1,018 research outputs found

    Plasma propulsion simulation using particles

    Full text link
    This perspective paper deals with an overview of particle-in-cell / Monte Carlo collision models applied to different plasma-propulsion configurations and scenarios, from electrostatic (E x B and pulsed arc) devices to electromagnetic (RF inductive, helicon, electron cyclotron resonance) thrusters, with an emphasis on plasma plumes and their interaction with the satellite. The most important elements related to the modeling of plasma-wall interaction are also presented. Finally, the paper reports new progress in the particle-in-cell computational methodology, in particular regarding accelerating computational techniques for multi-dimensional simulations and plasma chemistry Monte Carlo modules for molecular and alternative propellan

    HPC-enabling technologies for high-fidelity combustion simulations

    Get PDF
    With the increase in computational power in the last decade and the forthcoming Exascale supercomputers, a new horizon in computational modelling and simulation is envisioned in combustion science. Considering the multiscale and multiphysics characteristics of turbulent reacting flows, combustion simulations are considered as one of the most computationally demanding applications running on cutting-edge supercomputers. Exascale computing opens new frontiers for the simulation of combustion systems as more realistic conditions can be achieved with high-fidelity methods. However, an efficient use of these computing architectures requires methodologies that can exploit all levels of parallelism. The efficient utilization of the next generation of supercomputers needs to be considered from a global perspective, that is, involving physical modelling and numerical methods with methodologies based on High-Performance Computing (HPC) and hardware architectures. This review introduces recent developments in numerical methods for large-eddy simulations (LES) and direct-numerical simulations (DNS) to simulate combustion systems, with focus on the computational performance and algorithmic capabilities. Due to the broad scope, a first section is devoted to describe the fundamentals of turbulent combustion, which is followed by a general description of state-of-the-art computational strategies for solving these problems. These applications require advanced HPC approaches to exploit modern supercomputers, which is addressed in the third section. The increasing complexity of new computing architectures, with tightly coupled CPUs and GPUs, as well as high levels of parallelism, requires new parallel models and algorithms exposing the required level of concurrency. Advances in terms of dynamic load balancing, vectorization, GPU acceleration and mesh adaptation have permitted to achieve highly-efficient combustion simulations with data-driven methods in HPC environments. Therefore, dedicated sections covering the use of high-order methods for reacting flows, integration of detailed chemistry and two-phase flows are addressed. Final remarks and directions of future work are given at the end. }The research leading to these results has received funding from the European Union’s Horizon 2020 Programme under the CoEC project, grant agreement No. 952181 and the CoE RAISE project grant agreement no. 951733.Peer ReviewedPostprint (published version

    Simulating 3D Radiation Transport, a modern approach to discretisation and an exploration of probabilistic methods

    Get PDF
    Light, or electromagnetic radiation in general, is a profound and invaluable resource to investigate our physical world. For centuries, it was the only and it still is the main source of information to study the Universe beyond our planet. With high-resolution spectroscopic imaging, we can identify numerous atoms and molecules, and can trace their physical and chemical environments in unprecedented detail. Furthermore, radiation plays an essential role in several physical and chemical processes, ranging from radiative pressure, heating, and cooling, to chemical photo-ionisation and photo-dissociation reactions. As a result, almost all astrophysical simulations require a radiative transfer model. Unfortunately, accurate radiative transfer is very computationally expensive. Therefore, in this thesis, we aim to improve the performance of radiative transfer solvers, with a particular emphasis on line radiative transfer. First, we review the classical work on accelerated lambda iterations and acceleration of convergence, and we propose a simple but effective improvement to the ubiquitously used Ng-acceleration scheme. Next, we present the radiative transfer library, Magritte: a formal solver with a ray-tracer that can handle structured and unstructured meshes as well as smoothed-particle data. To mitigate the computational cost, it is optimised to efficiently utilise multi-node and multi-core parallelism as well as GPU offloading. Furthermore, we demonstrate a heuristic algorithm that can reduce typical input models for radiative transfer by an order of magnitude, without significant loss of accuracy. This strongly suggests the existence of more efficient representations for radiative transfer models. To investigate this, we present a probabilistic numerical method for radiative transfer that naturally allows for uncertainty quantification, providing us with a mathematical framework to study the trade-off between computational speed and accuracy. Although we cannot yet construct optimal representations for radiative transfer problems, we point out several ways in which this method can lead to more rigorous optimisation

    Interstitial-Scale Modeling of Packed-Bed Reactors

    Get PDF
    Packed-beds are common to adsorption scrubbers, packed bed reactors, and trickle-bed reactors widely used across the petroleum, petrochemical, and chemical industries. The micro structure of these packed beds is generally very complex and has tremendous influence on heat, mass, and momentum transport phenomena on the micro and macro length scales within the bed. On a reactor scale, bed geometry strongly influences overall pressure drop, residence time distribution, and conversion of species through domain-fluid interactions. On the interstitial scale, particle boundary layer formation, fluid to particle mass transfer, and local mixing are controlled by turbulence and dissipation existing around packed particles. In the present research, a CFD model is developed using OpenFOAM: www.openfoam.org) to directly resolve momentum and scalar transport in both laminar and turbulent flow-fields, where the interstitial velocity field is resolved using the Navier-Stokes equations: i.e. no pseudo-continuum based assumptions. A discussion detailing the process of generating the complex domain using a Monte-Carlo packing algorithm is provided, along with relevant details required to generate an arbitrary polyhedral mesh describing the packed-bed. Lastly, an algorithm coupling OpenFOAM with a linear system solver using the graphics processing unit: GPU) computing paradigm was developed and will be discussed in detail

    Kinetic modeling of polyatomic heat and mass transfer in rectangular microchannels

    Get PDF
    The present study aims at estimating the heat and the mass transfer coefficients in the case of the polyatomic gas flows through long rectangular microchannels driven by small and large pressure (Poiseuille flow) and temperature (Thermal creep flow) drops. The heat and mass transfer coefficients are presented for all gas flow regimes, from free molecular up to hydrodynamic ones, and for channels with different aspect ratios as well as for various values of translational and rotational Eucken factors. The applied values of the Eucken factors were extracted based on the Rayleigh-Brillouin experiments and the kinetic theory of gases. The numerical study has been performed on the basis of a kinetic model for linear and non-linear gas molecules considering the translational and rotational degrees of freedom. The solution of the obtained system of the kinetic equations is implemented on the Graphics Processing Units (GPUs), allowing the reduction of the computational time by two orders of magnitude. The results show that the Poiseuille mass transfer coefficient is not affected by the internal degrees of freedom and the non-dependence of the previous observed deviations with the experimental data on the molecular nature of the gas molecules is confirmed. However, the study shows that the deviation between monatomic and polyatomic values of the mass transfer coefficient in the thermal creep flow is increased as the gas rarefaction is decreased, and for several polyatomic gases met in practical applications in the temperature range from 300 to 900 K might reach 15%. In addition, the effect of the internal degrees of freedom on the heat transfer coefficient is found to be rather significant. The polyatomic heat transfer coefficients are obtained essentially higher than the monatomic ones, with the maximum difference reaching about 44% and 67% for linear and non-linear gas molecules. In view of the large differences between monatomic and polyatomic gases, the present results may be useful in the design of technological devices in which the thermal creep phenomenon plays a dominant role

    SPH modeling of water-related natural hazards

    Get PDF
    This paper collects some recent smoothed particle hydrodynamic (SPH) applications in the field of natural hazards connected to rapidly varied flows of both water and dense granular mixtures including sediment erosion and bed load transport. The paper gathers together and outlines the basic aspects of some relevant works dealing with flooding on complex topography, sediment scouring, fast landslide dynamics, and induced surge wave. Additionally, the preliminary results of a new study regarding the post-failure dynamics of rainfall-induced shallow landslide are presented. The paper also shows the latest advances in the use of high performance computing (HPC) techniques to accelerate computational fluid dynamic (CFD) codes through the efficient use of current computational resources. This aspect is extremely important when simulating complex three-dimensional problems that require a high computational cost and are generally involved in the modeling of water-related natural hazards of practical interest. The paper provides an overview of some widespread SPH free open source software (FOSS) codes applied to multiphase problems of theoretical and practical interest in the field of hydraulic engineering. The paper aims to provide insight into the SPH modeling of some relevant physical aspects involved in water-related natural hazards (e.g., sediment erosion and non-Newtonian rheology). The future perspectives of SPH in this application field are finally pointed out

    Efficient GPU implementation of a Boltzmann‑Schrödinger‑Poisson solver for the simulation of nanoscale DG MOSFETs

    Get PDF
    81–102, 2019) describes an efficient and accurate solver for nanoscale DG MOSFETs through a deterministic Boltzmann-Schrödinger-Poisson model with seven electron–phonon scattering mechanisms on a hybrid parallel CPU/GPU platform. The transport computational phase, i.e. the time integration of the Boltzmann equations, was ported to the GPU using CUDA extensions, but the computation of the system’s eigenstates, i.e. the solution of the Schrödinger-Poisson block, was parallelized only using OpenMP due to its complexity. This work fills the gap by describing a port to GPU for the solver of the Schrödinger-Poisson block. This new proposal implements on GPU a Scheduled Relaxation Jacobi method to solve the sparse linear systems which arise in the 2D Poisson equation. The 1D Schrödinger equation is solved on GPU by adapting a multi-section iteration and the Newton-Raphson algorithm to approximate the energy levels, and the Inverse Power Iterative Method is used to approximate the wave vectors. We want to stress that this solver for the Schrödinger-Poisson block can be thought as a module independent of the transport phase (Boltzmann) and can be used for solvers using different levels of description for the electrons; therefore, it is of particular interest because it can be adapted to other macroscopic, hence faster, solvers for confined devices exploited at industrial level.Project PID2020-117846GB-I00 funded by the Spanish Ministerio de Ciencia e InnovaciónProject A-TIC-344-UGR20 funded by European Regional Development Fund
    • …
    corecore