. MASSINK, AND E. P. DE VINK

If P1
n; Q1, for some n > 0, then, by Lemma 8.6, θ2(P1)(

√
)(Q1) = {n}. From the

definition of FuTS bisimulation we obtain∑
Q′ ∈ [Q]R

θ2(P1)(
√

)(Q′) =
∑

Q′ ∈ [Q]R
θ2(P2)(

√
)(Q′) (8.2)

for all Q ∈ Ptpc . Note, summation of the semiring 2N is union of sets. So, by picking Q = Q1

we have n ∈
∑

Q′ ∈ [Q1]R
θ2(P2)(

√
)(Q′). Thus, for some Q2 ∈ Ptpc with R(Q1, Q2) it holds

that n ∈ θ2(P2)(
√

)(Q2). It follows from Lemma 8.3b that θ2(P2)(
√

)(Q2) = {n}, and thus,
again by Lemma 8.6, P2

n; Q2.
Now suppose P1 ∼tpc P2, for P1, P2 ∈ Ptpc . Let R ⊆ Ptpc ×Ptpc be a timed bisimulation

such that R(P1, P2). We verify that, with respect to P1 and P2, R meets the two summation
conditions of Definition 6.2 for the case of Stpc , i.e., equations (8.1) and (8.2), for all Q ∈ Ptpc
and a ∈ A. We have∑

Q′ ∈ [Q]R
θ1(P1)(a)(Q′)

⇔ ∃Q′ ∈ Ptpc : R(Q′, Q) ∧ θ1(P1)(a)(Q′) = true by structure of B
⇔ ∃Q′ ∈ Ptpc : R(Q′, Q) ∧ P1

a−−→ Q′ by Lemma 8.6

⇔ ∃Q′′ ∈ Ptpc : R(Q′′, Q) ∧ P2
a−−→ Q′′ R(P1, P2) and R timed bisimulation

⇔ ∃Q′′ ∈ Ptpc : R(Q′′, Q) ∧ θ1(P2)(a)(Q′′) = true by Lemma 8.6

⇔
∑

Q′′ ∈ [Q]R
θ1(P2)(a)(Q′′) by structure of B

and also

n ∈
∑

Q′ ∈ [Q]R
θ2(P1)(

√
)(Q′)

⇔ ∃Q′ ∈ Ptpc : R(Q′, Q) ∧ n ∈ θ2(P1)(
√

)(Q′) by structure of 2N

⇔ ∃Q′ ∈ Ptpc : R(Q′, Q) ∧ θ2(P1)(
√

)(Q′) = {n} by Lemma 8.3

⇔ ∃Q′ ∈ Ptpc : R(Q′, Q) ∧ P1
n; Q′ by Lemma 8.6

⇔ ∃Q′′ ∈ Ptpc : R(Q′′, Q) ∧ P2
n; Q′′ R(P1, P2) and R timed bisimulation

⇔ ∃Q′′ ∈ Ptpc : R(Q′′, Q) ∧ θ2(P2)(
√

)(Q′′) = {n} by Lemma 8.6

⇔ ∃Q′′ ∈ Ptpc : R(Q′′, Q) ∧ n ∈ θ2(P2)(
√

)(Q′′) by Lemma 8.3

⇔
∑

Q′′ ∈ [Q]R
θ2(P2)(

√
)(Q′′) by structure of 2N

Thus, R satisfies the conditions for a FuTS bisimulation for Stpc .

We conclude that also in the setting of a FuTS for discrete time involving the semiring 2N, we
have an example of a correspondence result of FuTS-bisimilarity and bisimilarity based on a
standard SOS definition. It is worth pointing out that in the proof above, the equivalence of
n ∈

∑
Q′ ∈ [Q]R

θ2(P1)(
√

)(Q′) and ∃Q′ ∈ Ptpc : R(Q′, Q) ∧ n ∈ θ2(P1)(
√

)(Q′), holds because

we are working with a semiring of (finite) sets over N with summation to be interpreted
as (finite) union. Was summation to be interpreted as sum over N, as it would have
been the case if we would have used the semiring N, i.e. using FS(Ptpc ,N) instead of
FS(Ptpc ,2N), then, from n =

∑
Q′ ∈ [Q]R

θ2(P1)(
√

)(Q′) we would not have been able to

conclude ∃Q′ ∈ Ptpc : R(Q′, Q) ∧ n = θ2(P1)(
√

)(Q′), and vice-versa.

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 29

9. Nested FuTS

In this section we extend the applicability of the FuTS framework to more complex models,
in particular those in which different aspects of behaviour are integrated in a non-orthogonal
way—as it is the case for non-deterministic choice of probabilistic distributions over behaviour
in probabilistic and Markov automata. We introduce the notion of a nested FuTS, namely a
FuTS where the transition relation involves continuation functions that do not act on the
set of states S directly, but instead on functions acting on S or, in the general case, on
functions over the latter and so on. As mentioned in the introduction, here we restrict our
investigation on nested FuTSs with two levels, namely nested FuTSs where the domain of
the continuation functions is a set of functions the domain of which is the set S of states. In
the following, we give the formal definition of a simple two-level nested FuTS, i.e. a nested
FuTS involving two levels of continuations that has a single transition relation.

Definition 9.1. Let L be a set of labels and R1 and R2 be two semirings. A (simple)

two-level nested FuTS S, over L and R1 and R2 is a tuple S = (S, →) with set of states S

and transition relation → ⊆ S × L× FS(FS(S,R1) ,R2).

A two-level nested FuTS is called total and deterministic if, for all s ∈ S and ` ∈ L,

there exists exactly one ψ ∈ FS(FS(S,R1) ,R2) such that s
`
→ ψ. As before, for a total

and deterministic nested FuTS we use the notation (S, θ) where the function θ has type
S → L → FS(FS(S,R1) ,R2). Here, for s ∈ S, ` ∈ L, ϕ ∈ FS(S,R1), y ∈ R2, we have

θ(s)(`)(ϕ) = y iff ψ(ϕ) = y for the unique ψ ∈ FS(FS(S,R1) ,R2) such that s
`
→ ψ.

For a set of states S and a semiring R, an equivalence relation R on S induces an
equivalence relation on FS(S,R), referred to as the lifting of R to FS(S,R) and also
denoted as R. The induced relation R is defined by

R(ϕ1, ϕ2) iff
∑

t′∈[t]R
ϕ1(t′) =

∑
t′∈[t]R

ϕ2(t′) for all t ∈ S

for ϕ1, ϕ2 ∈ FS(S,R). It is easy to see that R on FS(S,R) is indeed an equivalence
relation. Therefore, the notion of a two-level bisimulation for a two-level nested FuTS given
below is well-defined.

Definition 9.2. Let S = (S, →) be a two-level nested FuTS over the label set L and
semirings R1 and R2. An equivalence relation R ⊆ S × S is a two-level bisimulation for S if
and only if R(s1, s2) implies∑

ϕ′∈[ϕ]R
θ (s1)(`)(ϕ′) =

∑
ϕ′∈[ϕ]R

θ (s2)(`)(ϕ′) (9.1)

for all ` ∈ L and ϕ ∈ FS(S,R1). Two elements s1, s2 ∈ S are called bisimilar for S if
R(s1, s2) for some two-level bisimulation R for S. Notation s1 'S s2.

In Section 10 we will show that, in the setting of Markov Automata, the notion of a two-level
bisimulation for a suitable two-level nested FuTS (having R1 = R≥0 and R2 = B) coincides
with the notion of strong bisimulation for Markov Automata.

As is to be expected, a total and deterministic two-level FuTS can be considered as a
coalgebra of a suitable functor on sets.

Definition 9.3. Let L be a label set and R = 〈R1, R2 〉 be an pair of semirings. The
functor WLR : Set→ Set assigns to a set X the function space FS(FS(X,R1),R2)L of all

30 D. LATELLA, M. MASSINK, AND E. P. DE VINK

functions ψ : L → FS(FS(X,R1),R2) and assigns to a mapping f : X → Y the mapping
WLR (f) : FS(FS(X,R1),R2)L → FS(FS(Y,R1),R2)L where

WLR (f)(Φ)(`)(ψ) =
∑

ϕ∈ FS(f,R1)−1(ψ) Φ(`)(ϕ)

for all Φ : L → FS(FS(X,R1),R2), ` ∈ L, ψ ∈ FS(Y,R1), where we use the function
FS(f,R1) : FS(X,R1) → FS(Y,R1) with FS(f,R1)(ϕ)(y) =

∑
x∈f−1(y) ϕ(x) for ϕ ∈

FS(X,R1) and y ∈ Y .

Note that in the definition above the sums exist since Φ and ϕ have finite support.
For readability we use W as shorthand for WLR , when the label set L and the pair of

semirings R are clear from the context. It is readily checked that each W is a functor, in
fact an accessible one being a composition of accessible functors. Thus, W possesses a final
coalgebra. The associated notion of behavioural equivalence is denoted by ≈W . As before,
we have for nested FuTS a correspondence result as well.

Theorem 9.4. Let S = (S, θ) be a two-level nested FuTS over the label set L and the
semirings R1 and R2. Let the functorW be as in Definition 9.3. Then s1 'S s2 ⇔ s1 ≈W s2,
for all s1, s2 ∈ S.

Proof. Let s1, s2 ∈ S. We first prove s1 'S s2 ⇒ s1 ≈W s2. So, assume s1 'S s2. Let
R ⊆ S × S be a two-level bisimulation with R(s1, s2). We turn the collection of equivalence
classes S/R into a W-coalgebra SR = (S/R, θR) by putting

θR([s]R)(`)(ϕ̄) =
∑

ϕ∈ FS(εR,R1)−1(ϕ̄) θ(s)(`)(ϕ)

for s ∈ S, ` ∈ L, and ϕ̄ ∈ FS(S/R,R1) and ε : S → S/R the canonical mapping. This
is well-defined since R is a two-level bisimulation and FS(εR,R1)−1(ϕ̄) is an equivalence
class of R, for all ϕ̄ ∈ FS(S/R,R1). For, if ϕ1, ϕ2 ∈ FS(εR,R1)−1(ϕ̄), t ∈ S then
FS(εR,R1)(ϕ1)([t]R) = FS(εR,R1)(ϕ2)([t]R). Thus

∑
t′∈[t]R

ϕ1(t′) =
∑

t′∈[t]R
ϕ2(t′) for

all t ∈ S, hence R(ϕ1, ϕ2). Therefore, εR : S → S/R is a W-homomorphism: for ` ∈ L and
ϕ̄ ∈ FS(S/R,R1), we have

W (εR)(θ(s))(`)(ϕ̄)

=
∑

ϕ∈ FS(εR,R1)−1(ϕ̄) θ(s)(`)(ϕ) by definition of W
= θR([s]R)(`)(ϕ̄) by definition of θR

= θR(εR(s))(`)(ϕ̄) by definition of εR

Thus, W(εR) ◦ θ = θR ◦ εR and εR : S → SR is a W-homomorphism as claimed. Now, by

uniqueness of a final morphism, we have [[·]]SW = [[·]]SRW ◦ εR. In particular, with respect to S,
this implies that [[s1]]W = [[s2]]W since εR(s1) = εR(s2). Thus, s1 ≈W s2 as was to be shown.

For the reverse, s1 ≈W s2 ⇒ s1 'S s2, assume s1 ≈W s2, i.e. [[s1]]W = [[s2]]W , for
s1, s2 ∈ S. Since the map [[·]]W : (S, θ)→ (Ω, ω) is a W-homomorphism, the equivalence
relation RS given by RS (s′, s′′) ⇔ [[s′]]W = [[s′′]]W is a two-level bisimulation: Suppose
RS (s′, s′′), i.e. s′ ≈W s′′, for some s′, s′′ ∈ S. Pick ` ∈ L, t ∈ S and assume [[t]]W = w ∈ Ω.
For W we have ω ◦ [[·]]W = W([[·]]W) ◦ θ. Hence, for s ∈ S, ` ∈ L, χ ∈ FS(Ω,R1), it holds
that

ω([[s]]W)(`)(χ) =W([[·]]W)(θ(s))(`)(χ) =
∑

ϕ∈ FS([[·]]W ,R1)−1(χ) θ(s)(`)(ϕ) (9.2)

Moreover, we have, for ϕ1, ϕ2 ∈ FS(S,R1), that

RS(ϕ1, ϕ2) ⇐⇒ FS([[·]]W ,R1)(ϕ1) = FS([[·]]W ,R1)(ϕ2)

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 31

since we observe that

FS([[·]]W ,R1)(ϕ1) = FS([[·]]W ,R1)(ϕ2)

⇔ ∀w ∈ [[S]]W : FS([[·]]W ,R1)(ϕ1)(w) = FS([[·]]W ,R1)(ϕ2)(w)

since both FS([[·]]W ,R1)(ϕ1)(w), FS([[·]]W ,R1)(ϕ2)(w) = 0 if [[·]]W
−1(w) = ∅

⇔ ∀t ∈ S : FS([[·]]W ,R1)(ϕ1)([[t]]W) = FS([[·]]W ,R1)(ϕ2)([[t]]W)

⇔ ∀t ∈ S :
∑

t′∈[[·]]W
−1([[t]]W) ϕ1(t′) =

∑
t′∈[[·]]W

−1([[t]]W) ϕ2(t′)

by definition of FS(·,R1)

⇔ ∀t ∈ S :
∑

t′∈[t]RS
ϕ1(t′) =

∑
t′∈[t]RS

ϕ2(t′)

since t′ ∈ [t]RS iff [[t′]]W = [[t]]W
⇔ RS(ϕ1, ϕ2)

by definition of RS on FS(S,R1)

Therefore,

ϕ′ ∈ [ϕ]RS ⇐⇒ ϕ′ ∈ FS([[·]]W ,R1)−1(χ) for χ = FS([[·]]W ,R1)(ϕ) (9.3)

Now, let s′, s′′ ∈ S such that RS(s′, s′′), and choose any ` ∈ L and ϕ ∈ FS(S,R1). Put
χ = FS([[·]]W ,R1)(ϕ). Then we have∑

ϕ′∈[ϕ]RS
θ (s′)(`)(ϕ′)

=
∑

ϕ′ ∈ FS([[·]]W ,R1)−1(χ) θ(s
′)(`)(ϕ′) by Equation (9.3 and definition χ)

= ω([[s′]]W)(`)(χ) by Equation (9.2)

= ω([[s′′]]W)(`)(χ) s′ ≈W s′′ by assumption

=
∑

ϕ′ ∈ FS([[·]]W ,R1)−1(χ) θ(s
′′)(`)(ϕ′) by Equation (9.2)

=
∑

ϕ′∈[ϕ]RS
θ (s′′)(`)(ϕ′) by Equation (9.3 and definition χ)

Thus, if RS (s′, s′′) then
∑

ϕ′∈[ϕ]RS
θ (s′)(`)(ϕ′) =

∑
ϕ′∈[ϕ]RS

θ (s′′)(`)(ϕ′) for all ` ∈ L and

ϕ ∈ FS(S,R1). Therefore, RS is a two-level bisimulation according to Definition 9.2. Since
[[s1]]W = [[s2]]W , it follows that RS (s1, s2). Thus RS is a two-level bisimulation relating s1

and s2. Conclusion, it holds that s1 'S s2.

Above we introduced the notion of a two-level nested FuTS and an associated notion of
bisimulation. Also in the case of such nested FuTS, FuTS-bisimulation and behavioral equiv-
alence of the corresponding functor coincides. Combination of nested FuTS, or combination
of nested and simple FuTS, over the same set of states, is a straightforward generalization
along the lines of Section 6. We will not pursue unfolding of the details here. In the next
section we will encounter an example of such a construction.

10. FuTS Semantics of a language for Markov Automata

As a final application of the FuTS approach to modeling quantitative behaviour we consider
so-called Markov automata (MA). A Markov automaton, as proposed in [22, 23, 53], com-
bines non-deterministic and probabilistic behaviour, on the one hand, with stochastic time
behaviour, on the other hand. Therefore, we need a combination of a nested and a simple
FuTS to model the respective behaviour.

32 D. LATELLA, M. MASSINK, AND E. P. DE VINK

The definition of an MA here follows [53]. We first recall some definitions from [53,
20] with Distr(S) ⊆ FS(S,R≥0) denoting the class of (finitely supported) probability
distributions over S.

The superposition of non-deterministic and probabilistic behaviour is provided in Markov
automata by means of a combination of a standard choice operator ‘ + ’ together with the
probabilistic extension of action prefix a.{ p1 ·P1 2 · · ·2 ph ·Ph } for a ∈ A, h > 0, and
p1, . . . , ph ∈ (0, 1] such that p1 + · · ·+ph = 1. The syntactic construct { p1 ·P1 2 · · ·2 ph ·Ph }
denotes the distribution µ{ p1 ·P1 2···2 ph ·Ph } over processes defined by

µ{ p1 ·P1 2···2 ph ·Ph } =
∑ h

i=1 [Pi 7→ pi]

The intuitive meaning is then obvious: process a.{ p1 ·P1 2 · · ·2 ph ·Ph } performs action a
and then behaves as process P with probability µ{ p1 ·P1 2···2 ph ·Ph }(P).

A process language for Markov Automata called MAPA (Markov Automata Process
Algebra) has been proposed in [53, 54, 52]. MAPA includes a rich data system and is
equipped with restrictions to facilitate state space generation of relatively small models.
Below, we consider MAL as introduced in [18]. MAL constitutes a simplified fragment of
MAPA which highlights how nested non-deterministic and probabilistic behaviour combined
with Markovian behaviour can be modeled in the FuTS framework.

Definition 10.1. The set Pmal of MA processes is given by the grammar

P ::= nil | a.{ p1 ·P1 2 · · ·2 ph ·Ph } | λ.P | P + P | P ‖A P | X
where a ranges over the set of actions A, pi over the interval (0, 1], λ over R>0, A over the set
of finite subsets of A and X over the set of constants X . For an probabilistic action-prefix
a.{ p1 ·P1 2 · · ·2 ph ·Ph } it is required that h > 0 and p1 + · · ·+ ph = 1.

We assume the same notation, guardedness requirements and conventions for constant
definitions as in Section 5 for PEPA, IML and TPC.

In the setting of Pmal we use P,Q to range over FS(FS(Pmal ,R≥0) ,B) and P,Q to
range over FS(Pmal ,R≥0). We use µ, ν to range over Distr(Pmal) ⊆ FS(Pmal ,R≥0). As
before, we let P1 + P2 be the pointwise sum of P1 and P2. (Note, we are adding rates
here.) We put DP = [P 7→ 1] in FS(Pmal ,R≥0) and define P1 ‖A P2 : Pmal → R≥0, for
P1,P2 ∈ FS(Pmal ,R≥0) and A ⊆ A, by

(P1 ‖A P2)(R) =

{
P1(R1) · P2(R2) if R = R1 ‖A R2 for some R1, R2 ∈ Pmal

0 otherwise

Note P1 ‖A P2 ∈ FS(Pmal ,R≥0). Moreover, if µ1, µ2 ∈ Distr(Pmal) then µ1 ‖A µ2 ∈
Distr(Pmal) too, since

∑
R∈Pmal

(µ1 ‖Aµ2)(R) =
∑

R1,R2∈Pmal
µ1(R1) ·µ2(R2) and the latter

summation is equal to
(∑

R1∈Pmal
µ1(R1)

)
·
(∑

R2∈Pmal
µ2(R2)

)
while

∑
R1∈Pmal

µ1(R1) and∑
R2∈Pmal

µ2(R2) are both equal to 1. For P1,P2 ∈ FS(FS(Pmal ,R≥0) ,B) and A ⊆ A,

we also use constructs P1 + P2 and P1 ‖A P2 where (P1 + P2)(µ) = P1(µ) ∨P2(µ) is
pointwise disjunction, and P1 ‖A P2 is defined by∑

µ1,µ2 : P1(µ1)=true∧P2(µ2)=true [µ1 ‖A µ2 7→ true]

Thus (P1 ‖A P2)(µ) = true iff µ = µ1 ‖A µ2, for µ1 such that P1(µ1) = true and µ2 such
that P2(µ2) = true. We overload DP for P ∈ Pmal ; with respect to FS(FS(Pmal ,R≥0) ,B)
we have DP = [[P 7→ 1] 7→ true]. Because of the contexts no confusion arises whether to
interpret DP with respect to FS(FS(Pmal ,R≥0) ,B) or with respect to FS(Pmal ,R≥0).

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 33

(NIL1)
a ∈ A

nil
a
→1 []B

(NIL2)
nil

δ
→2 []R≥0

(RPF1)
a ∈ A

λ.P
a
→1 []B

(RPF2)
λ.P

δ
→2 [P 7→ λ]

(APF1)
a.{ p1 ·P1 2 · · ·2 ph ·Ph }

a
→1 [µ{ p1 ·P1 2···2 ph ·Ph } 7→ true]

(APF2)
b 6= a

a.{ p1 ·P1 2 · · ·2 ph ·Ph }
b
→1 []B

(APF3)
a.{ p1 ·P1 2 · · ·2 ph ·Ph }

δ
→2 []R≥0

(CHO1) P
a
→1 P Q

a
→1 Q

P + Q
a
→1 P + Q

(CHO2) P
δ
→2 P Q

δ
→2 Q

P + Q
δ
→2 P + Q

(PAR1)
P

a
→1 P Q

a
→1 Q a /∈ A

P ‖A Q
a
→1 (P ‖A DQ) + (DP ‖A Q)

(PAR2) P
a
→1 P Q

a
→1 Q a ∈ A

P ‖A Q
a
→1 P ‖A Q

(PAR3)
P

δ
→2 P Q

δ
→2 Q

P ‖A Q
δ
→2 (P ‖A DQ) + (DP ‖A Q)

(CON1) P
a
→1 P X := P

X
a
→1 P

(CON2) P
δ
→2 P X := P

X
δ
→2 P

Figure 8: FuTS Transition Deduction System for MAL.

With the operators defined above in place, and a combined treatment of actions and
probabilities vs. stochastic delays, it is straightforward to capture the semantics of MAL
with FuTS, cf. [18].

Definition 10.2. The formal semantics of Pmal is given by the FuTS Smal = (Pmal ,→1,→2),
a general FuTS over the label sets A and ∆ = {δ} and the semirings R≥0, B and R≥0

again with transition relations→1 and→2, where→1 ⊆ Pmal ×A× FS(FS(Pmal ,R≥0) ,B)

and →2 ⊆ Pmal ×∆× FS(Pmal ,R≥0), defined as the least relations satisfying the rules of
Figure 8.

By guarded induction we obtain that the finitely supported functions involved in the definition

of →1 are indeed probability distributions. Ultimately this relies on the restriction on the
extended prefix, for the process a.{ p1 ·P1 2 · · ·2 ph ·Ph } the finite sum p1 + · · ·+ ph must
be equal to 1.

Lemma 10.3. For all P ∈ Pmal , a ∈ A, functions P ∈ FS(FS(Pmal ,R≥0) ,B) and

P ∈ FS(Pmal ,R≥0), if P
a
→1 P and P(P) = true, then P ∈ Distr(Pmal).

It is not difficult either to verify that Smal is a total and deterministic combined FuTS, i.e.

for P ∈ Pmal , a ∈ A we have P
a
→1 P for exactly one P ∈ FS(FS(Pmal ,R≥0) ,B) and

P
δ
→2 P for exactly one P ∈ FS(Pmal ,R≥0).

Lemma 10.4. The general FuTS Smal is total and deterministic.

Below we use Smal = (Pmal , θ1, θ2) with θ1 : Pmal → FS(FS(Pmal ,R),B) and θ2 : Pmal →
FS(Pmal ,R) induced by →1 and →2, respectively. We write 'mal for the associated notion

34 D. LATELLA, M. MASSINK, AND E. P. DE VINK

(ACT)
a.[p1 ·P1 ⊕ · · · ⊕ ph ·Ph]

a−−→ µ[p1 ·P1⊕···⊕ph ·Ph]
(DELAY)

λ.P
λ

99K P

(CHO1) P
a−−→ µ

P +Q
a−−→ µ

(CHO2) Q
a−−→ ν

P +Q
a−−→ ν

(CHO3) P
λ

99K2 P
′

P +Q
λ

99K2 P
′

(CHO4) Q
λ

99K2 Q
′

P +Q
λ

99K2 Q
′

(PAR1)
P

a−−→ µ a /∈ A
P ‖A Q

a−−→ µ ‖A DQ
(PAR2) Q

a−−→ ν a /∈ A
P ‖A Q

a−−→ DP ‖A ν

(PAR3) P
a−−→ µ Q

a−−→ ν a ∈ A
P ‖A Q

a−−→ µ ‖A ν

(PAR4) P
λ

99K P ′

P ‖A Q
λ

99K P ′ ‖A Q
(PAR5) Q

λ
99K Q′

P ‖A Q
λ

99K P ‖A Q′

(REC1) P
a−−→ µ X := P
X

a−−→ µ
(REC2) P

λ
99K P ′ X := P

X
λ

99K P ′

Figure 9: Standard Transition Deduction System for MAL.

of bisimilarity. Recall, for θ1 the relevant definition is Definition 9.2 on page 29, while for θ2

we of course refer to Definition 3.2 of page 9, as shown below, for clarity.

Definition 10.5. An equivalence relation R ⊆ Pmal × Pmal is an Smal -bisimulation if and
only if R is a nested bisimulation with respect to θ1 and a simple bisimulation with respect
to θ2.

If we unfold the definitions for the two types of FuTS bisimulation we obtain that an
equivalence relation R ⊆ Pmal × Pmal is an Smal -bisimulation, if for all P1, P2 ∈ Pmal such
that R(P1, P2), it holds that

• for all a ∈ A and µ ∈ Distr(Pmal):
∑

µ′∈[µ]R
θ1(P1)(a)(µ′) =

∑
µ′∈[µ]R

θ1(P2)(a)(µ′),

and
• for all Q ∈ Pmal :

∑
Q′∈[Q]R

θ2(P1)(δ)(Q′) =
∑

Q′∈[Q]R
θ2(P2)(δ)(Q′)

with R on Distr(Pmal) induced by R on Pmal . Recall that, for µ1, µ2 ∈ Distr(Pmal), R(µ1, µ2)
if and only if

∑
Q′∈[Q]R

µ1(Q′) =
∑

Q′∈[Q]R
µ2(Q′) for all Q ∈ Pmal .

A standard LTS-based operational semantics of MAL is given by the SOS rules of Figure 9.
The semantics is the similar to the one reported in [53, 54]. Here, however, the technical
overhead of decorations on transitions as used in the above mentioned papers is avoided
at the expense of implicit multiplicities, in line with the treatment of PEPA and IML in
Sections 5 and 7, respectively. Note, as MAL extends IML, there are separate rules for
interactive transitions (ACT, CHO1–2, PAR1–3 and REC1) captured by the transition
relation −→, and for Markovian transitions (DELAY, CHO3–4, PAR4–5, REC2) captured
by the transition relation 99K.

Definition 10.6. The semantics of the process language MAL is the tuple (Pmal , A, −→, 99K)
where the probabilistic transition relation −→ ⊆ Pmal ×A×Distr(Pmal) and the standard
transition relation 99K ⊆ Pmal × R>0 × Pmal are given by the SOS rules of Figure 9.

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 35

Similar to our treatment of Piml in Section 7, we introduce the functions I and M based
on the transition relations −→ and 99K of Definition 10.6 for Pmal . Now, for the interactive
part of MAL, we have I : Pmal ×A× 2Distr(Pmal) → B given by I(P, a,C) = true if the set

{µ ∈ C | P a−−→ µ } is non-empty, for all P ∈ Pmal , a ∈ A and any subset C ⊆ Distr(Pmal).
The Markovian part of MAL is similar to that of IML. We define for MAL the function

M : Pmal × Pmal → R≥0 by M(P, P ′) =
∑
{| λ | P λ

99K P ′ |}. Because of the implicit
multiplicities of the SOS of Definition 10.6, the comprehension is over the multiset of
transitions leading from P to P ′ with label λ. We also extend M, now to Pmal × 2Pmal , by

M(P,C) =
∑

P ′ ∈C
∑
{| λ | P λ

99K P ′ |}, for P ∈ Pmal and C ⊆ Pmal . With the adapted
functions I and M in place, the notion of strong bisimulation for MAL is defined as follows.

Definition 10.7. An equivalence relation R ⊆ Pmal × Pmal is called a strong bisimulation
for MAL if, for all P1, P2 ∈ Pmal such that R(P1, P2), it holds that

• for all a ∈ A and µ ∈ Distr(Pmal) : I(P1, a, [µ]R) ⇐⇒ I(P2, a, [µ]R)

• for all Q ∈ Pmal : M(P1, [Q]R) = M(P2, [Q]R)

with the relation R on Distr(Pmal) induced by the relation R on Pmal . Two processes P1, P2 ∈
Pmal are called strongly bisimilar if it holds that R(P1, P2) for a strong bisimulation R
for MAL, notation P1 ∼ma P2.

Recall, again, that the relation R ⊆ Pmal × Pmal induces relation R ⊆ Distr(Pmal) ×
Distr(Pmal) by R(µ1, µ2) if and only if

∑
Q′∈[Q]R

µ1(Q′) =
∑

Q′∈[Q]R
µ2(Q′) for all Q ∈ Pmal .

In line with what we have seen in the previous sections, the crux for relating the notion of
Smal -bisimulation and the notion of strong bisimulation of Definition 10.7 is the following
result.

Lemma 10.8.

(a) Let P ∈ Pmal and a ∈ A. If P
a
→1 P then P

a−−→ µ ⇐⇒ P(µ) = true.

(b) Let P ∈ Pmal . If P
δ
→2 P then

∑
{| λ | P λ

99K P ′ |} = P(P ′).

Proof.

(a) Guarded induction. Let a ∈ A. We treat the cases a.{ p1 ·P1 2 · · ·2 ph ·Ph } and P1 ‖AP2

for a ∈ A.

Case a.{ p1 ·P1 2 · · ·2 ph ·Ph }. a.{ p1 ·P1 2 · · ·2 ph ·Ph }
a
→1 [µ{ p1 ·P1 2···2 ph ·Ph } 7→ true],

while a.{ p1 ·P1 2 · · ·2 ph ·Ph }
a−−→ µ{ p1 ·P1 2···2 ph ·Ph } is the only transition for process

a.{ p1 ·P1 2 · · ·2 ph ·Ph }.
Case P1 ‖A P2, a ∈ A. Assume P1 ‖A P2

a
→1 P. Then P = P1 ‖A P2 for P1,P2 :

FS(Pmal ,R≥0)→ B such that P1

a
→1 P1, P2

a
→1 P2. Suppose P1 ‖A P2

a−−→ µ. Then there

exist µ1, µ2 ∈ Distr(Pmal) such that P1
a−−→ µ1, P2

a−−→ µ2 and µ = µ1 ‖A µ2, since only
rule (PAR3) of Figure 9 applies. By induction hypothesis, P1(µ1) = true and P2(µ2) = true.
Hence P(µ) = (P1 ‖AP2)(µ1 ‖A µ2) = true by definition of ‖A on FS(FS(Pmal ,R≥0),B).
Reversely, suppose P(µ) = true. Then µ = µ1 ‖A µ2 for µ1, µ2 ∈ Distr(Pmal) such that

P1(µ1) = true and P2(µ2) = true. By induction hypothesis, P1
a−−→ µ1 and P2

a−−→ µ2.

Hence P1 ‖A P2
a−−→ µ1 ‖A µ2 by rule (PAR3), i.e. P1 ‖A P2

a−−→ µ.
The other cases are left to the reader.

(b) Guarded induction. Compared to the proof of Lemma 7.6 there is only one new case,
viz. for processes of the form a.{ p1 ·P1 2 · · ·2 ph ·Ph }. This case is straightforward, since,

36 D. LATELLA, M. MASSINK, AND E. P. DE VINK

on the one hand, a.{ p1 ·P1 2 · · ·2 ph ·Ph }
δ
→2 []R≥0

by definition of
δ
→2 and, on the other

hand, we have that a.{ p1 ·P1 2 · · ·2 ph ·Ph }
λ

99K P ′ for no P ′ ∈ Pmal by definition of 99K.
The remaining cases are similar to the proof for the corresponding lemma for IML and

left to the reader.

We are now in a position to relate the notions of FuTS bisimilarity 'mal and standard strong
bisimilarity ∼ma for MAL.

Theorem 10.9. For any two processes P1, P2 ∈ Pmal it holds that P1 'mal P2 iff P1 ∼ma P2.

Proof. Let R be an equivalence relation on Pmal . Pick P ∈ Pmal , a ∈ A and choose

any P ∈ FS(FS(Pmal ,R≥0),B). Suppose P
a
→1 P. Thus θ1(P)(a) = P. Then we have,

for any µ ∈ Distr(Pmal),

I(P, a, [µ]R) ⇔ ∃µ′ ∈ [µ]R : P
a−−→ µ′ by definition of I

⇔ ∃µ′ ∈ [µ]R : P(µ′) = true by Lemma 10.8a

⇔
∑

µ′ ∈ [µ]R
θ1(P)(a)(µ′) by definition of θ1

Note, summation in B is disjunction. Likewise, on the Markovian side, we have, for any
Q ∈ Pmal ,

M(P, [Q]R) =
∑

Q′ ∈ [Q]R

∑
{| λ | P λ

99K Q′ |} by definition of M

=
∑

Q′ ∈ [Q]R
P(Q′) by Lemma 10.8b

=
∑

Q′ ∈ [Q]R
θ2(P)(δ)(Q) by definition of θ2

Comparing the equations following Definition 10.5 and the equations of Definition 10.7, we
conclude that a strong bisimulation for MAL is also an Smal -bisimulation for the FuTS Smal ,
and vice versa. From this the theorem follows.

As a corollary of the theorem we obtain that also for MAL the concrete notion of strong bisim-
ilarity ∼ma is coalgebraically underpinned, as it coincides, with the behavioral equivalence
'mal that comes with the corresponding FuTS Smal .

11. Concluding remarks

Total and deterministic state-to-function labeled transition systems, FuTSs, are a convenient
instrument to express the operational semantics of both qualitative and quantitative process
languages. In this paper we have discussed the notion of bisimilarity that arises from a FuTS,
possibly involving multiple transition relations, from a coalgebraic perspective. For FuTS
models of prominent process languages based on prominent stochastic process algebras we
related the induced notion of bisimulation to the standard equivalences, thus providing these
equivalence with a coalgebraic underpinning. The main technical contributions of our paper
include correspondence results, viz. Theorem 4.3, Theorem 6.4 and Theorem 9.4, that relate
in the simple, combined and the new nested case, bisimilarity of a FuTS S to behavioural
equivalence of the functor associated with S. The result extends to general FuTS as well.

It is noted in [10], in the context of weighted automata, that in general the type of
functors FS(·,R) may not preserve weak pullbacks and, therefore, the notions of coalgebraic
bisimilarity and of behavioural equivalence may not coincide. A counter example is provided,
cf. [10, Section 2.2]. Essential for the construction of the counter-example, in their setting,

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 37

is the fact that the sum of non-zero weights may add to weight 0. The same phenomenon
prevents a general proof, along the lines of [56], for coalgebraic bisimilarity and FuTS
bisimilarity to coincide. In the construction of a mediating morphism, going from FuTS
bisimulation to coalgebraic bisimulation a denominator may be zero, hence a division
undefined, in case the sum over an equivalence class cancels out. In the concrete case for [35],
although no detailed proof is provided there, this will not happen with R≥0 as underlying
semiring. In [25, Theorem 5.13] for FS(·,M), withM a monoid, a characterization is given
for weak preservation of pullbacks: M should be positive and refinable, i.e. (i) m1 +m2 = 0
iff m1,m2 = 0, and (ii) if m1 +m2 = n1 + n2 there exist pij such that pi1 + pi2 = mi and
p1j + p2j = nj for 1 ≤ i, j ≤ 2. The latter condition is also referred to as the row-column
property for 2 × 2 matrices over M, a property going back to [43]. In [39] we propose
to consider semirings which admit a (right) multiplicative inverse for non-zero elements,
and satisfy the so-called zero-sum property, stating that for a sum x = x1 + · · · + xn it
holds that x = 0 iff xi = 0 for all i = 1 . . . n. The proof follows the set-up of [56], hence is
different from [26]; we see that zero-sum coincides with positivity, while the existence of
multiplicative inverses guarantees refinability. Thus, for semirings involved enjoying these
properties, pullbacks are weakly preserved by FS(·,R). Therefore, coalgebraic bisimilarity
and behavioural equivalence are the same. As a consequence, under conditions which are
met by the SPCs discussed in the preceding, we have that concrete bisimulation, FuTS-
bisimilarity, behavioural equivalence and coalgebraic bisimilarity coincide.

For typical stochastic process languages based on PEPA and IMC we have shown that the
notion of strong equivalence and strong bisimilarity associated with these calculi, coincides
with the notion of bisimilarity of the corresponding FuTS. Using these FuTS as a stepping
stone, the correspondence results bridge between the concrete notion of bisimulation for
PEPA and IML, and the associated coalgebraic notions of behavioural equivalence. Hence,
from this perspective, the concrete notions are seen as the natural strong equivalence to
consider. Obviously, classical strong bisimilarity [42, 44] and bisimilarity for FuTS over B
coincide (see [35] or [39] for details). Also, strong bisimulation of [31], an alternative to
Hillston’s notion of strong equivalence covered here, involving apart from the usual transfer
conditions the comparison of state information, viz. the apparent rates, can be treated
with FuTS. Again the two notions of equivalence coincide. Finally, we gave an account of
how languages based on discrete deterministic time, TPC, as well as those where stochastic
time is integrated with discrete probability and with non-determinism, MAL, can be treated
in the FuTS framework. A similar mediating role for FuTS applies to these calculi too: the
concrete notion of bisimulation coincides with FuTS bisimulation, hence coincides with the
corresponding behavioral equivalence.

As mentioned in Section 1, related work in the area of systematic approaches to
frameworks for the semantics of SPC—and quantitative extensions of process calculi in
general—includes the study of abstract quantitative GSOS, with its application to Weighted
Transition Systems (WTS) [35, 34, 41]. Stochastic GSOS (SGSOS) and Weighted GSOS
appear to be a special case of Miculan and Peressotti’s weight function GSOS. In [35, 41]
a treatment is given for PEPA, in line with Section 5 of the present paper. The formats
mentioned above arise from the abstract theory of SOS. A noteworthy result, shown in [35],
is that stochastic bisimilarity of SPC defined using the SGSOS format is guaranteed to be
a congruence. The result is generalized to WTS in [34]. We did not address the issue of
congruences for FuTS in the present paper. Nevertheless, we note that Rated Transition
Systems—the semantic model used in [35]—are very similar to RTS of Latella, Massink et

38 D. LATELLA, M. MASSINK, AND E. P. DE VINK

al. [15, 17, 16], which are the instantiation of simple FuTS on non-negative real numbers,
and that WTS are very similar to simple FuTS. Thus, it is to be expected that simple FuTS
can be represented as WTS using the SGSOS, which would extend the congruence result
to FuTS. The issue of the relationship with WTS remains, though, for the richer class of
combined, nested, and general FuTS, which we leave for further study.

Acknowledgments The authors are grateful to Rocco De Nicola, Fabio Gadducci, Daniel
Gebler, Michele Loreti, Jan Rutten, and Ana Sokolova for fruitful discussions on the subject
and useful suggestions. The constructive comments by the reviewers have been of help
and are much appreciated. DL and MM acknowledge support by EU Project n. 600708 A
Quantitative Approach to Management and Design of Collective and Adaptive Behaviours
(QUANTICOL). This research has been partially conducted while EV was spending a
sabbatical leave at the CNR/ISTI. EV gratefully acknowledges the hospitality and support
during his stay in Pisa.

References

[1] J. Adámek, S. Milius, and L.S. Moss. Initial algebras and terminal coalgebras: a survey. Preliminary
version, 2010.

[2] J. Adámek and H.-E. Porst. On tree coalgebras and coalgebra presentations. Theoretical Computer
Science, 311:257–283, 2004.

[3] A. Aldini, M. Bernardo, and F. Corradini. A Process Algebraic Approach to Software Architecture design.
Springer, 2010.

[4] J.C.M. Baeten and C.A. Middelburg. Process Algebra with Timing. Springer, 2002.
[5] C. Baier, B.R. Haverkort, H. Hermanns, J.-P. Katoen, and M. Siegle, editors. Validation of Stochastic

Systems – A Guide to Current Research. LNCS 2925, 2004.
[6] M. Bernardo. A survey of Markovian behavioral equivalences. In M. Bernardo and J. Hillston, editors,

SFM 2007 Advanced Lectures, pages 180–219. LNCS 4486, 2007.
[7] M. Bernardo, R. De Nicola, and M. Loreti. A uniform framework for modeling nondeterministic, proba-

bilistic, stochastic, or mixed processes and their behavioral equivalences. Information and Computation,
225(0):29 – 82, 2013.

[8] M. Bernardo and R. Gorrieri. A tutorial on EMPA: a theory of concurrent processes with non-determinism,
priorities, probabilities and time. Theoretical Computer Science, 202(1–2):1–54, 1998.

[9] H.C. Bohnenkamp, P.R. D’Argenio, H. Hermanns, and J.-P. Katoen. MODEST: A compositional
modeling formalism for hard and softly timed systems. IEEE Transactions on Software Engineering,
32(10):812–830, 2006.

[10] F. Bonchi, M. Bonsangue, M. Boreale, J. Rutten, and A. Silva. A coalgebraic perspective on linear
weighted automata. Information and Computation, 211:77–105, 2012.

[11] M. Boreale. Weighted bisimulation in linear algebraic form. In M. Bravetti and G. Zavattaro, editors,
Proc. CONCUR 2009, pages 163–177. LNCS 5710, 2009.

[12] M. Boreale and F. Gadducci. Processes as formal power series: A coinductive approach to denotational
semantics. Theoretical Computer Science, 360(1–3):440–458, 2006.

[13] M. Bozga, A. David, A. Hartmanns, H. Hermanns, K.G. Larsen, A. Legay, and J. Tretmans. State-of-the-
art tools and techniques for quantitative modeling and analysis of embedded systems. In W. Rosenstiel
and L. Thiele, editors, Proc. DATE 2012, pages 370–375. IEEE, 2012.

[14] J.W. de Bakker and E.P. de Vink. Control Flow Semantics. The MIT Press, 1996.
[15] R. De Nicola, D. Latella, M. Loreti, and M. Massink. Marcaspis: a markovian extension of a calculus

for services. Electr. Notes Theor. Comput. Sci., 229(4):11–26, 2009. Proceedings of SOS 2008, the 5th
Workshop on Structural Operational Semantics, affiliated of ICALP 2008.

[16] R. De Nicola, D. Latella, M. Loreti, and M. Massink. On a uniform framework for the definition of
stochastic process languages. In M. Alpuente, B. Cook, and C. Joubert, editors, Formal Methods for
Industrial Critical Systems, 14th International Workshop, FMICS 2009, Eindhoven, The Netherlands,

BISIMULATION OF LABELLED FUTS COALGEBRAICALLY 39

November 2-3, 2009. Proceedings, volume 5825 of Lecture Notes in Computer Science, pages 9–25.
Springer, 2009.

[17] R. De Nicola, D. Latella, M. Loreti, and M. Massink. Rate-based transition systems for stochastic
process calculi. In S. Albers et al., editor, Proc. ICALP 2009, Part II, pages 435–446. LNCS 5556, 2009.

[18] R. De Nicola, D. Latella, M. Loreti, and M. Massink. A Uniform Definition of Stochastic Process Calculi.
ACM Computing Surveys, 46(1):5:1–5:35, 2013. DOI 10.1145/2522968.2522973.

[19] R. De Nicola, D. Latella, and M. Massink. Formal modeling and quantitative analysis of Klaim-based
mobile systems. In H. Haddad et al., editor, Proc. SAC 2005, pages 428–435. ACM, 2005.

[20] Yuxin Deng and M. Hennessy. On the semantics of Markov automata. Information and Computation,
222:139–168, 2013.

[21] M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata. Monographs in Theoretical
Computer Science. Springer, 2009.

[22] C. Eisentraut, H. Hermanns, and L. Zhang. Concurrency and composition in a stochastic world. In
P. Gastin and F. Laroussinie, editors, Proc. CONCUR 2010, pages 21–39. LNCS 6269, 2010.

[23] C. Eisentraut, H. Hermanns, and Lijun Zhang. On probabilistic automata in continuous time. In Proc.
LICS, Edinburgh, pages 342–351. IEEE Computer Society, 2010.

[24] R.J. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, generative and stratified models of probabilistic
processes. Information and Computation, 121(1):59–80, 1995.

[25] H.P. Gumm and T. Schröder. Monoid-labeled transition systems. Electronic Notes in Theoretical
Computer Science, 44(1):185–204, 2001.

[26] H.P. Gumm and T. Schröder. Products of coalgebras. Algebra Universalis, 46:163–185, 2001.
[27] H. Hermanns. Interactive Markov Chains. LNCS 2428, 2002.
[28] H. Hermanns, U. Herzog, and J.-P. Katoen. Process algebra for performance evaluation. Theoretical

Computer Science, 274(1–2):43–87, 2002.
[29] H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic process algebras – between LOTOS and

Markov chains. Computer Networks and ISDN Systems, 30:901–924, 1998.
[30] H. Hermanns and J.-P. Katoen. The how and why of Interactive Markov Chains. In F.S. de Boer, M.M.

Bonsangue, S. Hallerstede, and M. Leuschel, editors, Proc. FMCO 2009, pages 311–337. LNCS 6286,
2010.

[31] J. Hillston. A Compositional Approach to Performance Modelling, volume 12 of Distinguished Disserta-
tions in Computer Science. Cambridge University Press, 1996.

[32] J. Hillston. Process algebras for quantitative analysis. In Proc. LICS, Chicago, pages 239–248. IEEE,
2005.

[33] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[34] B. Klin. Structural operational semantics for weighted transition systems. In J. Palsberg, editor, Semantics

and Algebraic Specification, pages 121–139. LNCS 5700, 2009.
[35] B. Klin and V. Sassone. Structural operational semantics for stochastic process calculi. In R.M. Amadio,

editor, Proc. FoSSaCS 2008, pages 428–442. LNCS 4962, 2008.
[36] J.N. Kok and J.J.M.M. Rutten. Contractions in comparing concurrency semantics. Theoretical Computer

Science, 76:179–222, 1990.
[37] A. Kurz. Logics for coalgebras and applications to computer science. PhD thesis, LMU München, 2000.
[38] D. Latella, M. Massink, and E.P. de Vink. Bisimulation of labeled state-to-function transition systems

of stochastic process languages. In T. Soboll and U. Golas, editors, Proc. ACCAT 2012, Tallin, pages
23–43. EPTCS 93, 2012.

[39] D. Latella, M. Massink, and E.P. de Vink. Coalgebraic Bisimulation of FuTS. Technical Report 09,
ASCENS–Autonomic Service-Component Ensembles (EU Project 257414), 2013.

[40] D. Latella, M. Massink, and E.P. de Vink. A definition scheme for quantitative bisimulation. In
N. Bertrand and M. Tribastone, editors, Proc. QAPL 2015, pages 63–78. EPTCS 194, 2015.

[41] M. Miculan and M. Peressotti. GSOS for non-deterministic processes with quantitative aspects. In
N. Bertrand and L. Bortolussi, editors, Proc. QAPL 2014, pages 17–33. EPTCS 154, 2014.

[42] R. Milner. A Calculus of Communicating Systems. LNCS 92, 1980.
[43] L. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96:277–317, 1999.
[44] D. Park. Concurrency and automata on infinite sequences. In Proc. GI-Conference 1981, Karlsruhe,

pages 167–183. LNCS 104, 1981.
[45] C. Priami. Stochastic π-calculus. The Computer Journal, 38(7):578–589, 1995.

40 D. LATELLA, M. MASSINK, AND E. P. DE VINK

[46] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science, 249:3–80,
2000.

[47] J.J.M.M. Rutten. Behavioural differential equations: a coinductive calculus of streams, automata, and
power series. Theoretical Computer Science, 308(1–3):1–53, 2003.

[48] A. Silva. Kleene Coalgebra. PhD thesis, Radboud University Nijmegen, 2010.
[49] A. Silva, F. Bonchi, M. Bonsangue, and J. Rutten. Quantitative Kleene coalgebras. Information and

Computation, 209(5):822–846, 2011.
[50] A. Sokolova. Probabilistic systems coalgebraically: a survey. Theoretical Computer Science, 412(38):5095–

5110, 2011.
[51] S. Staton. Relating coalgebraic notions of bisimulation. Logical Methods in Computer Science, 7:1–21,

2011.
[52] M. Timmer. Efficient Modelling, Generation and Analysis of Markov Automata. PhD thesis, University

of Twente, 2013.
[53] M. Timmer, J.-P. Katoen, J. van de Pol, and M. Stoelinga. Efficient modelling and generation of Markov

automata. In M. Koutny and I. Ulidowski, editors, Proc. CONCUR 2012, pages 364–379. LNCS 7454,
2012.

[54] M. Timmer, J.-P. Katoen, J. van de Pol, and M. Stoelinga. Efficient modelling and generation of Markov
automata (extended version). Technical Report TR-CTIT 12-16, CTIT, Universiteit Twente, 2012.

[55] D. Turi and G.D. Plotkin. Towards a mathematical operational semantics. In Proc. LICS 1997, Warsaw,
pages 280–291. IEEE, 1997.

[56] E.P. de Vink and J.J.M.M. Rutten. Bisimulation for probabilistic transition systems: a coalgebraic
approach. Theoretical Computer Science, 221:271–293, 1999.

[57] U. Wolter. CSP, partial automata, and coalgebras. Theoretical Computer Science, 280:3–34, 2002.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	3. Simple State-to-Function Labelled Transition Systems
	4. Simple FuTS coalgebraically
	5. FuTS Semantics of PEPA
	6. Combined FuTS
	7. FuTS Semantics of IML
	8. FuTS Semantics of TPC
	9. Nested FuTS
	10. FuTS Semantics of a language for Markov Automata
	11. Concluding remarks
	References

