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Recently, some general frameworks have been proposed as unifying theories for processes combining
non-determinism with quantitative aspects (such as probabilistic or stochastically timed executions),
aiming to provide general results and tools. This paper provides two contributions in this respect.
First, we present a general GSOS specification format (and a corresponding notion of bisimula-
tion) for non-deterministic processes with quantitative aspects. These specifications define labelled
transition systems according to the ULTraS model, an extension of the usual LTSs where the transi-
tion relation associates any source state and transition label with state reachability weight functions
(like, e.g., probability distributions). This format, hence called Weight Function SOS (WFSOS),
covers many known systems and their bisimulations (e.g. PEPA, TIPP, PCSP) and GSOS formats
(e.g. GSOS, Weighted GSOS, Segala-GSOS, among others).

The second contribution is a characterization of these systems as coalgebras of a class of func-
tors, parametric on the weight structure. This result allows us to prove soundness of the WFSOS
specification format, and that bisimilarities induced by these specifications are always congruences.

1 Introduction

Process calculi and labelled transition systems have proved very successful for modelling and analysing
concurrent, non-deterministic systems. This success has led to many extensions dealing with quantitative
aspects, by adding further informations to the transition relation (e.g. probability rates or stochastic rates);
see [3,4,11,12,16,24] among others. These calculi have proved very effective in modelling and reasoning
about systems, like performance analysis of computer networks, model checking of time-critical systems,
simulation of biological systems, probabilistic analysis of security and safety properties, etc.

Each of these calculi is tailored to a specific quantitative aspect and for each of them we have to
develop a quite complex theory almost from scratch. This is a daunting and error-prone task, as it
embraces the definition of syntax, semantics, labelled transition rules, various behavioural equivalences,
logics, proof systems; the proof of important properties like congruence of behavioural equivalences;
the development of algorithms and tools for simulations, model checking, etc. This situation would
naturally benefit from general frameworks for LTS with quantitative aspects, i.e., mathematical meta-
models offering general methodologies, results, and tools, which can be uniformly instantiated to a wide
range of specific calculi and models. In recent years, some of these theories have been proposed; we
mention Functional Transition Systems (FuTS) [18], weighted labelled transition systems (WLTSs) [16,
28], and in particular Uniform Labelled Transition Systems (ULTraS), introduced by Bernardo, De Nicola
and Loreti specifically as “a uniform setting for modelling non-deterministic, probabilistic, stochastic or
mixed processes and their behavioural equivalences” [3].

A common feature of most of these meta-models is that their labelled transition relations do not yield
states (i.e., a process), but some mathematical object representing quantitative informations about “how”
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each state can be reached. In particular, transitions in ULTraS systems have the form P a
ρ where ρ is

a state reachability weight function, i.e., a function assigning a weight to each possible state. By suitably
choosing the set of weights, and how these functions combine, we can recover ordinary non-deterministic
LTSs, probabilistic transition systems, stochastic transition systems, etc. As convincingly argued in [3],
the use of weight functions in place of plain processes simplifies the combination of non-determinism
with quantitative aspects, like in the case of EMPA or PEPA. Moreover, it paves the way for general
definitions and results, an important example being the notion of M -bisimulation [3].

Albeit quite effective, these meta-models are at their dawn, with many results and techniques still to
be developed. An important example of these missing notions is a specification format, like the well-
known GSOS format for non-deterministic labelled transition systems. These formats are very useful
in practice, because they can be used for ensuring important properties of the system; in particular, the
bisimulations induced by systems in these formats is guaranteed to be a congruence (which is crucial
for compositional reasoning). From a more foundational point of view, these frameworks would benefit
from a categorical characterization in the theory of coalgebras and bialgebras: this would allow a cross-
fertilizing exchange of definitions, notions and techniques with similar contexts and theories.

In this paper, we provide two main contributions in this respect. First, we present a GSOS-style
format, called Weight Function SOS (WFSOS), for the specifications of non-deterministic systems with
quantitative aspects. The judgement derived by rules in this style is of the form P a

ψ , where P
is a process and ψ is a weight function term. These terms describe weight functions, by means of an
interpretation. A specification given in this format defines a ULTraS (although we could work also in
other frameworks, such as FuTS). By choosing the set of weights, the language of weight function terms
and their interpretation, we can readily capture many quantitative notions (probabilistic, stochastic, etc.),
and different kinds of non-deterministic interactions, covering models like PEPA, TIPP, PCSP, EMPA,
among others. Moreover, the WFSOS format supports a general definition of (strong) bisimulation,
which can be readily instantiated to the various specific systems.

The second contribution aims to be more fundamental. We provide a general categorical presenta-
tion of these non-deterministic systems with quantitative aspects. Namely, we prove that ULTraS systems
are in one-to-one correspondence with coalgebras of a precise class of functors, parametric on the un-
derlying weight structure. Using this characterization we show that each WFSOS specification yields
a λ -distributive law (i.e. a natural transformation of a specific shape) for these functors. Thus, taking
advantage of Turi-Plotkin’s bialgebraic framework, we can prove that the bisimulation induced by a
WFSOS is always a congruence, thus allowing for compositional reasoning in quantitative settings.

The developments closest to ours are Klin’s Weighted GSOS, a rule format for WLTS [16], and
Bartel’s Segala GSOS, a rule format for Segala systems [2, §5.3]. Both Segala systems and WLTS are
subsumed by ULTraS (in fact, WLTSs correspond to “deterministic” ULTraSs, where a process is associ-
ated to exactly one weight function for each label), and as we will show, WFSOS subsumes WGSOS and
Segala GSOS. On a different direction, in [9] De Nicola et al. provide a “meta-calculus” for describing
various stochastic systems and their semantics as FuTS, showing that in several cases behavioural equiv-
alences are congruences. This interesting approach is complementary to ours, since it provides some
“syntactic-semantic basic blocks” to be assembled, instead of a general rule format.

The rest of the paper is structured as follows. In Section 2 we recall Uniform Labelled Transition
Systems, and their bisimulation. In Section 3 we introduce the Weight Function SOS specification format
for the syntactic presentation of ULTraSs. In Section 4 we apply this format to PEPA, and show that it
subsumes other GSOS formats like WGSOS and Segala GSOS. The categorical presentation of ULTraS
and WFSOS, with the result that bisimilarity is a congruence, is given in Section 5. Final remarks and
directions for future work are in Section 6.
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2 Uniform Labelled Transition Systems

In this Section we recall and elaborate the definition of ULTraSs and describe their (coalgebraically
derived) bisimulation, offering a comparison with Bernardo’s (more general) notion of M -bisimulation
presented in [3]. Although we focus on the specific framework of ULTraS, results and methodologies
described in this paper can be ported to other formats with similar features (like FuTS [18]), and more
generally to a wide range of systems combining different computational aspects in different ways.

Uniform Labelled Transition Systems ULTraS are (non-deterministic) labelled transition systems
whose transitions lead to state reachability weight functions, i.e. functions representing quantitative in-
formations about “how” each state can be reached. Examples of weight functions include probability
distributions, resource consumption levels, or stochastic rates. Under this light, ULTraS can be thought
as “generalized” Segala systems [27] (which stratify non-determinism over probabilism). Following the
parallel with Segala systems, ULTraS transitions can be pictured as being composed by two steps:

x a
ρ

w y

where the first is a labelled non-deterministic (sub)transition and the second is a weighted one; from this
perspective the weight function plays the rôle of the “hidden intermediate state”.

Akin to Weighted Labelled Transition Systems (WLTS) [10, 16, 28], weights are drawn from a fixed
set endowed with a commutative monoid structure, where the unit is meant to be assigned to disabled
transitions (i.e. those yielding unreachable states) and the monoidal addition is used to compositionally
weight sets of transitions given by non-determinism.

Definition 1 (ULTraS). Given a commutative monoid W= (W,+,0), a (W-weighted) Uniform Labelled
Transition System (W-ULTraS) is a triple (X ,A, ) where:

• X is a set of states (processes);

• A is a set of labels (actions);

• ⊆ X×A× [X →W ] is a transition relation and [X →W ] is the set of weight functions.

Monoidal addition does not play any rôle in the above definition1 but it is crucial to the notion
of bisimulation by uniformly providing a compositional way to weight sets of outgoing transitions
(e.g. stochastic or probabilistic bisimulations). Because total weights are defined by summation, some
guarantees on the cardinality of these sets are needed:

Definition 2 (Image boundedness). Let κ and κ ′ be ordinals and let W = (W,+,0) be a commutative
monoid. A weight function ρ is κ-supported iff |{x ∈ dom(ρ) | ρ(x) 6= 0}|< κ . A W-ULTraS (X ,A, )

is image (κ,κ ′)-bounded iff for any state x ∈ X and label a ∈ A the set {ρ | x a
ρ} has cardinality

less than κ and contains only κ ′-supported functions. (We shall drop κ ′ when it is equal to κ .)

The notion of image boundedness just introduced guarantees that the branching transitions do not
exceed the expressive power of summation of the underlying monoid in the sense that, if sum is defined
for any family of cardinality lesser than κ , then for any state in a κ-bounded system the total weights for
sets of outgoing transitions are always defined. Henceforth, for the sake of simplicity, we will restrict
ourselves to image finite systems (i.e. ω-bounded), but the development can be generalized throughout.

1In [3] weights are assumed to be a pointed set. Actually, a partial order is assumed, but the ordering is not crucial to the
basic notion of ULTraS as it is only required by some equivalences considered in that paper.
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Notation. Let W= (W,+,0) be a commutative monoid. For each function ρ : X→W the set {x | ρ(x) 6=
0} is called support of ρ (written dρe). For any set X let Pf X denote the finite powerset of X and let
FWX be the set {ρ : X →W | dρe ∈Pf X} of finitely supported weight functions. For each ρ ∈FWX
let ρ(Y ) = ∑x∈Y ρ(x), for any Y ⊆ X and define the total weight of ρ as VρW , ρ(X) = ρ(dρe).

We give now the definition of bisimulation for ULTraS, which arises directly from the coalgebraic
understanding of ULTraS which we will introduce in Section 5.

Definition 3 (Bisimulation). Let (X ,A, X) and (Y,A, Y ) be two image finite W-ULTraS. An equiva-
lence relation R between X and Y is a bisimulation if, and only if, for each pair of states x ∈ X and y∈Y ,
(x,y) ∈ R implies that for each label a ∈ A the following holds:

• if x a
X ϕ then there exists y a

Y ψ s.t. for each equivalence class C of R: ϕ(C) = ψ(C);

• if y a
Y ψ then there exists x a

X ϕ s.t. for each equivalence class C of R: ψ(C) = ϕ(C).

Processes x and y are said to be bisimilar if there exists a bisimulation R such that (x,y) ∈ R.

Likewise ULTraSs can be though as stacking non-determinism over other computational behaviour,
Definition 3 stratifies bisimulation for non-deterministic labelled transition system over bisimulation for
systems expressible as labelled transition systems weighted over commutative monoids such as stochastic
or probabilistic systems. In fact, two processes x and y are related by some bisimulation if, and only if,
whether one reaches a weight function via a non-deterministic labelled transition, the other can reach an
equivalent function via a transition with the same label where the reached functions are equivalent in the
sense that they assign the same total weight to the same classes of states in the relation. For instance,
in the case of weights being probabilities, functions are considered equivalent only when they agree
on the probabilities assigned to each class of states which is precisely the intuition behind probabilistic
bisimulation [17]. More examples will be discussed below.

Constrained ULTraS Sometimes, the ULTraSs given by some monoid are too general; for instance,
fully-stochastic systems such as (labelled) CTMCs are a strict subclass of ULTraSs weighted over the
monoid of non-negative real numbers (R+

0 ,+,0), where weights express rates of exponentially dis-
tributed continuous time transitions. In the case of fully-stochastic systems, for each label, each state is
associated with precisely one weight function. This kind of “deterministic” ULTraSs are called functional
in [3], since the transition relation is functional, and correspond precisely to WLTSs (cf. [10, 16, 28]).
These are a well-known family of systems (especially their automata counterpart) and have an estab-
lished coalgebraic understanding as long as a (coalgebraically derived) notion of weighted bisimulation
which are shown to subsume several known kinds of systems such as non-deterministic, (fully) stochas-
tic, generative and reactive probabilistic [16]. Moreover, Definition 3 coincides with weighted bisimu-
lation [16, Def. 4] on functional ULTraSs/WLTSs over the same monoid and hence Definition 3 covers
every system expressible in the framework of WLTS.

Proposition 1. Let W be a commutative monoid and (X ,A, ) be a W-LTS seen as a functional ULTraS
on W. Every bisimulation relation on is a W-weighted bisimulation and vice versa.

Another constraint arises in the case of probabilistic systems, i.e., weight functions are probability
distribution. Since addition is not a closed operation in the unit interval [0,1], there is no monoid W such
that every weight function on it is also a probability distributions. We could relax Definition 1 to allow
commutative partial monoids2 such as the weight structure of probabilities ([0,1],+,0)). Unfortunately,

2 A commutative partial monoid is a set endowed with a partial binary operation with a unit such that it is associative and
commutative, where it is defined, and always defined on its unit.
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not every weight function on [0,1] is a probability distribution. In fact, probabilistic systems (among oth-
ers) can be recovered as ULTraSs over the (R+

0 ,+,0) (i.e. the free completion of ([0,1],+,0)) and subject
to suitable constraints. For instance, Segala systems [27] are precisely the strict subclass of R+

0 -ULTraS
such that every weight function ρ in their transition relation is a probability distribution i.e. VρW = 1.
Moreover, bisimulation is preserved by constraints. For instance, bisimulations on the above class of
(constrained) ULTraS are Segala’s (strong) bisimulations (cf. [27, Def. 13]), and vice versa.

Proposition 2. Let (X ,A, ) be an image finite Segala-system seen as a ULTraS on (R+
0 ,+,0). Every

bisimulation relation on is a strong bisimulation in the sense of [27, Def. 13] and vice versa.

A similar result holds for reactive and generative (or fully) probabilistic systems and their bisimu-
lations. In fact, these are functional ULTraS with weight functions in FR0

+
and subject to constraints

∀x ∑a∈A,y∈X P(x,a,y) ∈ {0,1} and ∀x ∈ X ,a ∈ A ∑y∈X ρ(x,a,y) ∈ {0,1} respectively.

About M -bisimulation Bernardo et al. defined a notion of bisimulation for ULTraS [3, Def. 3.3],
parametrized by a function M which is used to weight sets of transitions. Notably, M ’s codomain may
be not the same of that used for weight functions in the transition relation. This offers an extra degree of
freedom with respect to Definition 3. We recall the relevant definitions.3

Definition 4 (M-function). Let (M,⊥) be a pointed set and (X ,A, ) be a W-ULTraS. A function
M : X×A×PX →M is an M-function for (X ,A, ) iff

• for all x ∈ X, a ∈ A and C ∈PX, M (x,a,C) =⊥ whenever ρ(C) = 0 for every x a
ρ or there

is no ρ at all;

• for all x,y∈ X, a∈ A and C1,C2 ∈PX, M (x,a,C1) =M (y,a,C1) and M (x,a,C2) =M (y,a,C2)
implies that M (x,a,C1∪C2) = M (y,a,C1∪C2).

Definition 5 (M -bisimulation [3]). Let M be an M-function for (X ,A, ). A relation R ⊆ X ×X is a
M -bisimulation for iff for each pair (x,y)∈ R, label a∈ A, and class C ∈ (X/R) the following holds:

M (x,a,C) = M (y,a,C).

The notion of M -bisimulation is somehow more general than Definition 3 since (sets of) transitions
are not necessarily weighted in the same structures. For instance, stochastic rates can be considered up-to
a suitable tolerance in order to account for experimental measurement errors in the model.

A further distinction arises from the fact that ULTraSs came with two distinct way of “terminating”.
A state can be seen as “terminated” either when its outgoing transitions are always the constantly zero
function, or when it has no transitions at all. In the first case, the state has still associated an outcome,
saying that no further state is reachable; we call these states terminal. In the second case, the LTS does
not even tell us that the state cannot reach any further state; in fact, there is no “meaning” associated
to the state. In this case, we say that the state is stuck.4 The bisimulation given in Definition 3 keeps
these two terminations as different (i.e., they are not bisimilar), whereas M -bisimulation does not make
this distinction (cf. [3, Def. 3.2] or, for a concrete example based on Segala systems, [3, Def. 7.2]).
Finally, the two notions differ on the quantification over equivalence classes: in the case of Definition 3
quantification depends on the non-deterministic step whereas in the case of M -bisimulation it does not.

3In the original presentation, M is required to consistently weight also sequences of transitions, in order to cover also trace
equivalence; because this Section focuses on bisimulations only, this information will be omitted.

4To make a comparison with sequential programs, a terminal state is when the execution reaches the end of the program; a
stuck state is when we are at executing an instruction whose meaning is not defined.
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Under some mild assumptions, the two notions agree. In particular, let us restrict to systems with
just one of the two terminations for each action a—i.e. for pair of states x,y, {ρ | x a

ρ}= /0 implies
λ z.0 /∈ {ρ | y a

ρ}, and, symmetrically, λ z.0 ∈ {ρ | x a
ρ} implies {ρ | y a

ρ} 6= /0. Then, for
suitable choices of M , M -bisimulation agrees with the notion given in Definition 3 (on one system).

Proposition 3. Let (X ,A, ) be a W-ULTraS such that for any label, each pair of states has at most
one kind of termination. Every bisimulation R is also an M -bisimulation for M (x,a,C) = {[ρ]≡R |
x a

ρ∧ρ(C) 6= 0}∪∅ where (M,⊥) = (Pf (FWX/≡R),∅), ϕ ≡R ψ
4⇐⇒ ∀C ∈ X/R.ϕ(C) = ψ(C),

and ∅= {[λ z.0]≡R}.

3 WFSOS: A GSOS format for ULTraSs

In this section we introduce the Weight Function SOS specification format for the syntactic presentation
of ULTraSs. As it will be proven in Section 5.3, bisimilarity for systems given in this format is guaranteed
to be a congruence with respect to the signature used for representing processes.

The format is parametric in the weight monoid W and, as usual, in the process signature Σ defining
the syntax of system processes. In contrast with “classic” GSOS formats [15], targets of rules are not
processes but terms whose syntax is given by a different signature, called the weight signature. This
syntax can be thought as an “intermediate language” for representing weight functions along the line
of viewing ULTraSs as stratified (or staged) systems. An early example of this approach can be found
in [1], where targets are terms representing measures over the continuous state space. Earlier steps in
this direction can be found e.g. in Bartels’ GSOS format for Segala systems (cf. Section 4 and [2, §5.3])
or in [3, 8] where targets are presented by meta-expressions.

Definition 6 (WFSOS Rule). Let W be a commutative monoid and A a set of labels. Let Σ and Θ be the
process signature and the weight signature respectively. A WFSOS rule over them is a rule of the form:{

xi
a

ϕa
i j

}
1≤i≤n, a∈Ai,
1≤ j≤ma

i

{
xi 6b

}
1≤i≤n,
b∈Bi

{⌈⌈
ϕ

ak
ik jk

⌉⌉
= wk

}
1≤k≤p

{⌈
ϕ

ak
ik jk

⌉
3 yk

}
1≤k≤q

f(x1, . . . ,xn)
c

ψ

where:

• f is an n-ary symbol from Σ;
• X = {xi | 1≤ i≤ n}, Y = {yk | 1≤ k ≤ q} are sets of pairwise distinct process variables;
• Φ = {ϕa

i j | 1≤ i≤ n, a ∈ Ai, 1≤ j ≤ ma
i } is a set of pairwise distinct weight function variables;

• {wk ∈W | 1≤ k ≤ p} are weight constants s.t. wk 6= 0 for 1≤ k ≤ q;
• a,b,c ∈ A are labels and Ai∩Bi = /0 for 1≤ i≤ n;
• ψ is a weight term for the signature Θ such that var(ψ)⊆ X ∪Y ∪Φ;
• if q > 0 then W must have the zerosumfree property (i.e. w+w′ = 0 =⇒ w = w′ = 0).

A rule like above is triggered by a tuple 〈C1, . . . ,Cn〉 of enabled labels and by a tuple of weights 〈v1, . . . ,vp〉
if, and only if, Ai =Ci ⊆ A and wk = vk for 1≤ i≤ n and 1≤ k ≤ q.

Intuitively, the four families of premises can be grouped in two kinds: the first two families corre-
spond to the non-deterministic (and labelled) behaviour, whereas the other two correspond to the weight-
ing behaviour of quantitative aspects. The former are precisely the premises of GSOS rules for LTSs
(up-to targets being functions); and describe the possibility to perform some labelled transitions. The
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latter are inspired by Bartels’ Segala GSOS [2, §5.3] and Klin’s WGSOS [16] formats; a premise like
VϕW = w constrains the variable ϕ to those functions whose total weight is exactly the constant w; a
premise like dϕe 3 y binds the process variable y to those elements being assigned a non-zero weight5

(i.e. reachable); clearly, premises of the latter kind assume that the support of ϕ is not empty and hence
wk is forced to be non-zero for every 1≤ k ≤ q. Likewise Segala GSOS (but not WGSOS), there are no
variables denoting the weight of yk, but this information can be readily extracted from ϕ

ak
ik jk , e.g. by some

operator from Θ.
Targets of transitions defined by these rules are terms generated from the signature Θ. In order to

characterize transition relations for ULTraSs, we need to evaluate these terms to weight functions. This
is obtained by adding an interpretation for weight terms, besides a set of rules in the above format.

Before defining interpretations and specifications, we need to introduce some notations. For a sig-
nature S and a set X of variable symbols, let T SX denote the set of terms freely generated by S over
the variables X (in the following, S will be either Σ or Θ). A substitution for symbols in X is any func-
tion σ : X → Y ; its action extends to terms defining the function T S(σ) : T SX → T SY (i.e. simultaneous
substitution). When confusion seems unlikely we use the more evocative t[σ ] instead of T S(σ)(t).

A variable substitution σ : X→Y induces also a function FW(σ) : FWX→FWY , mapping (finitely
supported) weight functions over X to (finitely supported) weight functions over Y , as follows:

FW(σ)(ρ), λy : Y. ∑
x∈σ−1(y)

ρ(x) (1)

where σ−1 is the pre-image through the map σ . Consistently, we denote the action of σ on ρ by ρ[σ ].

Definition 7 (Interpretation). Let W be a commutative monoid, Σ and Θ be the process and the weight
signature respectively. A weight term interpretation for them is a family of functions

L-MX : T Θ(X +FW(X))→FWT Σ(X)

indexed over sets of variable symbols, and respecting substitutions, i.e.:

∀σ : X → Y,ψ ∈ T Θ(X) : LψMX [σ ] = Lψ[σ ]MY

We are ready to introduce the WFSOS specification format. Basically, this is a set of WFSOS rules,
subject to some finiteness conditions to ensure image finiteness, together with an interpretation.

Definition 8 (WFSOS specification). Let W be a commutative monoid, A a set of labels, Σ and Θ be the
process and the weight signature respectively. An image-finite WFSOS specification over W,Σ,Θ is a
pair 〈R,L-M〉 where L-M is a weight term interpretation and R is a set of rules compliant with Definition 6
and such that only finitely many rules share the same operator in the source (f), the same label in the
conclusion (c), and the same trigger 〈A1, . . . ,An,w1, . . . ,wp〉.

We can now describe how an ULTraS is obtained from a WFSOS specification.

Definition 9 (Induced ULTraS). The ULTraS induced by an image-finite WFSOS specification 〈R,L-M〉
over W,Σ,Θ is the W-ULTraS (T Σ /0,A, ) where is defined as the smallest subset of T Σ /0×A×
FWT Σ /0 being closed under the following condition.

Let p= f(p1, . . . , pn)∈ T Σ /0. Since the ground Σ-terms pi are structurally smaller than p assume that
the set {ρ | pi

a
ρ} – and hence the trigger ~A = 〈A1, . . . ,An〉, ~w = 〈w1, . . . ,wq〉 – is determined for

5 Actually, premises like dϕe 3 y can bind only elements assigned a weight u s.t. u+ v 6= 0 for any v, since the action of
FW on substitutions (1) can annihilate variables assigned to weights with an inverse; a conservative solution is to allow these
premises only in presence of monoids with the zerosumfree property.
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every i ∈ {1, . . . ,n} and a ∈ A. For any rule R ∈R whose conclusion is in the form f(x1, . . . ,xn)
c

ψ

and triggered by ~A,~w let X ,Y,Φ be the set of process and weight function variables involved in R as per
Definition 6. Then, for any substitution σ : X ∪Y → T Σ /0 and map θ : Φ→FWT Σ /0 such that:

1. σ(xi) = pi for xi ∈ X;

2. θ(ϕa
i j) = ρ for each premise xi

a
ϕa

i j and Vϕa
i jW = wk of R, and for any ρ s.t. pi

a
ρ and

VρW = wk;

3. σ(yk) = q for each premise dϕak
ik jke 3 yk of R, and for any q ∈ T Σ /0 s.t. θ(ϕak

ik jk)(q) 6= 0;

there is p c
ρ where ρ , Lψ[θ ]MX∪Y [σ ] is the instantiated interpretation of the target Θ-term ψ .

The above definition is well-given since it is based on structural recursion over ground Σ-terms
(i.e. the process p in each triple (p,a,ρ)); in particular, terms have finite depth and only structurally
smaller terms are used by the recursion (i.e. the assumption of pi

a
ρ being defined for each pi in

p = f(p1, . . . , pn)). Moreover, for any trigger, operator, and conclusion label only finitely many rules
have to be considered.

Finally we are able to state the main adequacy result for the proposed format although the proof is
postponed to Section 5.3, where we will take advantage of the bialgebraic framework.

Theorem 4 (Congruence). Behavioural equivalence on ULTraSs induced by a WFSOS specification is a
congruence with respect to the process signature.

Remark 1 (Expressing interpretations). The definition of a weight term interpretation can be done in
many ways, such as structural recursion or λ -iteration [1]. For instance, every family of maps:

hX : ΘFWT Σ(X)→FWT Σ(X) bX : X →FWT Σ(X)

(respecting substitutions) uniquely extends to an interpretation by structural recursion on Θ-terms where
maps hX and bX define the inductive and base cases respectively. Moreover, these maps can be easily
given e.g. as equations, as we will show in Section 4.

4 Applications and Examples

In this Section we illustrate how existing systems and specification formats are covered by the proposed
WFSOS format. In particular, to illustrate the use of the format we give a detailed WFSOS specification
for PEPA [12, 13]. Then, instead of describing other specific cases, we devote the rest of the section to
comparing WFSOS with some existing GSOS formats for systems expressible in the ULTraS framework.

4.1 WFSOS for PEPA

In PEPA [12, 13], processes are terms over the grammar:

P ::= (a,r).P | P+P | P BC
L

P | P\L | x (2)

where a ranges over a fixed set of labels A, L over subsets of A, r over R+, and x over a fixed set of
process constants symbols X . Process symbols are associated to processes by terms of the form x , P
such that there is exactly one term for every symbol x ∈ X . The semantics of process terms is usually
defined by the inference rules in Figure 1 where a ∈ A, r,r1,r2,R ∈ R+ (passive rates are omitted for
simplicity) and R depends only on r1,r2 and the intended meaning of synchronisation. For instance, in
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(a,r).P
a,r

P

P1
a,r

Q

P1+P2
a,r

Q

P2
a,r

Q

P1+P2
a,r

Q

P
a,r

Q

x
a,r

Q
x, P P

a,r
Q

P\L
a,r

Q
a /∈ L P

a,r
Q

P\L
τ,r

Q
a ∈ L

P1
a,r

Q

P1 BC
L

P2
a,r

Q BC
L

P2

a /∈ L P2
a,r

Q

P1 BC
L

P2
a,r

P1 BC
L

Q
a /∈ L P1

a,r1
Q1 P2

a,r2
Q2

P1 BC
L

P2
a,R

Q1 BC
L

Q2

a ∈ L

Figure 1: Structural operational semantics for PEPA.

applications to performance evaluation [12], rates model times and R is defined by the minimal rate law:

R =
r1

ra(P1)
· r2

ra(P2)
·min(ra(P1),ra(P2)) (3)

where ra denotes the apparent rate of a. In applications to systems biology [7], rates model molecules
concentrations and R is defined by the multiplicative law: R = r1 · r2.

PEPA can be characterized by a specification in the WFSOS format where the process signature
Σ is the same as (2) and weights are drawn from the monoid of positive real numbers under addition
extended with the +∞ element (only for technical reasons connected with the L-M and process variables—
differently from other stochastic process algebras like EMPA [4], PEPA does not allow instantaneous
actions, i.e. with rate +∞). The intermediate language of weight terms is expressed by the grammar:

θ ::=∅ | ♦r(θ) | θ1⊕θ2 | θ1 ‖L θ2 | ξ | P

where r ∈ R+
0 , L ⊆ A, ξ range over weight functions, and P over processes. Note that the grammar is

untyped since it describes the terms freely generated by the signature Θ = {∅,♦r,⊕,‖L}, over weight
function variables and processes. The meaning of these operators is given formally below by the defini-
tion of the interpretation L-M which is introduced (by structural recursion on Θ-terms) alongside WFSOS
rules for presentation convenience. Intuitively ∅ is the constantly 0 function, ♦r reshapes its argument
to have total weight r, ⊕ is the point-wise sum and ‖L parallel composition e.g. by (3).

For each action a ∈ A and rate r ∈ R+, a process (a,r).P presents exactly one a-labelled transi-
tion ending in the weight function assigning r to the (sub)process denoted by the variable P and 0 to
everything else. Hence, the action axiom is expressed as follows:

(a,r).P a ♦r(P)
L♦r(ψ)MX(t) =


r

|dLψMXe|
if LψMX(t) 6= 0

0 otherwise

where ♦r reshapes6 the function LPMX to equally distribute the weight r over its support; in particular,
since process variables will be interpreted as “Dirac-like” functions (see below) ♦r(P) corresponds to
the weight function assigning r to Σ-term denoted by P.

Complementary to the action axiom, (a,r).P can not perform any action except for a:

(a,r).P b ∅
a 6= b L∅MX(t) = 0

6Since the interpretation L-M has to cover the language freely generated from Θ, we can not use the (slightly more intuitive)
“Dirac” operator δr(P) – where P is restricted to be a process variable instead of a Θ-term. Likewise, indexing δr,P over
processes would break substitution independence i.e. naturality.
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This rule is required to obtain a functional ULTraS and is implicit in Figure 1 where disabled transitions
are assumed with rate 0 as in any specification in the Stochastic GSOS or Weighted GSOS formats.

Without this rule, transitions would have been disabled in the non-deterministic layer i.e. (a,r).P 6b .
Stochastic choice is resolved by the stochastic race, hence the rate of each competing transition is

added point-wise as in Figure 1 (and in the SGSOS and WGSOS formats). This passage belongs to the
stochastic layer of the behaviour (hence to the interpretation, in our setting) whereas the selection of
which weight functions to combine is in the non-deterministic behaviour represented by the rules and, in
particular, to the labelling. Therefore, the choice rules became:

P1
a

ϕ1 P2
a

ϕ2

P1 +P2
a

ϕ1⊕ϕ2

Lψ⊕ϕMX(t) = LψMX(t)+ LϕMX(t)

Likewise, process cooperation depends on the labels to select the weight function to be combined. This
is done in the next two rules: one when the two processes cooperate, and the other when one process
does not interact on the channel:

P1
a

ϕ1 P2
a

ϕ2

P1 BCL P2
a

ϕ1 ‖L ϕ2

a ∈ L
P1

a
ϕ1 P2

a
ϕ2

P1 BCL P2
a (ϕ1 ‖L P2)⊕ (P1 ‖L ϕ2)

a /∈ L

The combination step depends on the meaning of the cooperation, e.g. in the case of (3):

Lψ ‖L ϕMX(t) =

{
LψMX (t1)
VLψMX W ·

LϕMX (t2)
VLϕMX W ·min(VLψMXW,VLϕMXW) if t = t1 BCL t2

0 otherwise

Each process is interpreted as a weight function over process terms. This is achieved by a Dirac-like
function assigning +∞ to the Σ-term composed by the aforementioned variable: LPMX(t) = +∞ if P = t,
0 otherwise. The infinite rate characterizes instantaneous actions as if all the mass is concentrated in the
variable; e.g., in interactions based on the minimal rate law, processes are not consumed. For the same
reason, if we were dealing with concentration rates and the multiplicative law, we would assign 1 to P.

The remaining rules for hiding and process symbol unfolding are straightforward7:

P a
ρ

x a
ρ

x, P
P a

ϕ

P\L a
ϕ

a /∈ L
P a

ϕ

P\L τ
ϕ

a ∈ L

This completes the definition of L-M by structural recursion and hence the WFSOS specification of
PEPA. It is easy to check that the induced ULTraS is functional and correspond to the stochastic system of
PEPA processes; that bisimulations on it are stochastic bisimulations (and vice versa) and that bisimilarity
is a congruence with respect to the process signature.

4.2 Segala GSOS

In [2, §5.3], Bartels proposed a GSOS specification format8 for Segala systems (whence Segala GSOS),
i.e. ULTraS where weight functions are exactly probability distributions. In this Section, we recall Bar-
tels’ definition (with minor notational differences) and show how specifications in the aforementioned
format can be translated in specifications for ULTraS.

7Specifications with equations, such as symbol unfolding rules, are handled thanks to the recent results proposed in [25].
8 Specifications in Bartels’ Segala GSOS format yield GSOS distributive laws for Segala systems but, to the best of authors

knowledge, it still is an open problem whether every such distributive law arise from some specification in the Segala format.
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Definition 10 ( [2, §5.3]). A GSOS rule for Segala systems is an expression of the form:{
xi

a−→ ϕa
i j

}
1≤i≤n, a∈Ai, 1≤ j≤ma

i

{
xi 6

b−→
}

1≤i≤n, b∈Bi

{
ϕa

i j =⇒ yk

}
1≤k≤q

f(x1, . . . ,xn)
c−→ w1 · t1 + · · ·+wm · tm

where:

• f is an n-ary symbol from Σ;
• X = {xi | 1 ≤ i ≤ n}, Y = {yk | 1 ≤ k ≤ q}, and V = {ϕa

i j | 1 ≤ i ≤ n, a ∈ Ai, 1 ≤ j ≤ ma
i } are

pairwise distinct process and probability distribution variables respectively;
• a,b,c ∈ A are labels and Ai∩Bi = /0 for any i ∈ {1, . . . ,n};
• {ti | 1≤ i≤ m} are target terms on variables X, Y and (possibly duplicated) V ;
• {wi ∈ (0,1] | 1≤ i≤ m} are weights associated to the target terms and s.t. w1 + · · ·+wm = 1;

A GSOS specification for Segala systems is a set of rules in the above format containing finitely many
rules for any source symbol f, conclusion label c and trigger ~C.

Segala GSOS specifications can be easily turned into WFSOS ones. The first two families of premises
are translated straightforwardly to the corresponding ones in our format; the third can be turned into those
of the form dϕe 3 y. Targets of transitions describe finite probability distributions and are evaluated to
actual probability distributions by a fixed interpretation of a form similar to Definition 7 (although some
care is needed to handle copies of probability variables).

Let Ṽ be the set of “coloured” variables from V where the colouring is used to distinguish duplicated
variables (cf. [2, §5.3]). In practice, duplicated variables are expressed by adding “colouring” operators
to Θ; their number is finite and depends only on the set of rules since multiplicities are fixed and finite
for rules in the above format. Given a substitution ν from Ṽ to (finite) probability distributions over
T Σ(X +Y ), each ti is interpreted as the probability distribution:

t̃i(t),

{
∏
|Ṽ∩var(ti)|
k=1 ν(ϕk)(tk) if t = ti[ϕk/tk] for tk ∈ T Σ(X +Y )

0 otherwise

and each target term w1 · t1 + · · ·+wm · tm is interpreted as the convex combination of each t̃i.

4.3 Weighted GSOS

In [16], the authors propose a GSOS format9 for Weighted LTSs that is parametric in the commutative
monoid W and hence called W-GSOS. The format subsumes many known formats for systems express-
ible as WLT S: for instance, Stochastic GSOS specifications are in the R+

0 -GSOS format and GSOS for
LTS are in the B-GSOS format where B = ({tt,ff},∨,ff). In this Section, we recall Klin’s definition
and show how W-GSOS specification can be translated in WFSOS ones.
Definition 11 ( [16, Def. 13]). A W-GSOS rule is an expression of the form:{

xi
a wai

}
1≤i≤n, a∈Ai

{
xik

bk,uk yk

}
1≤k≤m

f(x1, . . . ,xn)
c,β (u1,...,um) t

where:
9Weighted GSOS specifications are proved to yield GSOS distributive laws for Weighted LTSs but it is currently an open

question whether the format is also complete.
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• f is an n-ary symbol from Σ;
• X = {xi | 1≤ i≤ n}, Y = {yk | 1≤ k≤m} and {uk | 1≤ k≤m} are pairwise distinct process and

weight variables;
• {wai ∈W | 1≤ i≤ n, a ∈ Ai} are weight constants such that wik 6= 0 for 1≤ k ≤ m;
• β : W m→W is a multiadditive function on W;
• a,b,c ∈ A are labels and Ai ⊆ A for 1≤ i≤ n;
• t is a Σ-term such that Y ⊆ var(t)⊆ X ∪Y ;

A rule is triggered by a n-tuple ~C of enabled labels s.t. Ai =Ci ⊆ A and by a family of weights {vai | 1≤
i≤ n, a ∈Ci} s.t. wai = vai A W-GSOS specification is a set of rules in the above format such that there
are only finitely many rules for the same source symbol, conclusion label and trigger.

Each rule describes the weight of t in terms of weights assigned to each yk (i.e. uk) occurring in it; if
two rules share the same symbol, label, trigger and target then their contribute for t is added.

The first step requires to make weight function explicit by premises like xi
a

ϕa
i (since WLTS

are functional ULTraS ma
i = 1). Then, each premise xi

a wai is translated into Vϕa
i W = wai. If W is

zerosumfree, the translation of a W-GSOS into a WFSOS is straightforward but, in general, it suffices to
combine rules sharing the same source, label and trigger into a single one in the WFSOS format with the
same source, label and trigger but whose target is a suitable weight term containing each β and t where
every occurrence yk and uk is replaced with the corresponding function variable (i.e. ϕ

bk
ik ), wrapped in

a “colouring” operator to express multiplicities like in the case of Segala GSOS. In fact, the WFSOS
specification for PEPA in Section 4.1 can be obtained from that given in [16] following this procedure.

5 A coalgebraic presentation of ULTraS

The aim of this section is to provide a brief coalgebraic characterization of ULTraSs and their bisim-
ulation, and to prove that these bisimulations are congruence relations. These results are presented in
Sections 5.2 and 5.3 respectively, and the general theory of abstract GSOS is briefly recalled in Sec-
tion 5.1 (we refer the interested reader to [15, 29]).

5.1 Abstract GSOS

In [29], Turi and Plotkin detailed an abstract presentation of well-behaved structural operational seman-
tics for systems of various kinds. There syntax and behaviour of transition systems are modelled by
algebras and coalgebras respectively. For instance, an (image-finite) LTS with labels in A and states in X
is seen as a (successor) function h : X → (Pf X)A mapping each state x to a function yielding, for each
label a, the (finite) set of states reachable from x via a-labelled transitions i.e. {y | x a−→ y}:

y ∈ h(x)(a) ⇐⇒ x a−→ y.

Functions like h are coalgebras for the (finite) labelled powerset functor (Pf -)A over the category of sets
and functions Set. In general, state based transition systems can be viewed as B-coalgebra i.e. sets (carri-
ers) enriched by functions (structures) like h : X→ BX for some suitable covariant functor B : Set→ Set.
The Set-endofunctor B is often called behavioural since it encodes the computational behaviour char-
acterizing the given kind of systems. A morphism from a B-coalgebra h : X → BX to g : Y → BY is
a function f : X → Y such that the coalgebra structure h on X is consistently mapped to the coalgebra
structure g on Y i.e. g◦ f = B f ◦h.
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X

BX

Y

BY

f
h

B f
g (4)

Therefore, B-coalgebras form the category B-Coalg of B-coalgebras and morphisms as above.
Two states x,y ∈ X are said to be observationally equivalent with respect to the coalgebraic structure

h : X → BX if they are equated by some coalgebraic morphism from h. Observational equivalences are
generalized to two (or more) systems in the form of cocongruences i.e. as the pullbacks of morphisms
extending to a cospan for the B-coalgebas structures associated with the given systems as pictured below.

X1 X2

Y

BX1 BX2

BY

R

f1 f2h1 h2

g

B f1 B f2

p1 p2

If the cospan f1, f2 is jointly epic, i.e. j ◦ f1 = k ◦ f2 =⇒ j = k for any j,k : C→ Z, (in general if { fi}
is an epic sink, hence {pi} is a monic source) then the set Y is isomorphic to the equivalence classes
induced by R. We refer the interested reader to [26] for more information on the coalgebraic approach to
process theory.

Dually, process syntax is modelled via algebras for endofunctors. Every algebraic signature Σ defines
an endofunctor ΣX =

∏

f∈ΣXar(f) on Set such that every model for the signature is an algebra for the
functor i.e. a set X (carrier) together with a function g : ΣX → X (structure). Morphisms of Σ-algebras
are functions satisfying the dual condition of (4). The set of Σ-terms with variables from a set X is
denoted by T ΣX and the set of ground ones admits an obvious Σ-algebra a : ΣT Σ /0→ T Σ /0 which is the
initial Σ-algebra in the sense that for every other Σ-algebra g, there exists a unique morphism from a to
g i.e. the inductive extension of the underlying function f : T Σ /0→ X . The construction T Σ is a functor,
moreover, it is the monad freely generated by Σ.

In [29], Turi and Plotkin showed that structural operational specifications for LTSs in the well-known
image finite GSOS format [5] are in a one-to-one correspondence with GSOS distributive laws i.e. natural
transformations of the sort of:

λ : Σ(Id×B) =⇒ BT Σ.

Natural transformations like λ contain the information needed to connect Σ-algebra structures and B-
coalgebra structures over the same carrier set and capture the interplay between syntax and dynamics at
the core of the SOS approach. These structures are called λ -bialgebras and are composed by a carrier X
endowed with a Σ-algebra g and a B-coalgebra h structure such that the diagram below commutes.

ΣX

ΣBX BΣX

X BX
g

Σh
λX

Bg

h

In particular, every λ -distributive law gives rise to a B-coalgebra structure over the set of ground Σ-terms
T Σ /0 and to a Σ-algebra structure on the carrier of the final B-coalgebra. These two structures are part
of the initial and final λ -bialgebra respectively and therefore, because the unique morphism from the
former to the latter is both a Σ-algebra and a B-coalgebra morphism, observational equivalence on the
system induced over T Σ /0 is a congruence with respect to the syntax Σ.
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5.2 ULTraSs as coalgebras

ULTraSs are shown to be coalgebras for Set endofunctors obtained by composing the functor (Pf (-))A

of non-deterministic labelled transition systems with functors capturing the quantitative computational
aspects. For every set X we denoted by FWX the set of finitely supported weight functions. Actually,
this extends to a functor FW : Set→ Set over the category of sets, whose action on morphisms is given
by (1) (it is easy to check that identities and compositions are preserved).

Proposition 5. For any W and any A, coalgebras for (Pf FW-)A are in one-to-one correspondence with
A-labelled image-finite W-ULTraSs.

Proof. Any image finite W-ULTraS (X ,A, ) determines a coalgebra (X ,h) where, for any x ∈ X and
a ∈ A: h(x)(a) , {ρ | x a

ρ}. Image finiteness guarantees that these sets are finite and that their
elements are finitely supported weight functions from X to the carrier of W. Then, it is easy to check
that the correspondence is bijective.

The coalgebraic characterization is further justified by the corresponding treatment of bisimilarity:

Proposition 6. Let (X ,A, X) and (Y,A, Y ) be two image finite W-ULTraS. An equivalence relation
between X and Y is a bisimulation (in the sense of Definition 3) iff it is the kernel relation of an epic sink
for the coalgebras associated with the two systems.

Notice that we have used the behavioural equivalence (i.e. cocongruences) instead of Aczel-Mendler’s
coalgebraic bisimulation. The two notions coincide if the behavioural functor preserves weak pullbacks,
but in general this is not the case for (Pf FW-)A (since FW does not [16]). Actually, this property about
FW depends only on the underlying monoid, as it is equivalent to the row-column property [22] as stated
by the following Lemma. This property can be easily checked, and more importantly holds for most
monoids of interest.
Lemma 7. Coalgebraic bisimulation and behavioural equivalence
coincide on every ULTraS iff the underlying monoid satisfies the
row-column property i.e. for any two vectors (wi)i=1...n (vi)i=1...m
s.t. ∑

n
i=1 wi = ∑

m
i=1 vi = s there exists a matrix (ui j)i=1...n, j=1...m

s.t. ∑
n
i=1 ui j = v j for each j = 1 . . .m and ∑

m
j=1 ui j =wi for each i= 1 . . .n

as pictured aside.

u1,1 u1,2 · · · u1,n w1
u2,1 u2,2 · · · u2,n w2

...
...

. . .
...

...
um,1 um,2 · · · um,n wn

v1 v2 · · · vm s

Finally, we need the following technical result to unleash the general machinery of abstract GSOSs.

Proposition 8. The category of coalgebras for (Pf FW-)A has a final object.

5.3 WFSOS as bialgebras

In this subsection we prove the congruence result for bisimulations for ULTraSs induced by WFSOS
specifications. This result is obtained by applying the abstract characterization of well-behaved structural
operational semantics given by Turi and Plotkin in [29]. There syntax and behaviour of various kind
of transition systems are modelled by algebras and coalgebras connected by suitable distributive laws
describing the interplay between syntax and behaviour.

In the case of ULTraSs, the GSOS distributive laws are natural transformations of the form of:

λ : Σ(-× (Pf FW(-))A) =⇒ (Pf FWT Σ(-))A (5)

where A is the set of labels, W is the commutative monoid of weights, Σ =

∏

f∈Σ(-)ar(f) is the syntactic
endofunctor induced by the process signature Σ, and T Σ is the free monad for Σ.
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Every natural transformation λ as above induces a coalgebra structure hλ (defined by structural
recursion [29, Th. 5.1]) over ground Σ-terms as the only function hλ : T Σ /0→ (Pf FW(T Σ /0))A such that:

hλ ◦a = (Pf FWT Σ(a#))A ◦λX ◦Σ〈id,hλ 〉 (6)

where a# : T ΣT Σ /0→ T Σ /0 is the inductive extension of a. Then, by general results from the bialgebraic
framework (cf. [29, Cor. 7.3]), every behavioural equivalence on hλ is also a congruence on T Σ /0.

We can now provide the connection between WFSOS specifications and GSOS distributive laws for
ULTraSs and between systems and coalgebras they induce over ground Σ-terms. Then, the results from
abstract GSOS are transferred to the WFSOS specification format, completing the proof of Theorem 4.

Theorem 9 (Soundness). Every specification 〈R,L-M〉 yields a natural transformation λ as in (5) such
that hλ and the ULTraS induced by 〈R,L-M〉 coincide.

Corollary 10 (Congruence). Behavioural equivalence on the coalgebra over T Σ /0 induced by a specifi-
cation 〈R,L-M〉 is a congruence with respect to the process signature Σ.

6 Conclusions and future work

In this paper we have presented a GSOS-style format for specifying non-deterministic systems with
quantitative aspects. A specification in this format is composed by a set of rules for the derivation of
judgements of the form P a

ψ , where ψ is a term of a specific signature, and an interpretation for
these terms as weight functions. We have shown that a specification in this format defines an ULTraS
system. The expressivity of this format has been shown by an example WFSOS specification for PEPA,
and that WFSOS subsumes other formats such as WGSOS and Segala SOS. This format induces naturally
a notion of bisimulation, which we have proved to be always a congruence. The proof of this result
relies on a general categorical presentation of non-deterministic systems with quantitative aspects: we
have shown that ULTraS systems are in one-to-one correspondence with coalgebras of a precise class of
functors, parametric on the underlying weight structure. Taking advantage of Turi-Plotkin’s bialgebraic
framework, we have proved that the bisimulation induced by a WFSOS is always a congruence. This
allows for compositional reasoning in quantitative settings (e.g., for ensuring performance properties).

Another consequence of this categorical characterization is that we can prove that there are λ -
distributive laws which cannot be specified as WFSOS. In fact, we could define a more expressive format,
but it would be quite more convolute and difficult to use. Hence, we preferred to adopt this simpler but
still quite expressive format. The definition of a sound and complete format is left as future work.

In [19] the authors proposed the ntµ f θ/ntµxθ rule format for presenting Segala systems and such that
the induced bisimilarity is a congruence. Because of the different expressivity of GSOS and (n)tree rules,
it would be of interest to generalize this format to the wider range of behaviours covered by ULTraSs.

Although in this paper we have taken ULTraS systems as a reference, WFSOS can be interpreted
in other meta-models, such as FuTS [18]. Like ULTraS, FuTS have state-to-function transitions, but
admit several distinct domains for weight functions and hence can be read as “composing in parallel”
distinct behaviours. The results in this paper readily extend to FuTS since these systems can be seen
as coalgebras for functors with a specific shape: (Pf

∏

W∈W FW(-))A for W being the set of admitted
weight domains. In this context it is easy to formulate compositionality results also for the framework for
stochastic calculi proposed in [9]. A coalgebraic understanding of FuTS is presented in [18] but covers
only the deterministic case (i.e. ( ∏

W∈W FW(-))A), while ours is non-deterministic.
For sake of simplicity, we have characterized ULTraS systems using the functor FW. However, the

results and definition presented here can be further generalized by taking generic behavioural functors
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in place of FW, thus considering systems that are coalgebras for functors of the form of (Pf B(-))A.
This would affect mostly the evaluation L-M, while only minor changes to the rule format may be re-
quired in order to capture interactions between Pf and B (like e.g. the total weight premises). This fact
suggests to investigate systems with stratified (or “staged”) behaviours via “stratified” specifications.
We can develop general results at the abstract level of bialgebraic structural operational semantics, aim-
ing to provide some modularity to the format. This line of research can be seen as complementary to
Mosses’ Modular SOS [23] and recent developments towards a GSOS equivalent [21] (which still are
more “syntax bound” since the behavioural functor is not very changed by these compositions).

The categorical characterization of ULTraS systems paves the way for further interesting lines of
research. One is to develop Hennessy-Milner style modal logics for quantitative systems at the generality
level of the ULTraS framework. In fact, Klin has shown in [14] that HML and CCS are connected by
a (contravariant) adjunction. A promising direction is to follow this connection between modal logic
and SOS, taking advantage of the bialgebraic presentation of ULTraS provided in this paper. Another
direction is to investigate the implications of recent developments in the coalgebraic understanding of
internal moves for systems generalized by ULTraSs such as Weighted LTS [20] and Segala systems [6].
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