
Washington University in St. Louis
Washington University Open Scholarship

All Theses and Dissertations (ETDs)

8-29-2012

Interstitial-Scale Modeling of Packed-Bed Reactors
Daniel Parks Combest
Washington University in St. Louis

Follow this and additional works at: https://openscholarship.wustl.edu/etd

This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All
Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact
digital@wumail.wustl.edu.

Recommended Citation
Combest, Daniel Parks, "Interstitial-Scale Modeling of Packed-Bed Reactors" (2012). All Theses and Dissertations (ETDs). 949.
https://openscholarship.wustl.edu/etd/949

https://openscholarship.wustl.edu?utm_source=openscholarship.wustl.edu%2Fetd%2F949&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F949&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd?utm_source=openscholarship.wustl.edu%2Fetd%2F949&utm_medium=PDF&utm_campaign=PDFCoverPages
https://openscholarship.wustl.edu/etd/949?utm_source=openscholarship.wustl.edu%2Fetd%2F949&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digital@wumail.wustl.edu

WASHINGTON UNIVERSITY IN ST. LOUIS

School of Engineering and Applied Science

Department of Energy, Environmental, and Chemical Engineering

Thesis Examination Committee:
Palghat A. Ramachandran, Chair
Milorad P. Dudukovic, Co-Chair

Ramesh Agarwal
Raghunath Chaudhari

John Gleaves
Cynthia Lo

Interstitial-Scale Modeling of Packed-Bed Reactors

by

Daniel P. Combest

A dissertation presented to the
Graduate School of Arts and Sciences

of Washington University in
partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2012
Saint Louis, Missouri

copyright by

Daniel P. Combest

2012

ABSTRACT OF THE THESIS

Interstitial-Scale Modeling of Packed-Bed Reactors

by

Daniel P. Combest

Doctor of Philosophy in Chemical Engineering

Washington University in St. Louis, 2012

Research Advisor: Palghat A. Ramachandran

Packed-beds are common to adsorption scrubbers, packed bed reactors, and trickle-

bed reactors widely used across the petroleum, petrochemical, and chemical industries

[106]. The micro structure of these packed beds is generally very complex and has

tremendous influence on heat, mass, and momentum transport phenomena on the

micro and macro length scales within the bed. On a reactor scale, bed geometry

strongly influences overall pressure drop, residence time distribution, and conversion

of species through domain-fluid interactions. On the interstitial scale, particle bound-

ary layer formation, fluid to particle mass transfer, and local mixing are controlled by

turbulence and dissipation existing around packed particles. In the present research,

a CFD model is developed using OpenFOAM (www.openfoam.org) to directly resolve

momentum and scalar transport in both laminar and turbulent flow-fields, where the

interstitial velocity field is resolved using the Navier-Stokes equations (i.e. no pseudo-

continuum based assumptions [88]). A discussion detailing the process of generating

the complex domain using a Monte-Carlo packing algorithm is provided, along with

relevant details required to generate an arbitrary polyhedral mesh describing the

ii

packed-bed. Lastly, an algorithm coupling OpenFOAM with a linear system solver

using the graphics processing unit (GPU) computing paradigm was developed and

will be discussed in detail.

iii

Acknowledgments

It is an honor for me to have been able to work with Dr. Palghat A. Ramachandran

so closely during my time in graduate school. His feedback and continued curiosity

enabled me to gain a much deeper understanding of the subject of this dissertation.

Additionally, I would like to thank my co-advisor Dr. Milorad P. Dudukovic for his

effort to empower me to be a better engineer.

I would also like to acknowledge the industrial partners of the Chemical reaction

Engineering Laboratory (CREL), especially the partners of the Multiphase Reaction

Engineering (MRE) fund for the financial support throughout my graduate work.

Additionally, I would like to thank MAGEEP, the American Chemical Society, and

Nvidia for their support through project seed funds, travel awards, and equipment

donations. Lastly, I would like to thank the engineering scholars program for the

continued financial support during my undergraduate and graduate education in the

form of the Gloria & Rubin Feldman and James M. McKelvey Scholarships.

A special thanks goes to the many graduate students, faculty, and undergraduate

students that have provided valuable lessons and feedback on my research, writing,

and teaching throughout graduate school.

Daniel P. Combest

Washington University in Saint Louis

August 2012

iv

Dedicated to my teachers and former advisors: Jackie Collier, my high school

chemistry teacher who inspired (convinced) me to go to college • Drs. Larry Blair,

Lee Roecker, Jay Baltisberger, Paul Smithson, Matthew Saderholm, Michael Cresci-

manno, Amer Lahamer and J.P. Lee for their challenging and thought-provoking

courses during my time spent at Berea College • Dr. Dennis Jacobs and group for

teaching me about the beauty in experimentation • Dr. Dan Gezelter and group (Pat

C., Chris F., Matt M., Megan S., and Charles V.) for giving me my first real expe-

rience in theoretical research and scientific computing. Without your group, I would

not have thought about graduate school. • Drs. Gero Decher, Gregory Schneider,

Albert Izquierdo, and Shoko Ono from my time spent at Institute Charles Sadron

in Strasbourg France, for their patience in teaching me about polymer chemistry •
Drs. James McKelvey, John L. Kardos and Professors Bob Heider and James Ballard,

for their courses, advising, quotable phrases, many hours of homework, and constant

reminders of the importance of the fundamentals.

Dedicated to my friends and colleagues: The Peace Corps, for teaching me how

to dedicate my life to the world. For my fellow Americans in Malawi (Noah M., Noah

Mc., Will, Sarah, Justin, Amanda, Jennifer, Amy, Zacki, Shane and Ron), thank you

for the experience of a lifetime. • My labmates from CREL (Mehmet, Yujian, Tim,

Vesna, Sean, Radmila, Mohamed, Arnaud, Zeljko, Bia, Nayak, Rajneesh, Ahmed,

Onkar, Tim L., Melissa (honorary), and Evgeniy) for your friendship and conversa-

tions about science and life • Corey S., Chad G., Jason M., Edd H., and Mark W.

for the time away from the dorm, lab, and classroom that kept me sane.

Dedicated to my family: Elisabeth, for your continued encouragement and love

throughout graduate school and after • My Grandfather, for teaching me that noth-

ing in life worth doing comes easy and that hard work will pay off if you pour your

heart into achieving your goals; my Father, for teaching me the concept of delayed

gratification and planning for the future; my Brother, for teaching me that the only

way to get to Carnegie Hall is to Practice Practice Practice!; and my Mother, for

inspiring me to be curious about the world and to be passionate about life

The list goes on ...

v

Contents

Abstract . ii

Acknowledgments . iv

List of Tables . ix

List of Figures . x

1 Introduction . 1
1.1 Background and Motivation . 1

1.1.1 Objectives of this Work . 5
1.2 Previous and Related Studies . 6

1.2.1 Random Packing of Cylinders 6
1.2.2 Interstitial-Scale Modeling of Packed Bed Reactors 9
1.2.3 Sparse Linear System Solvers in CUDA 13

1.3 Present Contributions . 14
1.4 Thesis Outline . 16

2 A Brief Background in Computational Fluid Dynamics 18
2.1 Introduction . 18
2.2 The Process of Using Computational Fluid Dynamics 19
2.3 Domain and Equation Discretization 21

2.3.1 An Introduction to Domain Discretization 21
2.3.2 Equation Discretization: The Finite Volume Method 24

2.4 Closure . 33

3 Constructing Randomly Packed Beds of Cylindrical Particles . . . 35
3.1 Introduction . 35
3.2 Geometry Generation Using a Monte-Carlo Packing Algorithm 36

3.2.1 Packing Methodology . 36
3.2.2 Results and Discussion . 44

3.3 Strategy for Mesh Generation . 52
3.3.1 Generating the Underlying Particle Geometry 53
3.3.2 Determining the Initial Face Mesh 55
3.3.3 Generating the Tetrahedral Volume Mesh 56
3.3.4 Polyhedral Mesh Conversion 58
3.3.5 Parallel Mesh Decomposition 59

vi

3.3.6 Results and Discussion . 59
3.4 Closure . 62

4 Interstitial-Scale Momentum Transport Modeling 65
4.1 Introduction . 65
4.2 Momentum Transport Modeling . 66

4.2.1 Turbulent Momentum Transport Theory 67
4.2.2 Momentum Modeling Methodology 71

4.3 Results and Discussion . 80
4.3.1 Pressure-Drop Calculations 80
4.3.2 Three-Dimensional Data . 82
4.3.3 Distributions in the Radial Direction 88
4.3.4 Perpendicular Profiles . 92

4.4 Closure . 95

5 Interstitial-Scale Scalar
Transport Modeling . 98
5.1 Introduction . 98
5.2 Scalar Transport Modeling . 99

5.2.1 Scalars and Turbulent Mixing 99
5.2.2 Turbulent Scalar Transport Theory 101
5.2.3 Scalar Transport Modeling Methodology 104

5.3 Results and Discussion . 105
5.3.1 Transient Passive Scalar Transport 106
5.3.2 F and E Curve Analysis . 109
5.3.3 Effect of Scalar-Flux Model 112

5.4 Closure . 113

6 Implementing Sparse Linear System Solvers Based on CUDA in
OpenFOAM . 116
6.1 Introduction . 116

6.1.1 The Graphics Processing Unit: A Shift in Computing Paradigm 117
6.2 Theory and Implementation . 119

6.2.1 Implemented Algebraic Operations 121
6.2.2 Parallel Preconditioned Conjugate Gradient Method with Nor-

malized Residual . 125
6.2.3 Computational Workflow of Cufflink Solvers 127

6.3 Results and Discussion . 129
6.3.1 Steady-State Scalar Transport 129
6.3.2 Current Developments . 131

6.4 Closure . 131

7 Summary of Contributions and Future Work 133

vii

7.1 Constructing Packed Beds of Cylindrical Particles 134
7.2 Interstitial-Scale Momentum Transport Modeling 136
7.3 Interstitial-Scale Scalar Transport Modeling 137
7.4 Implementing Sparse Linear System Solvers Based on CUDA in Open-

FOAM . 139
7.5 Overall Comments . 140

Appendix A Miscellaneous Mathematical Matter 141
A.1 General Form of Gauss’s Flux Theorem 141
A.2 Owner-Neighbor Relationship in FVM 142
A.3 Reynolds Averaging . 142

Appendix B Programming Related Matter 143
B.1 The Cufflink Library . 143

B.1.1 Multi-GPU BLAS Level 1 Operations 143
B.2 Courant Number Definitions . 146

Appendix C Additional Background in Transport Phenomena Con-
cepts . 147
C.1 The k-ε Model . 147
C.2 The Turbulent Schmidt and Prandtl Numbers 149

C.2.1 Churchill’s Reinterpretation and A Look to the Future 152

References . 155

viii

List of Tables

1.1 RANS Turbulence Models in Interstitial-Scale Packed-Bed Modeling . 13

3.1 Comparison of Relative Mesh Cell Quality to cell Skewness 57
3.2 Mesh summary of Scotch decomposed mesh 62

ix

List of Figures

1.1 Modeling strategies to capture momentum, based on knowledge of
packed-bed structure. Schematic of a realistic packed-bed system of
stationary packed catalyst particles (center); a. Bulk Porosity values
enable low-dimensional models to based on an a priori velocity field
to give global information; b. Radial Porosity Distribution functions
(Equation 1.1) provide a more detailed bed description for determi-
nation of the velocity profile on the reactor-scale; and c. Complete
Descriptions of Particles allow for extremely detailed modeling that
leverage a fluid mechanical approach, capturing transport phenomena
over small portions of the packed-bed at the particle-scale 2

1.2 Visual examples of the the results by Caulkin et. al. [21] as obtained
by the program DigiPac for: (a) Pall ring packing, (b) packing of 4-mm
alumina pellets, (c) Hama beads packing 8

1.3 An example of the results using the overlap determination algorithm
by Blaak [18], discussed in more detail in Chapter 3. 9

1.4 Mesh structure of a unit-cell simulation used by Gunjal et. al. [54]
for (a) simple-cubic; (b) and (d) Rhombohedral; and (c) face-centered
cubic structures. 10

2.1 polyhedral control volume from [61] 22
2.2 Two and three dimensional cells shapes 23
2.3 Survey of Mesh Generation Algorithms from Owen [96] 23

3.1 Particle representation (a) Definition of local (x’,y’, and z’) and global
position (x, y, and z) in relation to position vector Vpos with an ori-
entation vector U ; (b) Definition of the orientation vector projections
Upy′x′ , Upx′z′ and Upz′y′ around local axes with respect to the angles θ,
φ, and τ using the right hand rule. 37

3.2 Relation of local (x’, y’, and z’) and global (x,y, and z) coordinate
system using a particle position vector Vpos for (a) Simple trilobed
particle with member orientation vectors U1, U2 and U3; (b) Simple
quadlobed particle with member orientation vectors U1, U2, U3 and U4. 38

3.3 The intersection (∩) of a cylindrical slice Sr and packed bed domain D
yields an object whose volume equals the volume of the void space at
distance r from the bed center, through an angle from 0 to 2π around
the bed, over the entire height of the bed. 43

x

3.4 Bulk porosity convergence history and cycle time data for 1000 packed
cylinders packed into a tube container for 250 packing cycles using
proposed algorithm. 45

3.5 Bulk porosity convergence history and cycle time data with 95 CI bands
based on 5 simulations with the same initial particle and container
shape, for 1000 packed cylinders packed into a tube container for 250
packing cycles using proposed algorithm. 47

3.6 Radial porosity distribution evolution starting at an initial condition
(step 0) through 245 packing cycles (step 245). 49

3.7 Comparison between radial porosity distributions produced by the al-
gorithm and experimental results by Roblee et al. [110] 51

3.8 Packed bed of 500 trilobe particles with bulk porosity of 0.75 (a) Side
view of three dimensional geometric representation of packed bed of
trilobe particles constructed in GAMBIT meshing software; (b) Radial
porosity distribution of the trilobe particle bed. 52

3.9 Side view of three dimensional domain of 1000 packed cylinders with
bulk porosity of 0.65 constructed using GAMBIT meshing software. . 54

3.10 Representative domain of interstitial spaces that has been meshed and
had a simulation performed. 54

3.11 Example of a reduced domain prior to face and volume meshing. . . . 55
3.12 Example of a triangular element that is (a) maintains Delaunay crite-

rion; and (b) violates Delaunay criterion. 57
3.13 Typical parallel processor distribution on a packed-bed mesh 59
3.14 Example of the surface mesh on a particle (a) full triangular faces

prior to arbitrary polyhedral conversion; and (b) polyhedral faces that
smoothed out remaining grain boundaries in created triangular mesh. 61

4.1 Random point velocity fluctuations for (a) steady-state turbulent flow
and (b) transient turbulent flow . 68

4.2 Typical pressure drop data from the simulations that is fitted to Er-
gun’s equation (Equation 4.25) using the fv3 version of the Spalart-
Allmaras turbulent closure model . 82

4.3 Presentation of three-dimensional data along the (a) (1,-1,0) and (b)
(0,0,1) plane through the bed using Miller index notation. 83

4.4 Velocity magnitude slices along (0,0,1) plane through the packed bed
for (a) laminar flow at Rep=10; (b) laminar flow at Rep=100; (c) fully
turbulent flow at Rep=1500; and (d) fully turbulent flow at Rep=2500 84

4.5 Velocity magnitude slices along (1,-1,0) plane through the packed bed
for (a) laminar flow at Rep=10; (b) laminar flow at Rep=100; (c) fully
turbulent flow at Rep=1500; and (d) fully turbulent flow at Rep=2500.
The entrance and exit regions of the beds have been removed for im-
proved visualization. 85

xi

4.6 Comparison of velocity magnitude (top row) and vorticity magnitude
(bottom row) for laminar (left column) and turbulent (right column)
flows around a particular particle in the bed. 86

4.7 Surface plots of turbulent kinetic energy (left) and turbulent kinetic
energy dissipation (right) near a particle surface. 86

4.8 Surface and contour plot of Q-criterion used to visualize the presence
of vortexes around the packed particles. 87

4.9 Dimensionless (a) radial velocity component Ur/Ūr, (b) azumuthal ve-
locity component Uθ/Ūθ, (c) axial velocity component Uz/Ūz, and (d)
velocity magnitude ||U||/||Ū|| vs. dimensionless radial distance from
the center (r/dparticle) for laminar and turbulent flows. 89

4.10 Dimensionless (a) radial velocity component Ur/Ūr, (b) azumuthal ve-
locity component Uθ/Ūθ, (c) axial velocity component Uz/Ūz, and (d)
velocity magnitude ||U||/||Ū|| vs. dimensionless radial distance from
the center (r/dparticle) for laminar and turbulent flows. 91

4.11 Dimensionless velocity magnitude scaled with (a) the average veloc-
ity of the lowest laminar Reynolds number of Rep = 10 and (b) the
average velocity at each Reynolds number, related to dimensionless
perpendicular distance from the nearest wall (y) scaled with particle
diameter. 93

4.12 Dimensionless (a) perpendicular turbulent kinetic energy profiles scaled
with the lowest turbulent velocity magnitude and (b) perpendicular
turbulent kinetic energy dissipation rate scaled with the lowest turbu-
lent ε. 94

5.1 Laminar (Rep = 10, Sc = 0.79, C0 = 0.8, and Bo = 7.9) step-tracer
surface plot through the (1,-1,0 plane) cutting plain with t̄ = 26.8 [sec]
and σ2 = 78.01 [sec2]. 107

5.2 Turbulent (Rep = 1500, Sc = 0.79, Sct = 0.7, Co = 0.8, and Bo =
1188) step-tracer surface plot through the (1,-1,0 plane) cutting plain
with t̄ = 5.25 · 10−2 [sec] and σ2 = 4.74 · 10−5 [sec2]. 108

5.3 Presentation of (a) an age-distribution curve for a laminar flow with
Rep = 10 and (b) a comparison of dimensionless age-distribution (Eθ)
versus dimensionless time (t̄) between a laminar flow and fully turbu-
lent step-tracer. 110

5.4 E curves for flows withRep = 1500 comparing (a) the effect of turbulent
Schmidt and (b) the effect of Courant number. 112

6.1 Intel CPU vs. Nvidia GPU [32] (a) GFlops per second performance
comparison for single and double precision (b) Memory bandwidth
comparison . 118

6.2 Packed-Bed mesh decomposition using Scotch 123

xii

6.3 Simple domain decomposition across six nodes, each containing pro-
cessor interfaces between sub-meshes 123

6.4 A global representation of our decomposed Ax = b system with coef-
ficient (Aii) and interface (Aij) matrices for each sub-mesh 124

6.5 Data flow diagram outlining the movement and conversion of data
from OpenFOAM to the Cufflink solvers. The process is broken up
into three portions where (I.) takes place in OpenFOAM C++ code,
(II.) leverages Thrust and CUSP to convert and move the information
to the GPU, and (III.) the system is solved on the GPU using Cufflink
with the solution transferred back to OpenFOAM. 128

6.6 Speed-up comparison of geometric algebraic multigrid solver in Open-
FOAM over 6 processors (GAMG6) with the several Cufflink solvers
using one and two GPUs, where CG = conjugate gradient, DPCG
= diagonal preconditioned conjugate gradient, SmAPCG = smoothed
aggregation multigrid preconditioned conjugate gradient, Parallel in-
dicates two GPUs, and cufflink indicates a GPU solver. 130

xiii

Chapter 1

Introduction

1.1 Background and Motivation

Packed beds are described as a collection of closely placed solid particles in a container

in which a flowing phase is contacted with a stationary solid phase. In the chemical

industry, packed beds are most commonly used in absorption scrubbers, packed bed

reactors, and trickle bed reactors. Absorption scrubbers utilize the high surface area

of the non-porous particles in the packed bed to increase the rate of species mass

transfer between different phases present in the unit. Packed-bed reactors (PBR) are

used to carry out single phase catalyzed reactions such as methane steam reforming,

hydrocracking, and partial oxidation, often using a porous heterogeneous catalyst.

Similarly, trickle-bed reactors (TBR) are used to combine mass transfer of species

between a thin liquid film and gas phase with a reaction using a heterogeneous catalyst

[106]. The absorption scrubber, PBR, and TBR are an integral part of the chemical

industry that rely on the intricate micro structure within packed beds.

The structure of packing plays an important role, affecting many physical phenomena

including dispersion, pressure-drop, interstitial velocity, and local boundary layer

formation over particle surfaces, is often difficult to characterized. Due to the intricate

of arrangements of the packed particles, the method by which bed structure can be

described dictates the method used to model momentum transport in a PBR or TBR,

as well as the information gained from these models. Shown pictorially in Figure 1.1,

momentum modeling strategies can be broken down into three categories based on

the description of bed structure:

1

 Uses superficial velocity
 ErgunType Equation (P)

(r)

PseudoContinuum Models
 Extended Brinkman
 EulerianEulerian (GL)

Gas Phase

b. Radial Porosity Distribution

ParticleScale

 NavierStokes Equations
 No Ergun pressure closures

total

solids
b

V

V
1

a. Bulk Porosity

c. Complete Description of Particles

X,Y, Z

Particle

Figure 1.1: Modeling strategies to capture momentum, based on knowl-
edge of packed-bed structure. Schematic of a realistic packed-bed system
of stationary packed catalyst particles (center); a. Bulk Porosity values
enable low-dimensional models to based on an a priori velocity field to
give global information; b. Radial Porosity Distribution functions (Equa-
tion 1.1) provide a more detailed bed description for determination of
the velocity profile on the reactor-scale; and c. Complete Descriptions of
Particles allow for extremely detailed modeling that leverage a fluid me-
chanical approach, capturing transport phenomena over small portions of
the packed-bed at the particle-scale

a. Bulk Porosity: Low-dimensional models based on bulk porosity (εb) must also

lump complex velocity flow fields into a superficial fluid velocity (G0 = V̇ /Atube)

by assuming plug-flow behavior. Although it is seen experimentally that there

is a local flow maxima near the tube wall due to the higher local bed porosity

[115], the velocity profile in packed-beds is generally modeled as a plug-flow

[49]. Though these models are empirical in nature, they can provide overall

estimates of pressure drop for power consumption estimations. The benefit is

that low order models have been thoroughly tested over the last century and is

widely used by industry and academia. The drawback is that the description of

complex flow and detailed physical phenomena are lumped together in relations

that are fitted with empirical parameters (i.e. Ergun’s constants).

2

b. Radial Porosity Distribution: Higher-dimensional models replace a bulk

porosity with a more descriptive representation of the bed structure in the form

of a porosity distribution function. The most common is the radial porosity

distribution for uniformly sized spherical particles from Mueller [90], with de-

pendency on radial position r, reactor diameter D, and particle diameter d,

such that

ε(r) = εb + (1− εb)J0(ar∗)e−br
∗
. (1.1)

where

a = 8.243− 12.98

(D/d+ 3.156)
, for 2.61 ≤ D/d ≤ 13.0,

a = 7.383− 2.932

(D/d− 9.864)
, for 13.0 < D/d,

b = 0.304− 0.724

D/d
,

r∗ = r/d, for 0 ≤ r/d,

and

εb = 0.379 +
0.078

(D/d− 1.80)
.

In general, the class of single and multi-phase reactor models that leverage

porosity distributions to characterize the solid packing are called pseudo-continuum

models (PCM) and have been widely used throughout the literature [79, 88, 76,

100, 64, 52, 53, 107]. The main assumption of PCMs is that all of the phases

present in the system can inter-penetrate and exchange momentum via addi-

tional lumped source terms in a transport equation [88]. For single phase flows,

Vortmeyer and Schuster [130] extended the Brinkman equation to compute ve-

locity profiles (G(r)) such that

∂p

∂z
= −E1

(1− ε(r))2

ε(r)3

ηeff
d2
p

G(r)− E2
(1− ε(r))
ε(r)3

ρ

d2
p

G(r)2 −
ηeff
r

∂

∂r
(r
∂G(r)

∂r
). (1.2)

At the center of the tube is a finite velocity, while at the wall is a no-slip velocity

condition [49]. However ηeff in Equation 1.2 requires iterative calibration to

match model results to measured laboratory flow rates [49]. One of the most

3

dramatic examples of the impact of such models was from Lerou and Froment

[79], in which the researchers showed that a simple two dimensional models for

heat and mass transport yielded significantly different results when constant

and porosity depended velocity profiles were used. Specifically, the authors

showed that for the exothermic oxidation of orthoxylene to pthalic anhydride,a

non-uniform velocity profile (dependent on porosity) predicted reactor runaway

while the constant velocity profile did not. A testament that the classical as-

sumption of plug-flow can estimate a drastic difference in reactor performance.

For multiphase flows, computational fluid dynamics (CFD) models are based on

an Eulerian-Eulerian (EE) approach which additionally incorporates the volume

fraction of a gas or liquid phase and detailed inter-phase momentum exchange

terms1 for fluid-fluid and fluid-packing interactions first introduced by Attou,

A. and Ferschneider [7]. In general, the EE approach behaves agreeably but can

inadequately predict complex physical behavior such as hysteresis [75]. Overall,

pseudo-continuum models provide a more detailed glimpse into superficial veloc-

ity profiles within packed-bed systems, ultimately providing better information

to improve reactor design. To a detriment, PCMs are rooted in empiricism,

but are considered hybrid models meant to bridge the fluid mechanics gap with

traditional chemical engineering reactor-modeling whilst being computationally

tractable.

c. Complete Description of Particles: By developing a complete description

of the packed-bed, the location, orientation, and dimensions of each particle face

is know a priori. With this level of geometric detail, a methodology based on

fluid mechanics and computational fluid dynamics can be leveraged to model the

complex fluid flow within the packed-bed to resolve momentum, heat and mass

transport phenomena. Currently, obtaining a full description of a industrial-

scale packed-bed reactor via tomographic methods is not possible. Obtaining

this level of detail for pure fluid mechanical modeling is also impractical due to

the amount of computing power required. What has been shown to be practical

(Section 1.2), is to model a small section of the packed bed that is represen-

tative of the whole bed as shown in Figure 1.1. The particles captured in this

representative volume are composed of either structured groups of particles (e.g.

1the equation is left out for brevity

4

face-centered, body-centered, or simple cubic), pseudo-random particles, or arti-

ficially generated random domains of particles. Though considered more precise

from a first-principles perspective, wide acceptance of these modeling methods

on this length scale in the chemical engineering domain have yet to take hold.

In addition, models representing fully turbulent non-isothermal reacting flow

with gas-solid heat and mass transfer quickly become computationally taxing.

Strategies and assumptions to reduce such complications are given in later chap-

ters.

The more detailed the characterization and numerical representation of the packed

bed structure the more detailed the reactor model and type of results that can be

given by the resulting simulation. Having complete information of the structure of

the packed-bed allows for the determination of both the bulk porosity (εb) and ra-

dial porosity distributions (Equation 1.1) directly, subsequently allowing for the low-

dimensional and pseudo-continuum models to be fully explored (Chapter 3). This

fact could in essence allow for improved pseudo-continuum models in much the same

way that direct numerical simulation (DNS) enables more precise large-eddy simula-

tion (LES) and Reynolds-averages Navier-Stokes (RANS) turbulence models through

better estimation of model parameters. The benefits and drawbacks of the full fluid

mechanical approach to particle-scale modeling is discussed throughout this thesis,

and represent a leap in bridging the fluid mechanics gap in chemical engineering.

1.1.1 Objectives of this Work

The overall objective of this work is to investigate heat, mass, and momentum trans-

port on the length-scale of the particles within a randomly packed beds of particles

and decipher an appropriate method to generate the random domain and capture

various physical phenomena. The principle tasks that will be addressed in this thesis

are to:

1. Develop a packing algorithm to randomly place cylindrical particles in a tubular

domain while knowing the exact location, orientation, and dimensions of each

particle.

5

2. Develop a strategy to generate computational meshes of these randomly packed

particles that minimizes numerical errors.

3. Using computational fluid dynamics, simulate particle-scale momentum trans-

port using the Navier-Stokes equations (laminar flow) and Reynolds-averaged

Navier-Stokes methodology (turbulent flow) in OpenFOAM.

4. Using computational fluid dynamics, simulate mass transport in laminar and

turbulent flow fields to investigate the sensitivity of turbulent mixing in the

system to the choice of turbulent scalar-flux approximation methods.

5. Develop heterogeneous computing methodologies using graphics processing units

to accelerate simulations and decrease overall simulation time.

All of these tasks will be completed through three overall phases that include develop-

ing a domain generation algorithm for random packing of cylinders, interstitial-scale

modeling of packed beds, and developing sparse linear system solvers in CUDA. Pre-

vious studies related to each of these phases are discussed in the next section.

1.2 Previous and Related Studies

1.2.1 Random Packing of Cylinders

The development of a method to efficiently and randomly place objects in a container,

while minimizing total volume in an optimal manner, has been the subject of much

attention in mathematics, physics, chemistry, and engineering [62]. A full evaluation

of the prior art in packing algorithms is beyond the scope of this work. However,

a discussion of packing domain generation efforts towards packed-bed simulations is

provided herein.

For many studies in interstitial-scale simulations of packed-beds, ordered structures

of spheres were used to approximate the packed-bed, drastically simplifying the do-

main construction and meshing process[84, 51, 54, 88, 85, 86]. For more complex

6

particles, Dixon et. al. began using groups of cylindrical particles in low particle-to-

tube ratios [88]. Again, the method by which the domain of cylinders was created

was simply selecting important structures from those seen in an experimental packing

study and manually creating a representative arrangement of particles so that a pe-

riodic computational domain could be achieved [92]. The resulting structure is only

pseudo-random but extremely well suited for simulation. However, the only randomly

packed bed of particles to have fluid simulation to date have been created using the

discrete element method (DEM), with fluid modeling being performed using a Lattice

Bolztmann Method (LBM) [22]. Though DEM is now an attractive choice for packing

particles, at the beginning of this project the methods for efficiently converting DEM

results to a 3D computational mesh was difficult.

In the discrete element method, an arbitrarily shaped particle (e.g. cylinder, Pall ring,

etc.) is represented as a collection of tiny composition spheres or three-dimensional

pixels (Voxels) [91]. The resulting overlap determination of the complex particles is

merely the assessment of whether the composition particles overlap. Each of the com-

position particles is subject to time, collision, gravity, adhesion and other force fields,

modeled as Lagrangian particles. As the number of compositional particles grows and

the simulation timescale lengthens, the simulation quickly becomes computationally

intensive. So much so that in recent years, DEM has increasingly gained traction in

the computing world for further application of graphics processing units (discussed

in Chapter 6) in the rigid-body dynamics simulation [121].

With respect to the packed-bed simulation, the most relevant work is by Caulkin

et. al. [21]. Caulkin and colleagues were able to pack arbitrary shaped particles

including Pall rings, cylinders, and Hama beads in a tube using the DEM program

DigiPacTM(www.structurevision.com) [47]. The results of Caulkin et. al. are very

impressive, as they compare well with X-Ray tomography images of packed-beds of

Pall Rings, cylinders and Hama beads shown in Figure 1.2. Because the voxels are

represented on a regular grid, more natural method of performing fluid simulation is

to use LBM [22]. However, recent advances (2011) in image analysis have enabled

more complex meshes to be constructed from voxilated images from CT and MRI

scans, showing that the finite volume Navier-Stokes method can indeed be used on

these domains from images [8].

7

Figure 1.2: Visual examples of the the results by Caulkin et. al. [21] as
obtained by the program DigiPac for: (a) Pall ring packing, (b) packing
of 4-mm alumina pellets, (c) Hama beads packing

As an alternative to DEM, a method was devised at the beginning of this work,

seeking a cylinder-cylinder overlap determination explicitly, so that each face of the

particles could be known exactly and meshed. One such method was proposed by

Blaak to investigate the formation of cubatic phases in the packing of cylinders [18].

Using the method of particle-particle overlap determination by Blaak, one can know

the orientation and location of the faces of the cylindrical particles and generate a

computational mesh relatively easily. As we shall see in Chapter 3, the algorithm by

Blaak provided a more than adequate method for generating a packed-bed of particles

as shown in Figure 1.3

8

Figure 1.3: An example of the results using the overlap determination
algorithm by Blaak [18], discussed in more detail in Chapter 3.

1.2.2 Interstitial-Scale Modeling of Packed Bed Reactors

As introduced in the background and motivation section, interstitial-scale modeling

offers the most detailed look into the transport processes occurring in a packed-

bed. Specifically, each particle surface is resolved, a detailed mesh approximating

the domain is generated, and complete modeling of transport equations for heat,

mass, and momentum are performed. A fairly complete review of the literature

has been provided by Dixon et. al., navigating the field up until 2006 [88]. More

recently, a discussion by Ranade, Chaudhari, and Gunjal provided further insight

into the experiential and modeling of single and multiphase flow modeling in packed-

beds[108]. The pertinent details of the literature review are left to the interested

reader, but sufficient background of the topic is provided here to orient the reader as

to the state-of-the art.

Simulations of interstitial phenomena in packed-beds generally leverages the finite

volume method (Chapter 2), however some attention has been given to the Lattice

Boltzmann Method (LBM), especially from packing algorithms leveraging DEM [23].

The limitation to the LBM is that flows are limited to lower Mach numbers and

turbulence is handled through a relaxation time process [43]. For finite volume based

9

Figure 1.4: Mesh structure of a unit-cell simulation used by Gunjal et. al.
[54] for (a) simple-cubic; (b) and (d) Rhombohedral; and (c) face-centered
cubic structures.

methods, nearly the entire spectrum of published results in interstitial-scale CFD of

packed beds leverages software by ANSYS (http://ansys.com/).

There are two main type of simulation on the interstitial-scale, a unit cell approach

(UCA) and a macro cell approach (MCA). In the unit-cell approach, particles are

arranged in an orderly fashion to form repeating units similar to crystal structure

(face-centered cubic, body centered cubic,etc.)[54]. UCA uses fine meshes to capture

near particle transport phenomena and periodic boundary conditions to remove inlet

and exit effects, with typical meshes shown in Figure 1.4. Most importantly, the work

by Gunjal et. al. sought to further validate the flow field through direct comparison

of simulation to experimental results using non-invasive MRI imaging [54, 88]. The

second method using the macro cell approach simulates transport phenomena over

larger groups of particles that are a representative section of the bed. Macro cell

approaches are currently dominant in the literature, and have been the most difficult

to validate. Almost the entire collection of the literature has “validated” simulation

results with boundary values (i.e. pressure drop, heat flux calculations, etc.), radial

profiles of some sort (e.g. velocity, temperature, etc.), and qualitative comparison

10

http://ansys.com/

with trends. Full validation of the flow field and experiment in a one-to-one compari-

son is still lacking, since we are only recently able to generate meshes of experimental

setups directly from MRI images and yet to determine a fully-resolved real-time flow

field [8]. For macro cell simulations, complete validation is still an issue and an inte-

gral portion of the research on interstitial scale phenomena in packed beds. So much

so that validation of flow around a single particle is still a focus of research [41].

Though the research in the field of interstitial-scale transport modeling has been ad-

mittedly academic in nature, it has gained increased attention of industry for research

related to particle shape optimization. The work by Nijemeisland and collaborators,

has focused on low particle to tube ratio systems for optimization of wall heat transfer

[92]. In particular they have chosen to optimize the number and diameter of length-

wise holes in cylindrical catalysts along with small alterations to the overall cylindrical

shape [123]. Recently they have worked to resolve intraparticle diffusion and reaction

within their simulation for nonisothermal flows [125, 124, 40, 14]. Though there is a

steady flow of publications continuing to be put out in the literature, there has yet

to be a fundamental analysis of particle characteristics that optimize some objective

for more general systems. More specifically, a list of questions could be addressed to

further understand the link of particle structure and function towards optimizing a

particular process in a packed-bed, including:

1. What is the optimal shape for reduced pressure drop in a packed bed?

2. What attribute of the particle causes dead-zones to form behind particles?

3. Can the near particle boundary layer be controlled and is this level of control

important?

4. What does the shape of a particle look like to promote maximum heat removal

from a particle surface or prevent run-away exothermic reactions?

5. Is there an preferred orientation of a particle to reduce undesired effects?

6. Can we make a particle that packs in a specific manner without much effort

(i.e. packs itself in a desired configuration)?

7. What is the most accurate model for capturing the complex flow field and is

large eddie simulation (LES) and direct numerical simulation (DNS) an option?

11

Partial answers to some of these questions can be found from previous studies men-

tioned earlier, however the complete particle structure to function link has yet to

be fully elucidated. Doing so requires further study in packing algorithms, meshing

studies, and turbulence modeling in fluid simulations specifically aimed at answering

these questions in order to obtain a more fundamental understanding.

Meshing Of Packed Beds

The generation of meshes describing the packed bed structure at the interstitial scale

requires special consideration that has been discussed in the literature[88, 108]. The

unit cell modeling of Gunjal reiterates the fact that the mesh must be fine to cap-

ture hydrodynamics within the interstitial spaces, and in some cases require periodic

boundary conditions to eliminate inlet and outlets effects [54]. For larger domains of

particles, spaces between particles must be used to reduce the skewness of the mesh

near particle-particle contact points, i.e. increase the uniformity of face area of the

tetrahedron cells [93]. At contact points, the increased skewness of a mesh creates

more dramatic changes in velocity resulting in solution instability at higher Reynolds

numbers with and without turbulent closure [93]. In addition skewed cells make it

very difficult to converge a solution. Meshes of packed bed structures generally use

unstructured tetrahedron meshes to fully describe the intricate domain and may or

may not include the internal geometry of the particles [88]. In order to reduce the

effects of mesh skew and non-orthogonality, hybrid meshes composed of tetrahedral

and hexahedral-prism cells were used to simulate single-particle dynamics, to resolve

boundary layers, drag, and heat transfer from a particle [41]. What has not been

addressed is the fact that misalignment with the flow and mesh will always

occur with tetrahedral meshes, increasing the error in the calculation. Mis-

alignment with the flow can be overcome by using unstructured arbitrary polyhedral

meshes, a topic covered in later chapters.

Turbulence Modeling

For most of the literature in macro-cell interstitial-scale modeling, Reynolds averaged

Navier-Stokes (RANS) methods have been used in order to minimize computational

12

Table 1.1: RANS Turbulence Models in Interstitial-Scale Packed-Bed
Modeling

Author Source RANS Turbulence Model

Guardo et. al.
[50] Spalart-Allmaras

Standard, RNG, and Realizable k − ε
Standard k − ω (Wilcox)

Gunjal, Ranade, and Chaudhari [54] Standard k − ε
Dixon et. al. [84, 94, 41] standard and RNG k − ε and k − ω
Combest, Ramachandran & Dudukovic [27, 26] Spalart-Allmaras fv3 version

efforts. The details of RANS modeling are addressed in Chapter 4, however the com-

mon turbulence models used in interstitial-scale modeling are summarized in Table

1.1. A comparison of several turbulent viscosity models was given by Guardo [50],

stating that the optimal method was the Spalart-Allmaras model. However there was

no specific mention of what version of the model was optimal. There is a wide variety

of turbulence models used in the studies, mostly related to k−ε, but interestingly the

current results of the literature show that there is no real difference in the selection of

the turbulence model as long as it is used correctly [92]. This conclusion is addressed

in Chapter 4 during the selection of models used for this research project.

1.2.3 Sparse Linear System Solvers in CUDA

There have been several projects with varying levels of success that have linked the

GPU to OpenFOAM. The earliest project that was available to the public was the

Vratis SpeedIT plugin (http://speedit.vratis.com/) in November of 2010, of-

fering a single precision CUDA based code with diagonal preconditioned conjugate

gradient method. The SpeedIT plugin offered multi-gpu support only through ap-

parent parallelism of the linear algebraic operations and not through domain de-

composition. The second code offered to the public was provided by Symscape

(http://www.symscape.com/gpu-openfoam) in April of 2011, giving diagonal pre-

conditioned conjugate gradient and bi-conjugate gradient solvers without multi-GPU

support. The third code was outlined in a proposal to Nvidia by Combest and Ra-

machandran [28] and conference presentation [27] in the summer of 2010. This last

13

http://speedit.vratis.com/
http://www.symscape.com/gpu-openfoam

code is currently a portion of my thesis work and is being released under Gnu Public

License Version 3 [1] under the name cufflink.

Additional CUDA Libraries

This work employs CUSP and THRUST, two additional libraries that are based on

CUDA C/C++. CUSP is used for sparse linear algebra and graph computations, that

contains a collection of BLAS functions and example algorithms for solving sparse

linear systems of equations provided by the user [16]. THRUST is a collection of

algorithms with an interface resembling the C++ Standard Template Library (STL)

[120] that aims to combine the strength and ease of the template programming of the

STL and parallelism of the GPU [56]. The basis of CUSP is a mature and highly

efficient sparse matrix vector multiplication algorithm [15] that has been optimized

for several sparse matrix storage schemes. Similarly, THRUST has received recent

attention for sorting one-billion integer keys per second, a parallel algorithm that

is faster than several CPU based sorting methods [89]. By leveraging the strength

of CUSP and THRUST, this work utilizes highly active and cutting-edge parallel

algorithms that are then tied into the OpenFOAM library.

1.3 Present Contributions

Below are the present contributions of this project that will be further outlined and

discussed in detail throughout this document:

Random Packing of Cylinders

• Created a Monte-Carlo method for generating random domains of cylindrical-

based particles for interstitial-scale simulations.

• Developed a method to create a mirrored mesh so that meshes of higher reso-

lution can be created with limited computational resources.

14

Particle Scale Modeling of Packed-Bed Reactors

• Provided justification for the use of arbitrary polyhedral meshes, and showed

that they are ideally suited for interstitial-scale flow simulations due to the

presence of extremely complicated domains.

• Was the first to showed that the low Reynolds number Lam-Bremhorst k − ε
model is ideally suited for packed bed modeling due to the additional dissipation

terms in the Lam-Bremhorst model, requiring no additional wall-functions.

• Provided insight into the need for improved scalar-flux solvers in RANS based

simulations of scalar transport in a turbulent field

Sparse Linear System Solvers in CUDA

• Showed more than 100x serial speedup compared to OpenFOAM solvers for

Smoothed Aggregate Algebraic Multigrid Preconditioned Conjugate Gradient

solvers for the heat equation.

• Was the first to use Multiple-GPUs leveraging course-grained parallelism through

domain decomposition method to solve massively parallel CFD simulations

• Provided open source code back to OpenFOAM community in the form of a

library tied to both CUSP and THRUST using the CUDA language.

General Contributions

• Developed a framework for modeling interstitial-scale phenomena in packed-

beds

• Initiated the use of OpenFOAM at Washington University

• Provided support for new users in OpenFOAM in CREL, WUStL, and at other

universities.

15

1.4 Thesis Outline

With the overall goal of using the OpenFOAM library to model the interstitial-scale

transport phenomena in a packed-bed, each chapter will explain in sufficient details

the following:

Chapter 2: A Brief Background in Computational Fluid Dynamics

This chapter provides and introduction to computational fluid dynamics (CFD), in-

cluding the overall workflow and general considerations in the using CFD as an anal-

ysis and modeling tool. Both domain and equation discretization will be discussed,

with special attention towards the discretization methods used in this research. The

reader will be left with a general sense of the complicated process of using CFD.

Chapter 3: Constructing Packed Beds of Cylindrical Particles

This chapter will thoroughly discuss the methods used to generate the randomly

packed particles for the CFD simulations. Specifically, the domain generation and

subsequent meshing strategy to create meshes of arbitrary polyhedral cells is covered.

Chapter 4: Interstitial-Scale Momentum Transport Modeling

This chapter will contain key information about the process of modeling momentum

transport in laminar and turbulent systems, and is the majority of the efforts during

this project. Covering pertinent information on the Lam-Bremhorst low Reynolds

number turbulence model used in this study, model equations, boundary condition

considerations, and results and discussion of flow-field results will be given.

Chapter 5: Interstitial-Scale Scalar Transport Modeling

Building upon the prior chapter, modeling passive scalar transport in laminar and

turbulent flow fields is presented. Specific discussion of the treatment of the scalar-

flux term (〈u′C ′〉) is provided, as well as the simulations of step-tracer simulations.

Chapter 6: Implementing Sparse Linear System Solvers Based on CUDA

in OpenFOAM

As a method to accelerate the OpenFOAM library, graphics processing units (GPUs)

were used to parallelize Krylov subspace linear system solvers. Specifically, a library

coupled with OpenFOAM was created, that utilizes both CUSP and THRUST CUDA

libraries is covered in detail.

16

Chapter 7: Summary of Contributions and Future Work

Concluding the thesis, this is a discussion of the contributions made throughout the

project with final thoughts as to future work.

17

Chapter 2

A Brief Background in

Computational Fluid Dynamics

2.1 Introduction

Computational Fluid Dynamics (CFD) in its most basic form is the study of par-

tial differential equations related to the description of fluid mechanics and transport

phenomena. The study of which involves methods to transform the physical system

in question from continuous space to discrete coordinate space. Most importantly,

CFD utilizes numerical analysis to develop approximate solutions to the continuous

problem.

CFD addresses questions that cannot be solved analytically, and can provide complete

information of transport phenomena occurring within a system to enable improved

engineering design. CFD can be used to analyze the design of full aircraft [4], evaluate

full scale trickle-bed reactor performance [108], improve hip joint design through

contact stresses analysis [20], and improve the fundamental understanding of micro-

scale phenomena in packed bed reactors [26, 27]. Ultimately it is a tool that is used

to provide a glimpse into the difficult to measure length and time scales and scenarios

where it is impractical to build many prototypes.

In this chapter, a brief background of computational fluid dynamics (CFD) is given

to familiarize the reader with the methods used in later chapters. A discussion of the

key steps involved in the workflow of solving a problem using CFD are provided. The

18

chapter continues with the cursory explanation of both space and equation discretiza-

tion. Beginning with domain discretization, the idea of the computational mesh is

presented and mesh generation algorithms are mentioned. The reader should be left

with a broad sense of composition of a computational mesh the level of detail that

must be considered. Next, in Section 2.3.2, the reader is given a brief introduction

to the finite volume method (FVM) so that a further understanding of overall CFD

solution procedure may be achieved. Face interpolation schemes that are mentioned

in subsequent chapters are presented entirely, leaving the reader with an informed

understanding of the importance of local continuity, the paramount characteristic of

the FVM. Finally, closure is given to prepare the reader for a discussion of the meth-

ods used to model complex turbulent fluid flow in packed bed reactors in Chapter

4. Relevant sources are provided throughout and the reader is encouraged to pursue

cited texts for additional depth and clarity.

2.2 The Process of Using Computational Fluid Dy-

namics

The process of using CFD to arrive at an accurate and physically meaningful an-

swer is an extremely complex task that requires careful consideration of many details

[104, 44, 128, 59, 81, 134]. It is extremely beneficial to establish a systematic ap-

proach for a specific type of simulation (e.g. aerospace, ship hydrodynamics, turbo

machinery, multiphase reactor design, combustion modeling, etc.), and consistently

apply these methods in a precise manner. One such set of “best practices” guide-

lines are published by the European Research Community on Flow, Turbulence, and

Combustion (ERCOFTAC) [2]. Editors Casey and Wintergerste offer a thorough and

somewhat non-technical discussion on the process of using CFD, and how to judge

the efficacy of such simulation work. The editors discuss a “typical” CFD calculation

and note that there are several important steps, including:

• Training of CFD users
• Problem definition
• Selection of solution strategy
• Choice of numerical procedure

• Validation of models
• Selection of turbulence models
• Geometry definition
• Boundary condition definition

19

• Definition of initial guess/condition
• Solution to the numerical equations
• Assessment of errors and accuracy
• Post-processing and visualization
• Analysis and interpretation

• Documentation and archiving of results
• Communication with code developer

For the discussion at hand, the entire process is divided into a simulation cycle of

preprocessing, model development, code execution, and post-processing and is briefly

discussed below.

1. Preprocessing: During preprocessing, the physical phenomena to be mod-

eled is isolated through the choice of model equations and boundary conditions;

domain measurements along with the computational mesh is decided upon, con-

structed, and possibly decomposed for parallel execution; physiochemical prop-

erties for the system in question are retrieved from the literature or experimental

data; computational requirements are estimated for the unknown system; and

specific objectives of data collection are outlined for post-processing. Careful

planning at this stage will result in a quicker cycle of simulations.

2. Model Development: During model development, the model equations are

derived and programmed for code execution. A solution strategy to solve the

model equations in an efficient manner is explored. The code must be thor-

oughly debugged and tested against canonical cases or analytical solutions to

provide confidence in the final result on an unknown geometry and fluid system.

3. Code Execution: Code execution requires that computational requirements

be reaccessed and evaluated for efficiency (i.e. is it more efficient to run our

case on 10 nodes or 100 nodes?). Data collection, preliminary error analysis,

solution quality assessment, and a solution improvement strategy (e.g. change

of discretization method to improve stability) are performed simultaneously and

may lead require revisions in previous steps in the simulation cycle.

4. Post-Processing: During post processing, the results of the simulation are

evaluated, summarized, and put into a form more conducive to sharing and

understanding. Conclusions about the results are drawn and may require the

simulation cycle to be repeated until errors have been minimized or the model

produces data that matches experimental results.

20

Overall, the process of using computational fluid dynamics to investigate complicated

fluid phenomena has been summarized. It is important to glean that the process is

iterative and requires many steps in order to achieve a final result. Returning to a

previous phase in the simulation cycle requires the remaining steps to be completed

again. The amount of time of each simulation cycle is directly related to practitioner

experience, choice of model (e.g. DNS, RANS, LES, multiphase flow models, moving

mesh models, etc.), computational resources available, mesh quality and composition,

equation discretization, and may depend on several other factors not mentioned.

Ultimately, if the proper model equations to describe the physical phenomena are

chosen correctly; error analysis is performed and errors minimized; and care is taken

to ensure validity through proper choice of discretization, the practitioner will increase

their chances of producing a successful simulation.

2.3 Domain and Equation Discretization

2.3.1 An Introduction to Domain Discretization

In terms of the finite volume method discussed in section 2.3.2, domain discretization

is the practice of approximating continuous computational space with a finite num-

ber of control volumes. The accuracy of the final solution, stability of the solution

procedure, and detail of physical phenomena that is captured by the model equations

is directly proportional to mesh size (i.e. number of cells), quality, and composition

(i.e. cell shapes). As a result, the generation of a mesh over the desired physical

domain is integral to the solution process.

In OpenFOAM, discretized space is represented as a collection of a finite number

of arbitrary polyhedron control volumes (cells) that are described fully using the

polyMesh2 format [81]. As an example of a polyhedron control volume, Figure 2.1

shows a cell with a centroid at point P, a face-area vector Sf at the area-centroid

of face f, and the location of the neighbor cell centroid at point N. Unfortunately,

2The polyMesh format is specific to OpenFOAM

21

N

P

Sf
f

Figure 2.1: polyhedral control volume from [61]

there is no direct method available to produce pure arbitrary polyhedral meshes3.

In order to produce an arbitrary polyhedral mesh, a mesh consisting of simplified

volume elements must be first generated and then eventually converted to an arbitrary

polyhedral mesh.

The simplest area elements of a two-dimensional mesh are the triangle and quadrilat-

eral. All surfaces in the discretized domains begin with these two shapes and are the

basis of the mesh cells that are created in the space within computational domain. If

we draw a point away from the triangular and quadrilateral faces and connect each

vertex to this point, we can create the simplest three-dimensional elements [101] –

the tetrahedron and pyramid – shown in Figure 2.2. If we extrude the triangle and

quadrilateral faces in a single direction, we then create wedges (or prisms) and hex-

ahedron cells. From these basis elements – tetrahedron, pyramid, wedge/prism, and

hexahedron – we can create an entire computational mesh or grid of a finite number

of non-overlapping control volumes to completely approximate the physical domain.

Using the volume elements presented in Figure 2.2, the size, shape (i.e. level of

deformation) and quantity of each element must be determined during the domain

space approximation. The choice of mesh generation algorithms is immense, and

can be partially represented by Figure 2.3 that has been compiled by Owen [95] and

3To the best of my knowledge at the time of writing, this is correct. This was a question that I
posed to a PointWise developer at the 6th OpenFOAM Workshop

22

http://www.pointwise.com/

triangle

quadrilateral pyramid

wedge/prism tetrahedron

hexahedron

2-D 3-D

Figure 2.2: Two and three dimensional cells shapes

taken directly from [96]. The details of each of these algorithms are not covered in

Mesh Generation
Algorithms

Structured Unstructured

Quad/Hex Quad/Hex Tri/Tet Tri/Tet

Octree

Delauney

Bubble

Advancing
Front

Direct Indirect Mapped

Geometry
Decomposition

Elliptic

Hyperbolic

TFI

Sweeping

Multi-Block

Sub-Mapping

Medial Object

Tri/Tet
Combine

THex

QMorph
HMorph

Grid-Based
(Inside Out)

Paving/
Plastering

Advancing Layers
(Hybrid)

Dual methods

Dicing

Hex-Tet

Sheet
Manipulation

Whisker-
Weaving

Figure 2.3: Survey of Mesh Generation Algorithms from Owen [96]

the present discussion, and are left for the motivated reader.

23

2.3.2 Equation Discretization: The Finite Volume Method

The goal of equation discretization is to approximate a partial differential equation

(PDE) on a continuous domain with a set of algebraic equations over discretized

space. For this discussion, the finite volume method (FVM) is briefly covered through

a simple example. For a more detailed treatment, the reader may consult the work

of Patankar [98] or Jasak [61].

As an example, consider the conservative differential form of the transport equation

of a generic tensoral quantity φ (of rank 0, 1, or 2 in general) through time and space,

such that:

∂ρφ

∂t
+∇ • (ρUφ+ Jφ) = Sφ (φ) , (2.1)

where the flux of φ in the convective term (Jφ) is commonly taken as Fick’s Law of

diffusion or the gradient diffusion hypothesis [30] (i.e. Jφ = −Γ∇φ). The resulting

transport equation is given as:

∂ρφ

∂t︸︷︷︸
time derivative

+ ∇ • ρUφ︸ ︷︷ ︸
advection term

= ∇ •Γ∇φ︸ ︷︷ ︸
diffusion term

+ Sφ (φ)︸ ︷︷ ︸
source term

, (2.2)

where ρ is the fluid density, U is the velocity vector of the fluid, Γ is the diffusivity

of φ, and Sφ (φ) is a source term. Equation 2.2 describes the rate of change per unit

volume (time derivative), the rate of efflux per unit volume (advection term), the

rate of transport due to random molecular motion (diffusive term), and the rate of

consumption or generation of φ per unit volume (source term). The present form of

Equation 2.2 describes the conserved transport of basic quantities such as momentum,

mass, or enthalpy over a domain.

In the finite volume method, Equation 2.2 is transformed into its integral form and

discretized using a generalized form of Gauss’s Flux Theorem (Appendix A.1) to ap-

proximate the volume integrals with enclosed surface integrals. Converting Equation

2.2 to its integral form in time an space yields:

24

∫ t+∆t [∂
∂t

∫
VP

ρφ dV +

∫
VP

∇ • (ρUφ) dV

]
dt =

∫ t+∆t [∫
VP

∇ •Γ∇φ dV +

∫
VP

Sφ dV

]
dt,

(2.3)

where VP is the control volume. For the remainder of this section, each of the differ-

ential operators, source terms, and time integration schemes will be covered.

The Advection Term

In finite volume discretization, the advection term (often used interchangeably with

the term convection) in Equations 2.2 and 2.3 is represented as:

∫
VP

∇ • (ρUφ) dV =

∮
SP

dS • (ρUφ). (2.4)

Equation 2.4 can further transformed into a linear combination of values around the

discretized control volume by:

∮
SP

dS • (ρUφ) =
∑
f

Sf • (ρU)fφf =
∑
f

Ffφf , (2.5)

where φf is the face value of quantity φ that is evaluated using numerous face inter-

polation methods including:

• Upwind Differencing (UD): This method is first order accurate and bounded

using the scheme:

φf =

{
φP for Ff ≥ 0

φN for Ff < 0
(2.6)

where P and N are shown in Figure 2.1. Equation 2.6 is built on the assumption

that the gradient in φ from the cell center to the face from the upwind direction

25

is negligible. The UD scheme is known to be numerically diffusive [44], espe-

cially on tetrahedral meshes, decreasing in diffusiveness on polyhedral meshes.

Reducing numerical diffusiveness of a solution using UD requires careful choice

of meshing structures. Normally, UD should be used as a first approximation,

with diffusive errors minimized by reducing the cell size (increasing the total

cell count) of the mesh.

• Linear Upwind Differencing (LUD): As a method to correct the UD scheme

and increase its order of accuracy, the linear upwind scheme can be used. This

method is second order accurate and unbounded [104, 44], unless a limiter in

the gradient portion of Equation 2.7 is used. The face value of φ is calculated

by:

φf = φi +∇φi • r, (2.7)

where φi is the upwind cell centered value, that is corrected by the gradient

(∇φi) in the direction from the upwind cell center to the face of the cell (i.e.

r = xf − xi) [58, 104, 3]. The usage of this scheme in OpenFOAM requires the

user to prescribe a gradient scheme for each entry using the “linearUpwind”

divergence scheme.

• Linear Differencing (LD): Equivalent to the Central Differencing Scheme

(CDS), this method is second order accurate and can be unbounded [61, 111].

It is basically a distance weighted average of the cell-centered values of the

owner and neighbor cells of the face f , determined by:

φf = λfφP + (1− λf)φN , (2.8)

where

λf =
|xf − xN |

|xf − xN |+ |xf − xP |
. (2.9)

The pitfall of LD scheme is that out of bounds oscillating results can be returned

(i.e. unphysical densities, concentrations, temperatures) [44]. If the ratio of

convective flux to diffusive flux (cell Peclet number) is less than 2, the LD

scheme can be used and generally gives bounded results [44].

26

• Limited Linear Differencing (LLD): This is a total variational diminishing

(TVD) method [5], that is second order accurate and artificially bounded and

stabilized through a Sweby limiter, such that:

φf = (φf)UD + Ψ(r) [(φf)LD − (φf)UD] , (2.10)

where (φf)UD and (φf)UD are the values of φ at the cell face determined by

upwind differencing and linear differencing respectively. The function Ψ(r) is

dependent on the ratio of gradients (r), with:

r =
φA − φB
φC − φA

, (2.11)

where points A, B, and C are chosen depending on the direction of the flow in

the face f [61]. For a Sweby limiter [122], the limiting function Ψ(r) in Equation

2.10 is:

Ψ(r) = max

(
min

(
2r

k
, 1

)
, 0

)
, (2.12)

and 0 < k ≤ 1 is specified a priori. In general this “limitedLinear” scheme

should be less diffuse than the “linearUpwind”.

The Gradient

The gradient (∇) is used in some of the second order schemes and the non-conservative

form of Equation 2.2. In this project, several methods were used to calculate gradient

including:

• Gauss Integration : Using Gauss’s Flux Theorem (Appendix A.1), the gra-

dient term is expressed as an outer product of the surface normal vector and

the face value of φ using:

∫
VP

∇φ dV =

∮
SP

dSφ =
∑
f

Sfφf , (2.13)

27

where φf is determined using the methods described in the advection term

discretization subsection.

• Linear Least Squares Gradient: Discussed by Jasak and Weller [60] and

Muzaferija[38], the cell centered linear least squares gradient (LLSG) method

represents the gradient term as:

∫
VP

∇φ dV = (∇φ)P VP . (2.14)

The LLSG approximation is derived by extrapolating the gradient from point P

to its neighbor N , and comparing the extrapolated value of φN with the actual

value of φN . The error at point N is:

eN = φN − (φP + rPN • (∇φ)P) , (2.15)

where rPN = xN − xP . We then minimize of the error at point P with:

e2
P =

∑
N

(wNeN)2, (2.16)

where the weighting function wN = 1/|rPN | leads to the cell-centered gradient

expression:

(∇φ)P =
∑
N

w2
NG−1

P
• rPN (φN − φP) . (2.17)

The symmetric tensor GP needs to be calculated at every cell on the mesh

using:

GP =
∑
N

w2
Nr2

PN . (2.18)

GP is then inverted, stored locally for future use, and used in Equation 2.17

to give an accurate second order cell centered gradient approximation. For a

face centered value of gradient, the (∇φ)P value from Equation 2.17 can be

interpolated between the owner cell P and the neighbor cell N to the common

face using:

28

(∇φ)f = λf (∇φ)P + (1− λf) (∇φ)N (2.19)

where

λf =
|xf − xN |

|xf − xN |+ |xf − xP |
. (2.20)

• Gradient Limiters: Used in conjunction with Gauss integration or the LLSG

methods, gradient limiters dampen oscillations that might appear near rapid

changes in the flow field [59]. OpenFOAM provides cell and face based lim-

iters that are either standard or multi-directional. Cell based methods limit

the extrapolated face values between the maximum and minimum cell and cell

neighbor values and are applied to all components of the gradient vector 4. Face

based methods limit the extrapolated face values between the face-neighbor cell

values and are applied to all components of the gradient vector 5. Face based

methods are more numerically diffuse than their cell based counterparts [59].

The multi-directional version of the cell and face based methods work by being

applied only to the normal component of the gradient at each separate face of

the cell6 and are less numerically diffuse than the standard limiters [59].

The Diffusion Term

For the diffusion term in Equations 2.2 and 2.3, Gauss’s Flux Theorem (Appendix

A.1) can again be invoked to linearize the Laplacian (∇2) operator such that:

∫
VP

∇ •Γ∇φ dV =

∮
SP

dS • (Γ∇φ) =
∑
f

Γf

[
Sf • (∇φ)f

]
. (2.21)

For orthogonal meshes, Jasak [61] and Rusche [111] note that the face normal gradient

Sf • (∇φ)f is simply defined as:

4read almost verbatim from cellLimitedGrad.H in the OpenFOAM code
5read almost verbatim from faceLimitedGrad.H in the OpenFOAM code
6 from cellMDLimitedGrad.H in the OpenFOAM code

29

Sf • (∇φ)f = |Sf |
φN − φP

rPN
. (2.22)

An alternative that is again noted by Jasak [61], is the use of Equation 2.19 to

interpolate a cell-centered gradient to the face and dot this vector with Sf , but is

ultimately undesirable due to its larger computational molecule.

For non-orthogonal meshes, the accuracy of Equation 2.22 is decreased and a correc-

tion approach where:

Sf • (∇φ)f = ∆ (∇φ)f︸ ︷︷ ︸
orthogonal contribution

+ k • (∇φ)f︸ ︷︷ ︸
non-orthogonal contribution

(2.23)

must be used to maintain accuracy. Vectors ∆ and k must sum to equal Sf , and are

determined using the non-orthogonality treatment covered by Jasak [61]. For brevity,

they are only mentioned as the minimum correction approach, orthogonal correction

approach, and over-relaxed approach.

The Source Term

The treatment of source terms is an integral portion of the finite volume discretization

process, discussed in more detail by Patankar [98]. Ultimately, using an implicit

formulation of the FVM builds a set of linearized equations that are iteratively solved

with guesses from previous solution steps. Since the source term is a cell centered

value, it can contribute directly to the matrix diagonal, thus having a strong influence

on stability in the solution process. In much the same way that we have linearize the

differential operators, we must linearize source terms to accurately describe them

physically and provide stability to the solution process. The source term in Equation

2.3 is represented as a combination of an implicit and explicit component such that:

∫
VP

Sφ dV = SEVP︸ ︷︷ ︸
explicit source

+ SIVPφP︸ ︷︷ ︸
implicit source

(2.24)

30

where VP is the control volume, with SE and SI being explicit and implicit source

constants that may themselves depend on previous values of φ. For extremely compli-

cated sources (e.g. stiff or coupled reaction rates), the only option may be to represent

Sφ as a fully explicit SE(φ∗) term that is determined from a separate ordinary dif-

ferential equation solver. Lastly, in order to maintain stability, SE must always be

negative [98].

Time Derivatives

In this research, both steady-state momentum and time-dependent scalar transport

simulations were performed. In the case of the steady state solutions, no treatment

of the time derivatives is necessary. However, for the time dependent scalar trans-

port equations, a first order unconditionally stable Euler implicit method was used.

Referring to Equations 2.2 and 2.3, the time derivative term can be approximated as:

∫
VP

∂ρφ

∂t
dV =

ρnPφ
n
P − ρ0

Pφ
0
P

δt
VP , (2.25)

where the implicit φnP = φP (t+ δt) is being solved as a system of linear equations

and the φ0
P = φP (t) is the solution from the previous time step. The final discretized7

form of Equation 2.3 now becomes:

ρP
φnP
δt
VP︸ ︷︷ ︸

implicit time portion

+
∑
f

Ffφ
n
f︸ ︷︷ ︸

advection term

−
∑
f

Γf

[
Sf • (∇φn)f

]
︸ ︷︷ ︸

diffusion term

−SI(φ0)VPφ
n
P︸ ︷︷ ︸

implicit source

=

SE(φ0)VP︸ ︷︷ ︸
explicit source

+ ρP
φ0
P

δt
VP︸ ︷︷ ︸

existing time solution

. (2.26)

7It is “customary” to neglect the change of φ, the face values, and gradient terms over the
infinitesimal time-step[111], but the assumption is what leads to the large errors and first-order
nature of the implicit Euler scheme.

31

Using the face interpolation (UP, LUD, LD, LLD, etc.) and gradient approximation

(Gauss Integration, LLSG, etc.) methods previously discussed to transform φf values

to values of φ in terms of owners (P) and neighbors (N), the simplified general form

of Equation 2.26 now becomes:

APφ
n
P +

∑
N

ANφ
n
N = bP . (2.27)

Under-Relaxation in Steady-State

For most situations in CFD, a steady-state solution is sought after as an initial con-

dition for transient calculations or used to completely decouple the Navier-Stokes

equations from scalar transport (e.g. one-way coupling). As a method to reduce in-

stability during the iterative solving process, all segregated solvers (i.e. components

are solved separately and coupled explicitly) in OpenFOAM will use under-relaxation

through adding an additional term to both side of the algebraic system of equation

such that

AP
α
φnP +

∑
N

ANφ
n
N = bP +

1− α
α

A0
Pφ

0
P , (2.28)

where α = (0, 1). In Equation 2.28, the superscript 0 represents the solution from

the previous iteration. The benefit of under-relaxation is that additional diagonal

dominance is added to the linear system, thus improving stability. However, at low

value of α the solution progression is stable, yet the rate of convergence is drastically

slowed. It is wise to choose values of α that ensure stability, at a quick rate of

convergence. Finally, Equation 2.28 can be completely contracted into:

Aφ = b. (2.29)

Although there are many methods used to solve such systems of equations, because

the A matrix is very large and sparse, experience has shown that iterative solvers

can be extremely efficient compared to direct solvers. Moreover, the potential for

32

increasing the speed of finite volume solvers resides in the acceleration of iterative

linear system solvers. This final thought is addressed in Chapter 6 in detail.

2.4 Closure

A brief discussion defining computational fluid dynamics (CFD) and introducing dis-

cretization was provided. An overview of the entire process of using CFD as a design

and investigation tool was given. Several key points can be distilled from the provided

discussion:

• Computational Fluid Dynamics (Section 2.2) CFD has become a widely

accepted tool for investigating complex fluid flows and physical phenomena. In

its purest form, CFD is a set of computational tools and numerical methods

to provide approximate solutions to systems of partial differential equations

encountered in the study of fluids and transport phenomena. Throughout this

thesis, preprocessing, model development, code execution, and post processing

steps are reoccurring discussion topics. Moreover, strategies of improving these

steps are given with a specific slant in solving the complex fluid fields in packed-

beds.

• Domain Discretization (Section 2.3.1) The search for a more perfect ap-

proximation of continuous space in the form of a mesh is the subject of much

research in mathematics and engineering [96]. As a result, there is a variety of

mesh cell types and descriptions across many applications and in some cases are

problem specific [98]. For example, hexahedron meshes are known to produce

accurate solutions for boundary layer flows due to the unidirectional nature of

the flow near the solid surface in the base of the boundary layer. Likewise,

tetrahedron meshes are considered to be a very poor choice for highly turbulent

flows due to orthogonality and numerical diffusion issues, yet may be the only

choice of mesh for extremely complex geometries. For this project, as we shall

see in Chapters 3 and 4, errors were minimized and results were improved by

using arbitrary polyhedron meshes. Consequently, a higher level of confidence

in the solution is gained in the packed bed modeling work presented.

33

• Equation Discretization (Section 2.3.2) As Chapter 4 will reiterate, solu-

tion algorithm stability and accuracy is tremendously influenced by the choice

of discretization schemes. For the most part, second order upwind schemes have

been used in the advection schemes while least squares gradient schemes have

been used for gradient approximations. The current introduction to the reader

of the finite volume method was provided for reference in later chapters. The

interested reader should consult works by Patankar [98], Versteeg [128], Jasak

[61] and the appendix of this thesis for additional explanation.

34

Chapter 3

Constructing Randomly Packed

Beds of Cylindrical Particles

3.1 Introduction

One of the most important and time-consuming portions of CFD research is the do-

main and mesh generation steps. In this chapter, a Monte-Carlo packing algorithm is

discussed at length with particular attention to the particle-particle overlap determi-

nation. If the reader is familiar with packing algorithms, Section 3.2 may be skipped.

The remaining sections in the chapter (Section 3.3) cover the steps for generating a

Delaunay mesh for conversion to an arbitrary polyhedral mesh and eventual parallel

decomposition.

35

3.2 Geometry Generation Using a Monte-Carlo Pack-

ing Algorithm

3.2.1 Packing Methodology

Individual Particle Representation

The representation of the particle structure must be simple, require little computer

memory, and be easily translated into other formats for computational mesh gen-

eration. The representation of the particles used in this algorithm describes the

dimensions, location, and orientation of each particle in three-dimensional Cartesian

space, and is shown in Figure 3.1(a). The dimensions of each particle are represented

as a cylinder length and radius.

In Figure 3.1(a), the location of each cylinder is described by the position vector Vpos,

containing the x, y, and z-location of the centroid (located at r = 0 and z = L/2)

of each cylinder with respect to a global coordinate system. The orientation of each

cylinder is described by an orientation vector (U) aligned with the primary axis of

the cylinder in addition to the angles θ, φ, and τ . All particle rotations are performed

with respect to a local coordinate system (x′, y′ and z′), with a local origin at the

particle centroid. Angle θ is the amount of rotation around the local x’-axis of a

projection of U onto the plane z’-y’ represented as Upz′y′ ; angle φ is the amount of

rotation around the local y’-axis of a projection of U onto the plane x’-z’ represented

as Upx′z′ ; and angle τ is the amount of rotation around the local z’-axis of a projection

of U onto the plane y’-x’ represented as Upy′x′ about the centroid. The sign of the

rotation follows the right hand rule around each of the axis, and is shown in Figure

3.1(b).

The description of more complex particles, such as a trilobe (Figure 3.2(a)) or quad-

lobe (Figure 3.2(b)), is merely a superset of member cylinders with a specified length

and radius. The global position of the particle is described with a vector Vpos from

the global origin to the particle centroid in terms of x, y and z coordinates. Each of

the member cylinder is defined by the location of each member centroid on a local

particle coordinate x’, y’, and z’ similar to Figure 3.1(a). The orientation of each

36

Z’

Y’

X’

U

Y

Z

X

Vpos

(a)

+θ

Z’

Y’
X’

Upz’y’

+φ

X’

Z’
Y’

Upx’z’

+τ

Y’

X’
Z’

Upy’x’

(b)

Figure 3.1: Particle representation (a) Definition of local (x’,y’, and z’)
and global position (x, y, and z) in relation to position vector Vpos with an
orientation vector U ; (b) Definition of the orientation vector projections
Upy′x′ , Upx′z′ and Upz′y′ around local axes with respect to the angles θ, φ, and
τ using the right hand rule.

member cylinder is described by a member orientation vector Un oriented along the

primary axis of each member cylinder in addition to the angles θn, φn, and τn. The

description of angles θn, φn, and τn with respect to the vector Un is similar to the

relation between vector U and angles θ, φ, and τ shown in Figure 3.1(b).

Packing Algorithm

The goal of the algorithm is to randomly pack particles within a specified container. In

addition, the particle population was to have a normal distribution of particle lengths

and radii described by a mean length and radius as well as a standard deviation in both

measurements. Lastly, the algorithm was to ”compress” the particles in the negative

z-direction without including external forces or a force field in the simulation. The

key steps of the developed procedure are given in Algorithm 1.

The first step is to adjust each individual particle’s dimensions so that the population

has a normal distribution of lengths and radii. The second step is to determine an

37

Z’

Y’

X’

U1

Y

Z

X

Vpos

U2

U3

(a)

Z’

X’

U1

Y

Z

X

Vpos Y’

U2

U3

U4

(b)

Figure 3.2: Relation of local (x’, y’, and z’) and global (x,y, and z) coor-
dinate system using a particle position vector Vpos for (a) Simple trilobed
particle with member orientation vectors U1, U2 and U3; (b) Simple quad-
lobed particle with member orientation vectors U1, U2, U3 and U4.

Algorithm 1: Proposed Monte-Carlo packing algorithm

1. Adjust particle dimensions

2. Generate random initial condition

3. Perform packing cycles

(a) Sort particles and create a list

(b) Move through sorted list and place particle

i. Rotate and translate particle in random manner

ii. Check that the particle is within the packed bed boundaries

iii. Check for particle-particle overlap

(c) Lower the domain boundary

4. Output final location of particles and generate computational mesh

initial condition by placing each particle in the packing domain. Additionally, the

particle-particle overlap during the initialization step only considers packing sphero-

cylinders and is explained in the overlap determination section more thoroughly. In

the case of a packed bed reactor, a cylindrical container is chosen. This cylindrical

container requires a radius and initial height. A key point is that in order to produce

an initial condition quickly, an initial bed height many hundreds or thousands of times

38

greater then the final anticipated bed height is required. The key is to determine an

initial condition and let the bulk of the packing and compression to take place during

the packing cycles.

The third step is the core of the packing algorithm and consists of performing packing

cycles. First, an ordered list of particles in the initial condition from lowest z-location

to highest is constructed. Moving through the list, starting from the particle closest

to the bottom of the bed to top, each particle is packed one at a time. The use of

the list ensures that there is space below the particle being moved. Each particle is

rotated a random amount around the x’, y’, and z’-axis and then randomly translated

in the +/-x and +/-y directions and only the negative z direction in Cartesian space.

By only allowing downward motion in the z direction, we are ensuring that the bed

is becoming more packed with each packing cycle. As each particle is moved, it must

be checked to see that it is within the boundaries of the packed bed and also that it

is not overlapping with any other particle. Further discussion of the specific overlap

determination algorithm appears in overlap determination section. Finally, at the end

of each packing cycle the height of the boundary of the packing domain is lowered,

resulting in a decrease in the overall porosity.

The fourth step of the packing algorithm is to output the final location and orientation

of the particles in the packed bed. This output is used as an input file for meshing

or computer aided drafting software to create a mesh of the packed domain. For

this project, GAMBIT version 2.3.16 by Ansys Inc. (www.fluent.com) was used to

create the initial meshes. As input, GAMBIT uses a journal file script to place

each particle in the domain and then scales the particles to the appropriate length

to produce a mesh of the packed bed. Before the meshing process is discussed, the

overlap determination method needs to be addressed.

Overlap Determination

The packing algorithm section outlined a general method to pack particles of any

shape. The difficulty, is to determine if two particles overlap each other. In the

case of spheres, the overlap determination is trivial. If the center of sphere one

and sphere two are closer than the sum of radius one and radius two, there is an

39

overlap. For the case of more complex shapes (cylinders, trilobes, and quadlobes),

the determination is more difficult. For cylinders, the overlap determination follows

the algorithm proposed by Blaak et al.[18] with an additional large distance exclusion

step. The overlap between two cylinders (one being moved and one being stationary)

is determined through the following steps:

1. Large distance exclusion: Given an average cylinder length of L̄ and average

cylinder radius R̄. If L̄ > R̄, treat both cylinders as spheres of radii L1/2

and L2/2 and calculate the distance between the spheres to determine overlap.

Similarly, if L̄ < R̄, treat both cylinders as spheres of radii R1 and R2 and

calculate the distance between the spheres to determine overlap. If there is an

overlap move to the next step to determine spherocylinder overlap, otherwise

the move is accepted.

2. Spherocylinder overlap: Approximate the two cylinders as two separate

stacks of overlapping spheres. Spheres are only allowed to overlap spheres ap-

proximating the same cylinder. If the spheres of one stack overlap any sphere

from the second stack, move to the next step in the overlap determination.

Otherwise, the two cylinders do not overlap and the move is accepted.

3. Disk-disk overlap: Treating only each end of the two cylinder as a separate

thin ellipsoid, determine if the ellipsoids from one cylinder overlap the ellipsoids

of another cylinder. If there is an overlap, then the move is not accepted, the

particle is returned to it’s previous position, and a new move of the same particle

must be made. If no overlap is determined, then proceed to the next step.

4. Disk-cylinder overlap: This last step is used to determine if the ends of

one cylinder overlap with the cylinder shaft of the second cylinder. Treat the

ends of one cylinder as two separate thin ellipsoids and approximate the second

cylinder as many stacked thin ellipsoids. Determine if the ellipsoids of the fist

cylinder overlap the stack of ellipsoids in the second cylinder. If there is overlap,

then the move is not accepted, the particle is returned to it’s previous position,

and a new move of the same particle must be made. Otherwise, there is no

cylinder-cylinder overlap and the move is accepted. Repeat this last step again

by approximating the first cylinder as a stack of thin ellipsoids and only the

ends of the second.

40

The determination of ellipsoid-ellipsoid overlap is performed using the method out-

lined by Perrem [102, 103]. Originally used in modeling molecular fluids, the method

can detect ellipsoid-ellipsoid overlap without calculating points on the surface of the

two hard objects.

The particle-particle overlap determination method outlined is capable of detecting

the overlap of cylindrical particles or any particle consisting of a subset of cylindrical

particles. This includes trilobes and quadlobes or more complex particles. What must

be known is the location and orientation of each member (subset) cylinder in relation

to each other on a local (to the particle) Cartesian coordinate system. As shown

in Figure 3.2(a) and 3.2(b), each particle has a Vpos vector for the entire particle,

but separate Un vectors for each cylindrical particle member where the subscript n

describes member n. Additionally, each particle member is identified by a location

in the local x’, y’, and z’ particle coordinate system. The determination of particle-

particle overlap for more complex particles relies on the rule that members of the same

particle may overlap, while members of two different particles may never overlap each

other.

Radial Porosity Distributions

Porosity distributions are used to describe the structure of a packed bed. Often these

distributions are expressed with respect to a particular direction along a line or axis

in a packed bed (eg. r or z-direction). A simple mathematical definition of porosity

along a line is described using a point void fraction εp, where a value of 0 is assigned if

the point is located in a void space between the particles and 1 if the point is located

inside a particle [110]. The values of point void fraction along the line is the porosity

distribution along the line L. Summing all of these point void fractions along a line

L and dividing by the length of the line will give a line void fraction described by:

εL =
1

L

∫
L

εp dL (3.1)

41

with L being the total length of the line. Similarly, an area void fraction εA and

volume void fraction εV (equivalent to bulk porosity εbulk) are given as:

εA =
1

A

∫
A

εp dA (3.2)

εV = εbulk =
1

V

∫
V

εp dV (3.3)

These types of descriptions using point voidage and distribution are convenient for

direct experimental investigation of bed porosity, but requires many points to reduce

overall standard deviation in measurements. However, for a packing simulation, in-

formation about particle location and orientation is readily available as a set of data.

Given a set C that describes the container of the packed bed and the set P that

describes N particles, the set describing the packed bed domain D is given as:

D = C − P (3.4)

where:

P = {P0, ..., PN} (3.5)

and PN describes particle N in the set of particle P.

Similarly, given Sr as a cylindrical slice at r that is described as a hollow cylinder

without caps and a wall thickness of dr, the value of radial porosity ε at r is given as:

εr =
V olume(Sr ∩D)

V olume(Sr)
(3.6)

where V olume(Sr ∩ D) is the volume of the intersecting domains Sr and D, and

V olume(Sr) is the original volume of the slice Sr. Shown in Figure 3.3, the intersection

of Sr and D yields a slice capturing the void space between the particles in the bed

at distance r from the center, through an angle from 0 to 2π around the bed, over the

entire height of the bed. The hollow portions seen in Sr ∩D labeled object in Figure

3.3 represent the internal volumes of the particles that are excluded from domain D.

The volume of the slice Sr is determined by:

42

V olume(Sr) = Zπ(R2
outer −R2

inner) (3.7)

where Z, Router, and Rinner are the bed height, slice outer radius, and slice inner

radius respectively with dr = Router −Rinner.

D

=

Sr Sr∩D

∩

Figure 3.3: The intersection (∩) of a cylindrical slice Sr and packed bed
domain D yields an object whose volume equals the volume of the void
space at distance r from the bed center, through an angle from 0 to 2π
around the bed, over the entire height of the bed.

The radial porosity distribution ε(r) is described as the set of porosity values from

zero to bed diameter (R) or:

ε(r) = {ε0, ..., εr, ..., εR} (3.8)

with the bulk porosity given as:

εbulk =
1

R

∫ R

0

ε(r)dr (3.9)

Descriptions of computational domains are often expressed as discrete representations

of continuous objects agglomerated as data points into data sets, making the definition

of a radial porosity distribution using sets a much more appropriate method. This

definition, rather than using a point void fraction definition, reduces overall standard

deviation in measurement of radial porosity. Furthermore, since many commercial

computer aided drafting and meshing software uses sets to describe a domain, it is

more natural to use and can easily be integrated in the meshing process.

43

3.2.2 Results and Discussion

The overall process of the creating a packed bed with the packing algorithm involves

providing input information, executing the algorithm, and producing a file that is

used to generate a computational mesh for CFD simulation. Initially, information

describing the particle dimensions and particle quantity, along with the dimensions

of the container are given. The algorithm moves each individual particle in a random

fashion over a certain number of steps to arrive at a predetermined ending point. At

the conclusion of the packing algorithm, the location and orientation of each particle

is known and used in a meshing software to generate a computational mesh. Details

of this process have been given in previous sections. Here, a brief case study will be

covered to show typical results, compared to experimental work, with an explanation

of the behavior during the packing process.

Initial Condition

For this case study, 1000 cylindrical particles of radius 0.25 +/- 0.00 units (i.e. zero

standard deviation in particle radius) with a length of 0.50 +/- 0.00 units are packed

into a container of radius 3.35 units with an initial height of 50,000 units. The units

of the packed bed are arbitrary since the packed bed can be scaled easily after a

mesh has been generated. The following sections will discuss the convergence, bulk

porosity, and radial porosity distributions during the packing process.

Convergence

A convergence plot of bulk porosity or cycle time versus packing cycle is useful in

analyzing the behavior of the algorithm as the packed bed is being created. Figure

3.4 exhibits typical behavior for a packing run. Looking at the bulk porosity series,

there are three main stages A-B, B-C, and C-D. These three stages are also seen in

the cycle time series as A’-B’, B’-C’, and C’D’.

The initial stage of packing from point A to B and A’ to B’ is characterized by a large

container with large spacing between particles. Each move to compress and lower the

44

0

60

120

180

240

300

360

420

480

540

600

660

720

780

840

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 50 100 150 200 250

T
im
e
p
er
 C
y
cl
e
[s
ec
on
d
s]

P
o
ro
si
ty
[-
]

Cycle Number [-]

Bulk Porosity

Cycle Time

A B

C

D

A’

B’

C’
D’

Figure 3.4: Bulk porosity convergence history and cycle time data for 1000
packed cylinders packed into a tube container for 250 packing cycles using
proposed algorithm.

upper boundary of the container is fast and does not readily effect the bulk porosity

since the container was initially set to be much higher than the expected final bed

height. Having a large initial height is necessary in obtaining an initial condition in

a timely manner rather than trying to obtain an initial condition close to the final

packing structure. Performing the latter would require tremendous time that is better

spent on fast packing cycles seen in the second stage. At B’ there is a global minimum

in time per cycle seen as a tipping point at B, beginning rapid convergence of bulk

porosity.

The second stage, seen in the bulk porosity series as B to C shows rapid convergence

in which particles are moved and the container height is lowered with each packing

cycle very rapidly. With each move, the degrees of freedom for each particle become

more limited and the cycle time increases as seen in the cycle time series from B’ to

C’.

45

The final stage of the packing process is seen as a long tail from C to D and C’

to D’. Because there is little room for movement, small translational and rotational

movements of the particles are performed to further pack the particles in the bed.

During this stage, nearly 96 percent of the total time is spent decreasing bulk porosity

by 49 percent of overall change in bulk porosity from 1 to 0.65. The cycle time series

in Figure 3.4 shows that some packing cycles are completed in less time than others,

seen as oscillations from C’ to D’. It is also noted that there are decreasing oscillations

as the number of packing cycles progress. This decrease in oscillations in the cycle

time series indicates that the algorithm produces less change in the bulk porosity,

reaching an asymptotic limit of bulk porosity as seen in C to D in the bulk porosity

series.

The overall shape of both the cycle time series and bulk porosity series are similar for

different inputs (particle and container size and shape). Shifts in the maximum height

(from B’ to C’) and total area under the curve of the cycle time series data (total

packing time) are drastically changed with increasing and decreasing the number

of particles in the system. This is consistent with the fact that it takes longer to

complete a cycle with more particles present in the packed bed and the total time

will be higher for more particles. In terms of the bulk porosity curve, the shape and

rate of convergence are similar for all sizes (total numbers of particles) of packed

beds in the same size container unless there are too few particles to fill the container

bottom more than a single layer. In the latter case, the length of B to C will be

shorter and the last stage from C to D will become much flatter. This comparison

is only true if the size and shape of the particle and container are held constant,

changing only the total number of particles. A detailed study of these effects is not

presented in this discussion for the purpose of brevity.

The packing results are reproducible with little deviation in bulk porosity over the

duration of the packing simulation. Figure 3.5 shows an averaged porosity conver-

gence curve over 5 runs with 95 percent confidence intervals above and below the

mean porosity value. The region of least variability is A-B. This is expected, since we

are measuring the bulk porosity of an extremely large and evenly spread domain of

particles not strongly influenced by the change in height of the container. The region

for greatest variability is C-D, which is expected since the algorithm is stochastic pro-

cess in which the final positions of the particles are achieved through random motion.

46

Though the simulation moves particles randomly, the commonality of the particle and

container dimensions of the 5 runs should produce similar final bulk porosities. This

is evident by a similar shape of the convergence curve for each of the runs, ending in

a long tail that approaches a relatively steady state value.

0

60

120

180

240

300

360

420

480

540

600

660

720

780

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0 50 100 150 200 250

C
yc
le
 T
im

e
 [
se
co
n
d
s]

P
o
ro
si
ty
 [
-]

Cycle Number [-]

Mean Bulk Porosity

Mean Bulk Porosity Plus 95CI

Mean Bulk Porosity Minus 95CI

Mean Cycle Time

Mean Cycle Time Plus 95CI

Mean Cycle Time Minus 95CI

A B

C

D
A’

B’

C’

D’

Figure 3.5: Bulk porosity convergence history and cycle time data with
95 CI bands based on 5 simulations with the same initial particle and
container shape, for 1000 packed cylinders packed into a tube container
for 250 packing cycles using proposed algorithm.

Similar to the porosity convergence curve, the cycle time series data shows little

deviation over the duration of the packing simulation. Again, Figure 3.5 shows a

cycle time curve averaged over 5 separate runs with 95 percent confidence intervals

above and below the average value. The region of least variability is from B’-C’, with

a slight jump in variability at B’, signaling the sharp drop in the convergence curve

from B to C. The region of most variability is B’-C’, due to the stochastic nature

of the algorithm allowing faster cycle times in some cases and slower cycle times in

others.

47

The last observation that can be made about the convergence curves in Figures 3.4 and

3.5 is a ”stair-stepping” effect seen in the region C-D. This is characterized by several

repeated identical bulk porosity values followed by a sudden drop in bulk porosity.

This phenomena could be explained by the presence of several packing cycles being

completed in which the upper most particles are not moved or rotated enough to

lower the overall bed height. As a new packing cycle starts, lower particles are moved

enough to allow higher particles to be rotated and moved into new positions. This

effect then allows subsequent particle moves higher in the bed, eventually lowering

the total bed height (i.e. reducing container volume) thus reducing the overall bulk

porosity.

Radial Porosity Distributions

Figure 3.6 shows the packing-cycle evolution of the radial porosity distribution as

the algorithm progresses through the different stages outlined in Figure 3.4. The ab-

scissa represents dimensionless distance from the wall as (Rcontainer−r)/dparticle, with

Rcontainer, r, and dparticle being the container radius, radial position of measurement,

and particle diameter respectively. The ordinate represents the value of porosity de-

termined using the method outlined in a previous section in equations 3.4 through

3.6. As a note, small outliers from the smooth curve in Figures 3.6 and 3.7 are due

to rounding errors produced during the intersection of the slice and domain (Sr ∩D)

in Equation 3.6 using the GAMBIT software.

The initial condition in Figure 3.6, shown as the ”Step 0” series, shows that the vast

majority of the particles are packed along the centerline of the tube container. This

is evident by the slightly decreasing radial porosity distribution very far from the

wall. At step 5, the particles have spread apart more to create a uniform distribution

throughout the tube container. As the algorithm progresses to step 21, the effects

of the wall on the packing process are seen as a local minimum around 1.9 particle

diameters from the wall. From steps 50 to 245, the effect of the wall is more apparent

as the cylinders become more packed into the bed. The oscillations seen in the radial

porosity distribution show that there are locally more dense rings followed by locally

less dense rings of packed particles. This wall effect decreases away from the wall,

evident by a decreasing oscillation amplitude until 5 or 6 particle diameters. This

48

0.50

0.60

0.70

0.80

0.90

1.00

1.10

0.00 1.00 2.00 3.00 4.00 5.00 6.00

P
or
o
si
ty
 [
-]

Distance From Wall in Particle Diameters [-]

Step 0 Step 5 Step 21 Step 50 Step 100 Step 200 Step 245

Figure 3.6: Radial porosity distribution evolution starting at an initial
condition (step 0) through 245 packing cycles (step 245).

behavior has been thoroughly studied[37] in spherical packings in tubes of low tube to

particle diameter, with similar wall effects and decreasing oscillations. It is important

to note two main characteristics; 1) near the wall the bed is very porous compared

to the bulk and; 2) less wall effects are prevalent in structures towards the center

of the packed bed i.e. the oscillations are decreasing in magnitude. Both of these

characteristics are seen both in low tube to particle diameter systems and larger

industrial packed beds. However, oscillations eventually dissipate in larger packed

tubes, showing no oscillations at the center.

Figure 3.7 shows a comparison of the radial porosity distribution at step 245 from

Figure 3.6 with an experimentally determined radial porosity distribution by Roblee

et al. [110] having identical particle and container dimensions between experiment

and the algorithm input parameters. The most obvious characteristic is that the

porosity distribution produced by the algorithm shows similar wall effects compared

to the experimental curve in Figure 3.7. The influence of the wall decreases towards

the center of the bed, evident by decreasing oscillations at greater distances from the

wall seen in both experimental results and the results from the packing algorithm. The

overall bulk porosity is smaller in the experimental curve compared to the algorithm,

49

as evident by a smaller area under the radial porosity curve for the experimental

data versus the area under the distribution produced by the present algorithm. The

approximate bulk porosity of the data from Roblee is around 0.2578 determined using

equation 3.9 and numerically integrated using the trapezoid rule. This level of porosity

shows an extremely tight packed bed and is near to the porosity (1−π/
√

18 = 0.25952)

of spheres in a face centered cubic packing orientation [31]. The value of the bulk

porosity reported by Roblee et al. (εbulk=0.2578) is much lower than those seen in

Computed Tomography (εbulk = 0.354) and the program DigiDEM (εbulk = 0.423)

for similar particle shapes reported in the literature [21]. It is also seen that the

near wall porosity is greater for the algorithm curve. Simply put, the Algorithm

produces a loosely packed bed that becomes slowly compressed over time as shown in

Figure 3.6. This is partially due to the algorithm itself not including external forces

(compressive forces) to pack the particles, but rather packing the particles by slowly

limiting the degrees of freedom of the moving particles to approach a more packed

state. External forces (gravity, manual compression, etc.) influence the direction

that a particle is allowed to pack, rather than allowing a particle to vibrate into a

lower energy position through random motion. For the algorithm to achieve a much

lower void fraction there must be many more packing cycles or external forces (i.e.

an additional force field) moving and compressing the particles in the bed. Lastly, it

is seen that the experimental curve shows a much greater degree of packing near the

wall, seen by a local minimum closer to the wall compared to the algorithm. This is

due to the fact that a greater degree of packing is achieved experimentally, compared

to the algorithm.

More Complex Particles

More complex trilobed and quadlobed particles are often used in industrial hydropro-

cessing to alter the diffusional characteristics of the particles in the process of catalyst

tailoring [68]. Because of the additional level of complexity of the catalyst shape, sub-

sequent domains and meshes are also more complicated. Figure 3.8(a) shows a packed

bed geometry of 500 simple trilobed particles, each consisting of 3 member cylinders

of radius 0.25 units and length 0.5 units placed in an equilateral triangle orientation

spaced 0.125 units apart. After 50 packing cycles, the bulk porosity of the packed

bed is around 0.75, where approximately 0.07 is attributed to the empty space above

50

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.00 1.00 2.00 3.00 4.00 5.00

P
or
os
it
y
 [
-]

Distance From Wall in Particle Diameters [-]

Experimental (Roblee)

Algorithm

Figure 3.7: Comparison between radial porosity distributions produced by
the algorithm and experimental results by Roblee et al. [110]

the particles. The bulk porosity of the packed bed of trilobes is greater than the

previously reported bulk porosity of a packed bed of cylinders. This is due to the low

number of packing cycles completed in this specific case. Also, the radial porosity

distribution in Figure 3.8(b) shows similar wall effects seen previously in Figures 3.6

and 3.7 for a packed bed of cylinders. The main difference between Figure 3.8(b) and

3.6 is that the trilobe particles have not packed as tightly throughout the bed and

near the wall of the container compared to the packed bed of cylinders. Once again

this is attributed to the low number of packing cycles completed, but it is expected

that a lower bulk porosity can be achieved with more packing cycles and show similar

behavior to the results in Figure 3.6. Due to the increased complexity of the trilobed

particles, the overall simulation time is greater compared to a packed bed of cylinders

of the same number of particles. The increase in simulation time is due to the larger

number of particle-particle overlap evaluations performed to complete a packing cy-

cle. Additionally, the subsequent packed bed of the trilobe particle will also be more

intricate, thus requiring more computational time to create the mesh.

51

(a)

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6

P
o
ro

si
ty

 [
-]

Distance From Wall in Particle Diameters [-]

(b)

Figure 3.8: Packed bed of 500 trilobe particles with bulk porosity of 0.75
(a) Side view of three dimensional geometric representation of packed bed
of trilobe particles constructed in GAMBIT meshing software; (b) Radial
porosity distribution of the trilobe particle bed.

3.3 Strategy for Mesh Generation

One of the most important aspects of this research project was to develop a procedure

for generating meshes in which CFD calculations could be performed efficiently in

parallel. With that goal in mind, this section will outline the steps to produce high

quality decomposed meshes using GAMBIT 2.4, TGRID 13.0.10, Fluent 13, and

the OpenFOAM mesh decomposition utility decomposePar. The overall method to

produce the computational meshes involves generating an underlying domain from

the results of the packing algorithm; determining an initial face mesh from which the

internal volume mesh will connect; generate a Delaunay tetrahedral volume mesh that

occupies the interstitial space; converting the pure Delaunay triangulated tetrahedral

meshes to an arbitrary polyhedral mesh; and finally, decomposing the mesh into

separate sub-domains such that parallel solutions can be computed using a distributed

computing approach.

52

3.3.1 Generating the Underlying Particle Geometry

The output from each run of the packing algorithm contains information about the

dimensions, location, and orientation of each cylindrical particle. This information is

in a form that is familiar to GAMBIT, and is called a journal file. This journal file is a

script that guides GAMBIT through a sequence of steps to draw, rotate, and translate

each cylindrical particle of specific dimensions to its final location determined by the

aforementioned packing algorithm. For example, a cylinder of radius 0.98 and length

0.98 that is initially aligned along the z-axis, located at the coordinate location (0.76

1.72 12.27), and rotated 66.25◦ around the x-axis, 69.96◦ around the y-axis and 2.96◦

around the z-axis about the centroid of the particle can be achieved by using:

/---------drawing particle 1 ----------

volume create height 0.98 radius1 0.98 radius2 0.98 radius3 0.98 zaxis frustum

volume move "volume.1" offset 0.76 1.72 12.27

volume move "volume.1" dangle 66.25 vector 1 0 0 origin 0.76 1.72 12.27

volume move "volume.1" dangle 69.96 vector 0 1 0 origin 0.76 1.72 12.27

volume move "volume.1" dangle 2.96 vector 0 0 1 origin 0.76 1.72 12.27

This is performed on every particle in the packed bed, yielding the location of each

particle face that will ultimately be meshed. At this point the orientation of each

particle can be visualized and inspected. Figure 3.9 illustrates the typical result from

the packing algorithm, creating an underlying geometry in GAMBIT that will be

meshed for CFD.

In order to produce a mesh, the particle sizes must be reduced by at most

two-percent in order to even produce a mesh. If the particles are in contact,

the meshing algorithm will fail or will require overly fine meshes at contact points

(where fluid velocities are low and a coarse mesh is desired). This has been addressed

by Nijemeisland et al. and has shown that particle spacing has little effect on the fluid

flow near the particle during a CFD fluid simulation [94]. Once the location of the

particles is determined, the interstitial space is defined by subtracting each individual

particle from a larger cylinder encompassing the packed bed that represents the wall

of the tubular reactor. At this point, the overall mesh is reduced even further in order

53

Figure 3.9: Side view of three dimensional domain of 1000 packed cylinders
with bulk porosity of 0.65 constructed using GAMBIT meshing software.

to decrease the computational efforts to a level that can be run on a particular cluster

or workstation. To achieve this, a representative domain is created by first, lowering

the height of the interstitial domain and then, extracting an azimuthal section that

is usually one-quarter or one-third in the theta direction, resembling Figure 3.10.

Figure 3.10: Representative domain of interstitial spaces that has been
meshed and had a simulation performed.

Because we want to capture the momentum boundary layer, the mesh must possess

high grid density near the particle surfaces. To achieve this, an additional step was

54

used to take our already reduced mesh and cut the domain in half for eventual “mir-

roring”, shown in Figure 3.11. This mirroring will only require that half the domain

go through the meshing process, thus reducing computer memory usage during the

meshing and polyhedral conversion process. The final mirroring step requires joining

the reflection of a complete mesh through a plane in the existing mesh.

Figure 3.11: Example of a reduced domain prior to face and volume mesh-
ing.

3.3.2 Determining the Initial Face Mesh

One of the most important lessons learned in this project was that in order to create

a high-quality arbitrary polyhedral mesh, a high-quality tetrahedral mesh is required.

To achieve this, tetrahedron cells must posses low skew such that the line connecting

two adjacent cell centroids passes through the face centroid of the common face be-

tween the adjacent cells. Highly skewed meshes will result in discretization errors that

were briefly outlined in Chapter 2. As a rule of thumb for this project, a triangular

element face mesh size was chosen to be about 1.5 percent of the particle diameter.

To initialize, all faces (particles, inlet, outlet, symmetry plans, and tube) were se-

lected and meshed with triangular elements. The resulting face mesh in GAMBIT

55

was exported in .msh format and carried over to TGRID to generate a tetrahedral

mesh, discussed in the next section.

3.3.3 Generating the Tetrahedral Volume Mesh

Though GAMBIT is capable of producing tetrahedral cells to fit extremely complex

domains with an unstructured mesh, we need to generate our mesh cells in a particular

manner in order to convert them to arbitrary polyhedral cells. GAMBIT uses an

advancing front algorithm (See Figure 2.3 for a breakdown of meshing algorithms),

starting from an existing triangulated face mesh and continually adding layers to

fill a domain [95]. Unfortunately this is not sufficient for our purposes, since high

quality arbitrary polyhedral meshes require Delaunay triangulated tetrahedral cells

as a precursor.

A Delaunay triangulated tetrahedral mesh follows the “empty sphere” property so

that any node must not be contained within the circumsphere of any tetrahedra

cell in the mesh [96]. A circumsphere is further defined as the sphere in which its

edge passes through all four vertices of the tetrahedron cell. This property can be

illustrated quite easily in two-dimensions and is shown in Figure 3.12. Since all of the

nodes reside on a circumcircle in Figure 3.12.a, the Delaunay criterion is maintained.

In Figure 3.12.b, neighboring triangle nodes are inside another triangle’s circumcircle,

violating the Delaunay criterion. Delaunay violations can be removed by adjusting

the connectivity as shown in Figure 3.12 (a) and (b), and should be performed on all

face meshes prior to the volume meshing step.

Once a triangular mesh has been created on all faces, the volume mesh must be gen-

erated to fill the domain. In general, the cells near the particle surface are extremely

fine in order to account for the boundary layer. To accomplish this, a geometric

growth function from all boundaries is used with a growth rate of 1.2. It is typical in

meshing these domains that anywhere from 9 million to as many as 24 million tetra-

hedral cells for our half domain are generated in this step. Subsequently, the entire

mirrored domain could have on the order of 20 to 50 million tetrahedral cells. Once

a volume mesh has been created, all Delaunay violations are removed through the

process of cell splitting to create a Delaunay tetrahedral mesh[96]. As an additional

56

(a)

(b)

Figure 3.12: Example of a triangular element that is (a) maintains Delau-
nay criterion; and (b) violates Delaunay criterion.

step, the mesh can be smoothed and Delaunay violations re-checked and removed if

necessary.

The final step in the tetrahedral mesh generation step is to assess the mesh quality

and correct any remaining problems. Mesh quality is partially assessed using cell

skewness, defined numerically using the volume deviation method (for triangular faces

and tetrahedral cells) as:

Cell Skew =
optimal cell size− actual cell size

optimal cell size
.

In general, a histogram of mesh cell skewness is determined in order to judge the

overall quality of a mesh. As a rule of thumb, mesh quality can be assessed using

Table 3.1. If there is at least one cell with a skew greater than 0.95, re-mesh the entire

domain. The process of building a mesh is an iterative process, continually adjusting

Table 3.1: Comparison of Relative Mesh Cell Quality to cell Skewness

Skewness 0 - 0.25 0.25 - 0.5 0.5 - 0.8 0.8 - 0.95 0.95 - 0.99 0.99 - 1.00

Cell Quality Excellent Good Acceptable Poor Sliver Degenerate

face cell size, surface mesh growth rate, removing Delaunay violations, smoothing a

57

mesh, assessing mesh quality and re-meshing. Once a relatively fine, Delaunay mesh

with low cell skew has been created, it is converted to an arbitrary polyhedral mesh.

3.3.4 Polyhedral Mesh Conversion

In order to reduce the cost of some of the calculations the tetrahedron meshes were

converted to an arbitrary polyhedral mesh. For clarity, a typical cell in an pure

polyhedron mesh has 10-14 faces [101] with the general shape shown in Figure 2.1.

In OpenFOAM, the utility polyDualMesh is used to convert the tetrahedron cells

to polyhedron while leaving the hexahedron cells unconverted. The starting mesh

must be three-dimensional (possess a depth component) and be created using a De-

launey tetrahedron mesh generation [96, 95] algorithm. In general, the algorithm for

converting a tetrahedral mesh to an arbitrary polyhedral mesh requires several steps.

1. Decompose tetrahedron cell about each tet node at each cell. During the de-

composition, the faces of the new polyhedron are defined using quadrilateral

area elements surrounding the tet nodes.

2. Collect the quad faces of the polyhedron cell and close the cell around a center

point to create a medium dual.

3. Selectively join the quad faces surrounding a polyhedron cell into a smaller

number of faces.

4. Move the center point of the polyhedron cell to a new centroid and the new cell

is defined at this new centroid.

A more detailed explanation of this method can be pursued in a presentation by

Kelecy [70]. What is important to note is that tetrahedral cells are combined, faces

are moved and combined to optimal positions, and a polyhedron cell is created with

more faces around a cell center to yield an improved mesh. By having an “improved”

mesh, equation discretization will yield better results and improve stability of the

solution method.

58

3.3.5 Parallel Mesh Decomposition

In order to run an efficient parallel computation, all of the nodes (e.g. CPU Proces-

sors) must be performing relatively the same amount of work. To achieve a balanced

load across the nodes, the mesh must be decomposed to minimize the faces of the

processor-processor boundaries and evenly split the mesh into sub-meshes so that

each node has relatively the same number of cells to compute. This is achieved using

Scotch (http://www.labri.fr/perso/pelegrin/scotch/), a library for for sequen-

tial and parallel graph partitioning, static mapping, and sparse matrix block ordering,

and sequential mesh and hypergraph partitioning. To our advantage, the Scotch li-

brary has been integrated into OpenFOAM such that it can be invoked by using the

application decomposePar . For the packed bed domains in this project, Figure 3.13

shows a typical domain decomposition where each color represents a different proces-

sor. If a mesh is decomposed properly, the parallel execution will be more efficient

and scale better to larger clusters.

Figure 3.13: Typical parallel processor distribution on a packed-bed mesh

3.3.6 Results and Discussion

It was found that the conversion of the pure tetrahedral meshes 1) reduced the num-

ber of cells and faces in the mesh; 2) improved the mesh structure and quality; and 3)

59

http://www.labri.fr/perso/pelegrin/scotch/

eventually enabled a faster calculation. Prior to the conversion of the Delaunay tetra-

hedral cells to arbitrary polyhedral cells, the entire mesh was composed of 32,506,136

tetrahedral cells and 65,750,700 triangular faces (i.e. 16,253,068 cells and 32,875,350

faces for each half before mirroring). After conversion, the entire mesh was composed

of 6,163,984 cells and 41,268,924 faces, an 81 percent reduction in cell count and 37

percent reduction in face count. The composition of the arbitrary polyhedral mesh

was 5.7 percent hexahedra (356,314 cells) and 94.3 percent (5,807,670 cells) com-

plex polyhedra. In addition the conversion produced a higher quality mesh so that

all OpenFOAM mesh quality (e.g. skewness, aspect ratio, orthogonality, etc.) and

topology (e.g. connectivity, shape, etc.) checks passed. The improvements can be

observed visually in Figure 3.14, showing the removal of tetrahedra grain boundaries

over the particle surface. Lastly, because the reduced cell and face count inherently

produces a smaller Ax = b system, it will always be less time per iteration in our

linear system solver.

As an additional step to improve the speed of our calculation, we can reorder the

sparse matrix so that the number of diagonal bands are reduced. In practice, the

reordering increases memory access efficiency and generally increases the speed of

the inner iterations (i.e. linear system solver iterations). Using the renumberMesh

OpenFOAM utility, the number of bands in our mesh were reduced by 97.8 percent

from 3,081,992 bands to 38,461.

For the parallel computation, Scotch was used to decompose the mesh over 6 proces-

sors with the results of the decomposition in Table 3.2. On average, each processor

performed calculations on nearly 1 million cells, with a rule of thumb being 50k cells-

per-processor a more desirable ratio. No study was performed to see the effect of

decreasing the cells-per-processor (i.e. using more computational nodes). Also, the

number of processor patches was 5 for each domain, meaning that each processor

must communicate and exchange data with 5 other processors during the calculation.

Though this is seemingly a low number and OpenFOAM is fairly well optimized for

parallel calculations, it is still undesirable to have so many processor patches. Lastly,

the SEAS cloud (http://cloud.seas.wustl.edu/) was tested as a viable option to

using a workstation. The larger number of computational nodes was beneficial to

submit many small jobs or larger jobs that had no upper time limit, however, it

60

http://cloud.seas.wustl.edu/

(a)

(b)

Figure 3.14: Example of the surface mesh on a particle (a) full triangular
faces prior to arbitrary polyhedral conversion; and (b) polyhedral faces
that smoothed out remaining grain boundaries in created triangular mesh.

was found to perform at a lower computational efficiency than the current worksta-

tion. This was primarily due to inefficient node communication hardware, since many

message passing intensive programs are not regularly run on the cloud (i.e. it was

not designed for this type of computation). The domains decomposed into 10, 16,

32, and 64 processors were all slower than a single workstation decomposed into 8

sub-domains.

61

3.4 Closure

Geometry generation using a Monte-Carlo packing algorithm

A Monte-Carlo packing algorithm using a sorting method is presented as an effective

method to produce loosely packed bed domains of cylindrical and trilobed particles.

The particle-particle overlap determination is achieved using a method proposed by

Blaak et Al.[18], based on approximating a cylinder with spheres, spherocylinders,

and ellipsoids. The bulk porosities of approximately 0.65 are achieved by this method

with relatively few packing cycles due largely to the use of a sorted list of particles.

The sorting of the particles allowed for particles located closer to the bottom of

the container to be packed before particles located higher in the bed. The increase in

space created greater degrees of freedom for particles to achieve a more dense packing

in less packing cycles.

The radial porosity distributions produced by the packing algorithm are qualitatively

comparable to experimental work by Roblee et al.[110], showing similar wall effects

observed experimentally. The main difference being that the experimental results

by Roblee showed an extremely densely packed bed of particles near the wall and

throughout the bed that is considerably more dense than those seen in CT and Digi-

DEM reported in the literature[21]. This is due mainly to external forces (gravity

and manual compression) during the physical packing process in the experimental

work. The Monte-Carlo algorithm presented here uses only random motion and a

lowering of the top boundary to reduce the degrees of freedom to form the packed

bed of particles. For a more densely packed bed, there must be either more packing

Table 3.2: Mesh summary of Scotch decomposed mesh

Processor # # of Cells # of Processor Patches

0 1,028,789 5

1 1,025,616 5

2 1,020,067 5

3 1,017,494 5

4 1,039,664 5

5 1,032,354 5

Average 1,027,330.66 5

62

cycles or an algorithm incorporating a force field similar to ones used in molecular

dynamics simulations. The Monte-Carlo packing algorithm proposed in this paper

tracks the location and orientation of each face of the particles being packed. Know-

ing the location and orientation of each particle face facilitates the meshing process

as there is no need for more preprocessing to extract the edges and faces from a

pixilated image produced using the method by Gan et al.[47] and Caulkin et al.[21].

Ultimately, this image extraction process may introduce more approximations into

the already extremely intricate structures seen in packed beds of particles.

The resulting computational meshes fully define the location of the particle faces

within a domain of randomly packed cylinder based particles. In terms of interstitial

CFD modeling, knowing the exact location of the particle faces allows for extremely

fine boundary layer meshes to be used to increase resolution of near particle modeling

of transport phenomena. Ultimately, meshes accurately describing the microstructure

of packed beds enable more realistic CFD simulations, providing further insight into

the fluid dynamics on the length scale of the interstitial spaces between particles. As

a result, a deeper understanding of fluid flows within packed beds can be achieved

and will ultimately improve catalyst shape optimization, current models describing

reactors, and unit operations leveraging the intricate structure of packed beds.

Mesh Generation

The mesh generation portion of the project was a time-consuming task that involved

numerous meshes (almost 50 gigabytes of data), with solutions being attempted on

most of the created meshes. The method developed to create a high quality mesh can

be summarized in the following steps:

1. Create the underlying domain in GAMBIT using the output journal file from

the Mote-Carlo packing algorithm

2. Create an initial face mesh in GAMBIT and export the mesh as .msh format

3. Import the .msh file into TGRID, and remove any Delaunay violating triangular

faces

63

4. Create the pure tetrahedral mesh using growth functions and remove any De-

launay violations. Smooth the volume mesh and assess the quality, re-meshing

if necessary.

5. Convert the pure tetrahedral mesh into an arbitrary polyhedral mesh using

ANSYS Fluent 13.

6. Import the mesh into OpenFOAM and then decompose the domain according

to the number of parallel nodes to be used in the calculation

For the parallel computations, the mesh was converted to an arbitrary polyhedral

mesh to reduce the cell count by 81 percent and the face count by 37 percent. Addi-

tionally, the renumbering of the mesh was used to increase memory access efficiency,

by reducing the number of diagonal bands by almost 98 percent. Using the Scotch

library was instrumental in decomposing the mesh into separate sub-domains with

nearly equal cell and processor patch counts. It can be said with confidence, that the

combination of care in creating the mesh and careful planning to decompose the mesh

reduced the overall solution time significantly. If more projects are pursued that will

leverage OpenFOAM, it is prudent that more investment be made to improve our

local cluster or the SEAS cloud.

64

Chapter 4

Interstitial-Scale Momentum

Transport Modeling

4.1 Introduction

The necessary background covering the finite volume method, Monte-Carlo packing

algorithm, and mesh generation procedure was given in Chapters 2 and 3. In this

chapter, the interstitial-scale momentum transport modeling of packed-beds is dis-

cussed, along with an analysis of the resulting laminar and turbulent velocity fields.

Beginning with an introduction to the phenomena of turbulence, the methods for solv-

ing the Navier-Stokes Equations under laminar and turbulent conditions are covered

in detail. More precisely, the Reynolds averaged Navier-Stokes (RANS) model is men-

tioned, with a special emphasis given to the low Reynolds number Lam-Bremhorst

two-equation k-ε model as a method to close the Reynolds stress term (〈u′v′〉) ap-

pearing in the RANS model. Finally, a detailed analysis of the three-dimensional

flow field; the classical radial profiles within the bed; and a newly developed post-

processing method to contract complex data into a one-dimensional perpendicular

profile is given. Ultimately, the current chapter will provide the necessary discussion

for the next chapter on interstitial-scale scalar transport in packed-beds.

65

4.2 Momentum Transport Modeling

Packed-bed systems are composed of complicated structures of spaces between ran-

domly packed particles. From experience and dimensional analysis, it is known that

the size of the random interstitial spaces, fluid viscosity, and inlet velocity are impor-

tant parameters influencing the overall pressure drop in the bed and the flow regime

of the fluid. For simplicity, the influence of these three parameters are encompassed

into a particle Reynolds number that has been previously discussed by Gunjal et. al.

[54], and defined as

Rep =
dpU0

ν
. (4.1)

For this specific definition of Reynolds number, the characteristic length is the par-

ticle diameter (dp), the characteristic velocity (U0) is defined as the average inter-

stitial velocity within the packed-bed, and the fluid kinematic viscosity for air is

used throughout. according to this specific formulation, creeping laminar flow is as-

sured for flows less than Rep = 0.1. Gunjal further notes that based on the work of

Jolls and Hanratty [66], the transition between laminar and turbulent flow occurs at

Rep ≈ (300− 400). As a result, this project assumed laminar flow under Rep < 150

and fully developed chaotic turbulent flow was present at Rep > 1000. Such clear

definitions of flow regimes provides a roadmap for choosing a specific method to solve

the incompressible Navier-Stokes equation.

The incompressible Navier-Stokes is a model that is valid a fluid traveling much

slower than the speed of sound and is assumed to sufficiently describe the flow within

packed-bed systems. Furthermore, it was also assumed that the fluid is completely

characterized by the three components of velocity (Ux, Uy, and Uz) and the value

of pressure at each moment in space and time [80]. Lastly, it is assumed that the

fluid obeys the continuum hypothesis and can be described fully by the continuity

equation

∇ ·U = 0 (4.2)

66

and the Navier-Stokes Equations

∂U

∂t
+∇ · (UU) = −1

ρ
∇p+ ν∇2U + g. (4.3)

If the computational mesh is fine enough, Equations 4.2 and 4.3 will completely

resolve the fluid flow in both laminar and turbulent flows via direct numerical simu-

lation (DNS). For turbulent fluids in packed-beds, the mesh refinement requirements

make DNS infeasible from a computational point of view with our current computing

capability at Washington University. Using a modeling method that adequately char-

acterizes a turbulent fluid flow at a low computational cost is a major thrust of CFD.

Several methods exist to capture the effects of turbulence including Large Eddie Sim-

ulation (LES), Lattice Boltzmann Simulations (LBS), and the least computationally

intensive Reynolds-Averaged Navier-Stokes (RANS) method. An explanation of the

phenomena of turbulence, along with an introduction to using the RANS equations

to determine the first moment of velocity 〈U〉, are briefly covered in the next section.

4.2.1 Turbulent Momentum Transport Theory

It is well known that there are two major flow regimes, laminar and turbulent, that

are separated by a less distinct transitional flow regime. Laminar flow is characterized

by fluid elements moving in regular paths with parallel path-lines, lateral mixing by

molecular diffusion only, and little to no swirling or eddy motion. Laminar flow can

be complex and remain non-turbulent while flowing through complicated domains.

At very low flow rates, viscous forces are dominant compared to convective forces.

Because viscous interactions dissipate energy input to the fluid system8, if the local ve-

locity is sufficiently high, convective forces can dominate and create a situation where

repeated measurement of a velocity at a particular point under identical conditions

will yield a different value [11]. Under these circumstances, if the random character

of the fluid is sustained at the same conditions, the fluid is said to be turbulent. If

the fluid is not sustained under these conditions, it is said to be in a transition state

8This decay of random velocities is due to viscous dissipation of the fluctuations, a cornerstone
of Kolmogorov’s theory [87].

67

between laminar and turbulent flow in which regions of turbulent perturbation are

dissipated back to complex laminar flow.

For a fully turbulent fluid, the values of velocity of each point in space are highly

chaotic. If at constant average boundary inputs (e.g. constant flow rate), each com-

ponent of the random velocity field fluctuates around a time-averaged mean velocity

vector component (〈Ui〉) similar to the representation in Figure 4.1.(a), it can be

considered to be at “steady-state”. Though turbulent flow is inherently chaotic and

transient in nature, the observation of the fluctuating velocity about a mean enables

the modeling of the first moment of the random velocity field at very long time-

scales. If transient boundary inputs are present in the system, the interpretation of

the fluctuating random velocity about a mean becomes an ensemble averaged random

velocity9 field moving in time as in Figure 4.1.(b). Rather than attempting to cap-

ture the full instantaneous random nature of the fully turbulent flow, the time and

ensemble averaged flow field is modeled using the Reynolds averaged Navier-Stokes

model.

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10

V
e
lo
ci
ty

Time

Fluctuating Velocity (u’)

Mean Velocity (<U>)

Measured U(t)

')(utUU

(a)

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7 8 9 10

V
e
lo
ci
ty

Time

Mean Velocity (<U>)

Fluctuating Velocity (u’)

Measured U(t)

')(utUU

(b)

Figure 4.1: Random point velocity fluctuations for (a) steady-state turbu-
lent flow and (b) transient turbulent flow

In the Reynolds Averaged Navier-Stokes (RANS) equations, turbulent momentum

conservation is described using the Navier-Stokes equations coupled with a perturba-

tion in the velocity and pressure variables[17]. The approach uses a time and space

9The ergodic nature of the random fluctuations of turbulence requires time and ensemble aver-
aging to coincide.

68

dependent velocity variable U (x, t) decomposed into a time or ensemble averaged

velocity 〈U〉 and a fluctuating velocity u′ component. Termed as Reynolds decom-

position, the random velocity field is formulated such that

U (x, t) = 〈U (x, t)〉+ u′ (x, t) . (4.4)

Similarly, the pressure can be represented in terms of the Reynolds decomposition of

the original variable p (x, t) so that

p (x, t) = 〈p (x, t)〉+ p′ (x, t) . (4.5)

By substituting 4.4 and 4.5 into the Navier-Stokes equations (Equation 4.3) and

then Reynolds Averaging each differential term (See Appendix A.3), the continuity

equation becomes

∇ · (〈U〉+ u′) = 0, (4.6)

and momentum conservation described by Navier-Stokes becomes

∂ 〈Ui〉
∂t

+ 〈Uj〉
∂ 〈Ui〉
∂xj

= ν∇2 〈Ui〉 −
1

ρ

∂

∂xj

〈
u′iu
′
j

〉
− 1

ρ

∂ 〈p〉
∂xj

. (4.7)

In 4.6 and 4.7, 〈U〉 and u′ are solenoidal vector fields[105, 6], ν is the molecular

kinematic viscosity, and ρ the fluid density. Equation 4.7 is often referred to as the

unsteady Reynolds averaged Navier-Stokes equation or URANS. For steady-state tur-

bulent flows, the time derivative in Equation 4.7 is zero and the remaining equation is

referred to as the Reynolds averaged Navier-Stokes or RANS equation. An important

observation is that Equation 4.7 presents a Reynolds stress term ρ
〈
u′iu
′
j

〉
as a cross

correlation of u′i and u′j, leaving more unknowns than equations. This is referred to

as the turbulence closure problem.

To deal with the issue of closure, the problem can be approached in several different

ways, three of which are presented in this discussion. The first method is to approx-

imate the unclosed
〈
u′iu
′
j

〉
term with the Boussinesq eddy viscosity hypothesis[19],

69

given as[104]

− ρ
〈
u′iu
′
j

〉
= µt

(
∂ 〈Ui〉
∂xj

+
∂ 〈Uj〉
∂xi

)
− 2

3
δij

(
µt
∂ 〈Uk〉
∂xk

+ ρk

)
, (4.8)

where k is the turbulent kinetic energy equal to u′iu
′
i/2 , δij is the Kronecker delta[17],

and µt is the turbulent viscosity scalar determined by a turbulent viscosity model.

Over the last century, numerous turbulent viscosity models have been devised includ-

ing k − ε, k − ω, Spalart-Allmaras, and RNG k − ε [133]. These models, along with

numerous other formulations, are covered in detail in many books on fluid dynamics

and computational continuum mechanics[104, 44].

The second method for determining the unclosed stress ρ
〈
u′iu
′
j

〉
, involves modeling

the components of the Reynolds stress tensor with transport equations. The model

derivation for the Reynolds stresses transport equations is thoroughly covered in many

books on computational fluid dynamics[104, 133] and is removed from the current

discussion. The final equation[45] of the transport of Reynolds stresses is expressed

as

∂
〈
u′iu
′
j

〉
∂t

+ 〈Uk〉
∂
〈
u′iu
′
j

〉
∂xk

+
∂
〈
u′iu
′
ju
′
k

〉
∂xk

= Pij + Πij + ν∇
〈
u′iu
′
j

〉
− εij, (4.9)

with the production term

Pij = −〈u′iu′k〉
∂ 〈Uj〉
∂xk

+
〈
u′ju

′
k

〉 ∂ 〈Ui〉
∂xk

, (4.10)

the velocity-pressure-gradient term

Πij = −1

ρ

〈
u′i
∂p′

∂xj
+ u′j

∂p′

∂xi

〉
, (4.11)

and the turbulent dissipation term

εij = 2ν

〈
∂u′i
∂xk

∂u′j
∂xk

〉
. (4.12)

70

The triple-correlation term
〈
u′iu
′
ju
′
k

〉
is closed with an assumption similar to the

Boussinesq eddy viscosity hypothesis.

An additional approach used to close the Reynolds stress term are algebraic Reynolds

stress models (ASMs). These types of models assume a nonlinear constitutive model

to relate the Reynolds stresses and the rate of mean strain rather than additional

transport equations for each of the Reynolds stresses[104]. These relationships are

held to physical and mathematical constraints including Galilean invariance and ”re-

alizability” to ensure physically meaningful results. Lastly, the basis of ASMs require

that adjustments be made to adequately predict turbulent flow and generally do not

perform as well as a full Reynolds-stress model.

Given sufficient detail into the phenomena of turbulence and a method to model the

first moment of the random velocity field, further details into how to apply the theory

in order to solve the RANS equations must be introduced. In the next section the

methodology used to model the complex fluid flow within packed-beds is provided

for steady-state RANS models using a two equation k− ε variant. The algorithm for

decoupling the components of the velocity field and pressure are briefly addressed and

a discussion of the specific boundary conditions over the domain is given for clarity.

4.2.2 Momentum Modeling Methodology

Pressure Velocity Coupling and the RANS Equation

Due to the nonlinearities in the Navier-stokes equations, instabilities due to turbu-

lence, and the complex geometry of the packed-bed, an implicit strategy was used

to solve the set of partial differential equations. Specifically, a segregated approach

in which each velocity and pressure component was solved separately, with coupling

between equations treated using the “current” variable value. This is not a new con-

cept, as it was very thoroughly discussed by Patankar [99, 98] more than 30 years ago

and more recently by Jasak [61]. Through this method of decoupling, an accurate

solution to the nonlinear coupled equations with fast convergence and a high degree

of stability can be achieved

71

For steady problems, the Semi-Implicit Method for Pressure-Linked Equations (SIM-

PLE) algorithm is used to solve the steady-state Navier-Stokes equation and RANS

model presented in the previous section. The SIMPLE algorithm uses a segregated

solver for all of the components (Ux, Uy, Uz, and P), while solving and correcting the

velocity in pressure-solving sub-iterations. While the details of this algorithm are

important for this discussion, it is left for the motivated reader to follow in the work

by Jasak [61]. As a more cursory explanation, the algorithm begins with:

1. Set each field Ux, Uy, Uz, P and the appropriate turbulence model parameters

(e.g. k and ε) with the proper boundary conditions that are outlined later in

this section.

2. Stepping into the outer-iteration (pseudo-time steps for steady-state calcula-

tions), collect the terms in the Navier-Stokes equation containing a velocity

component. For the convection term

∇ • (ρUU),

ρU is treated explicitly and is based on the previous iteration (or initial guess).

Because we are using finite volume discretization, this implicit treatment of ρU

is utilized as the face-flux term Ff in the surface integral for the advection term

defined by Equation 2.4. In the OpenFOAM code, the aforementioned Ff term

is a surface scalar field phi that is not to be confused with the φf in Equation

2.4. Lastly, the Laplacian term is defined implicitly using Equation 2.21 and

need not be further linearized since it is already linear.

3. Using the current value of the pressure field, the gradient of pressure is calcu-

lated. At this point, each velocity component is under-relaxed (Equation 2.28)

and solved implicitly using the current value of the pressure gradient. Often

this step is referred to as the “momentum-predictor” step.

4. At this point, we have an initial guess for the velocity field from our momentum-

predictor step. The pressure Poisson equation is solved and the fluxes at the

face are corrected from the pressure field. The pressure Poisson equation and

new corrected fluxes are determined in such a way to ensure continuity is sat-

isfied through the process of Rhie-Chow interpolation [61, 67]. In an effort to

72

determine a better approximation of the pressure field, the pressure equation

can be solved again.

5. Once a pressure field has been calculated and corrected in the pressure-corrector

loop, the pressure field is relaxed and then used to correct the velocity field for

use in the next outer-iteration.

6. At this point in the solution algorithm, the turbulence model is solved using

the current values of velocity and pressure. In the OpenFOAM code, this is

represented in the term turbulence->correct(); after the pressure-velocity

SIMPLE corrector loop. Convergence is checked and this marks the end of an

outer-iteration.

7. The loop over out-iterations is continued until the desired convergence is reached,

with appropriate data written at user specified data intervals.

The details of the solver are left for those interested in looking directly at the code (

e.g. simpleFOAM), however the overall steps in the algorithm have been presented.

What remains is an explanation (and justification) of the specific turbulence model

used in this study. For RANS models, there are many turbulent viscosity closure

models. For reasons outlined in the next section, the Lam-Bremhorst model was

chosen to capture the near wall (particle and tube) turbulent boundary layers.

The Lam-Bremhorst k-ε Model

As noted by Wilcox, turbulence is a continuum phenomena in which the length scale of

the smallest turbulent eddy (i.e. the Kolmogorov length) is orders of magnitude above

molecular scales [133]. Furthermore, due to the random nature of the fluid motion,

we are limited in our pursuit of an exact representation10 to seeking a statistical

representation of the flow using the RANS model. The key to closing the RANS

model is to choose an appropriate turbulence model, and in the case of packed-beds

one that is formulated for relatively low Reynolds number flows.

10Though we can use direct numerical simulation (DNS) to get an “exact” flow field for velocity, it
is neither practical nor possible in most research laboratories due to lack of computational resources.

73

The choice of low-Reynolds number turbulence models is vast, yet one that is trust-

worthy, easy to use, and readily available is deemed the best. In OpenFOAM

there are several low-Reynolds number turbulent viscosity models including the Lam-

Bremhorst, Launder-Sharma, Q-Zeta, Lien-Cubic, Lien-Leschziner and Spalart-Allmaras.

Although it was previously noted in Table 1.1 that the Spalart-Allmaras model was

used by this project. It was found that faster convergence could be met with a k − ε
model.

For the standard k − ε model, near wall interactions are handled via wall-functions

based on the “law of the wall” so that the near wall velocity profiles can be approxi-

mated with functions based on experimental results. For wall bounded flows, variants

of the standard k − ε are formulated such that no wall functions are used and that

the transport equation “knows” where the closest wall is in relation to the current

position being calculated. As a result, these variants match much closer (both in the

bulk and near the wall) to DNS results compared to the standard k−ε for even simple

wall bounded Couette flows [114]. Because these low Reynolds number models can

accurately predict the near-wall dissipation, the Lam-Bremhorst (LB) k − ε model

[77] was chosen for this study.

The LB model is particularly desirable because of its performance with relatively

course near wall meshes, a primary concern for our existing complex meshes with

high cell count. Specifically, the LB model is designed to work well with y+ ≈ [1, 12],

where the dimensionless wall distance y+ is defined as [133]

y+ =
y
√
ν||dU

dx
· n||

ν
, (4.13)

with y and n defined as the perpendicular distance to the nearest wall and nearest

wall surface normal vector respectively. Dimensionless wall distance merely serves as

a method to indicate how much of the boundary layer is being captured by the cell

closest to the wall. A higher y+ indicates a courser mesh that is not capturing the

transition of turbulent to laminar flow near the wall. The LB model is accurate at

even moderate y+ values and is valid for y+ up to 12. The specific description of the

LB model can be represented as a generalized form of the k−ε model, presented next.

74

For incompressible flow, a generalized form [133] of the k-ε model can be written as

∂k

∂t
+∇ • (Uk) = νt∇2U− ε+∇ •

[(
ν +

νt
σk

)
∇k
]

(4.14)

∂ε̃

∂t
+∇ • (Uε̃) = Cε1f1

ε̃

k
νt∇2U− Cε2f2

ε̃2

k
+ E +∇ •

[(
ν +

νt
σε

)
∇ε̃
]

(4.15)

where the turbulent kinetic energy dissipation ε is related to ε̃ by

ε̃ = ε− ε0. (4.16)

The reference value (ε0) is taken at y = 0 and for the Lam-Bremhorst model is equal

to zero. The turbulent viscosity is defined as

νt = Cµfµ
k2

ε̃
(4.17)

Further definition of the LB model requires the definition of constants and dampening

functions such that

fµ =

(
1 +

20.5

ReT

)(
1− e−0.0165Ry

)2
(4.18)

f1 = 1 +

(
0.05

fµ

)3

(4.19)

f2 = 1− e−Re2T (4.20)

ε0 = 0 (4.21)

E = 0 (4.22)

Cε1 = 1.44, Cε2 = 1.92, Cµ = 0.09, σk = 1.0, σε = 1.3, (4.23)

with

75

ReT =
k2

ε̃ν
, Ry =

k1/2y

ν
, y+ =

y
√

τw
ρ

ν
. (4.24)

Given an explanation of the Lam-Bremhorst model; the background in the method-

ology to decouple velocity, pressure, and turbulence model; and the theoretical back-

ground in the the phenomena of turbulence, the last point of discussion before pre-

senting the results is given next. One of the most influential portions of any model

is the choice of boundary conditions. They must be realistic and provide stability

for the implemented solution algorithm. The next section will discuss the boundary

conditions for velocity, pressure, turbulent kinetic energy (k), and turbulent kinetic

energy dissipation (ε) used in this project.

Boundary Conditions

In general, a sequence of boundary conditions are used to iteratively condition a set of

simulations into a more realistic rendition. In that manner, the boundary conditions

for the velocity, pressure, and LB model are briefly addressed.

• The Mean Velocity Field: For asymptotic agreement, a no-slip zero-velocity

was used at the wall boundaries (i.e. particles and the outer tube surface). No

wall-functions were used in this study and the near-wall mesh was constructed

such that the boundary layer was resolved to a sufficient degree. At the outlet,

to increase stability a no-inflow boundary condition was set. This results in

the assumption that if the velocity vector at the boundary is pointing outward

with respect the the boundary normal vector, the boundary condition is set

as a zero-gradient. If the velocity vector is pointing inward with respect to

the boundary normal vector, the boundary condition is set to a fixed value of

zero to indicate that there is no mass inflow. This was necessary for numerical

stability in flows that show a large amount of swirl at the exit. In OpenFOAM,

this is defined using

outlet

76

{

type inletOutlet;

inletValue uniform (0 0 0);

value uniform (0 0 0);

}

In the case of the inletOutlet boundary condition in OpenFOAM, the uniform (0 0 0)

entry is merely an initialization and will change to the corresponding value based

on the zeroGradient condition of outflow. Lastly, the inlet condition is the most

complicated and requires special consideration. For most all other research in

the field of interstitial flow modeling in packed beds, a periodic mesh is used,

thus eliminating pressure driven flow since the pressure at the inlet and out-

let are identical. Because pressure driven flow is so integral to the flow within

packed-beds, a method of mapping the exit condition to the inlet was used. To

maintain a mass flow rate through the bed of particles, the distribution was

scaled such that a constant average velocity was maintained throughout the

simulation. In OpenFOAM (version 2.1.x) this mapping of values from one

boundary (patch) to another is defined by

inlet

{

type mapped;

value uniform (0 0 1.3);

interpolationScheme cell;

setAverage true;

average (0 0 1.3);

}

Where the cell-centered values of the cells at the boundary are mapped to

the inlet boundary and set for example to a vector average of 1.3 m
s

in the

z-direction and zero in the x- and y-directions. The corresponding boundary by

which the inlet “knows” is abstracted and controlled in the global definition of

the boundary types in the constant/polyMesh/boundary file.

At this point, it is important to note that there is strong coupling between the

entrance and exit boundaries that may result in a negative feedback loop. If

77

there is a strong chance of swirl (i.e. creating a velocity vector opposite to the

boundary normal), then the inlet outlet patch will assign a velocity component

of zero. The resulting “mapped” boundary condition will then map this zero

velocity to the inlet boundary and scale the remaining velocity vectors to the

predetermined average value. This will ensure that the flow rate through the

packed bed will always be constant and converge, but has the potential to

amplify the upward directional vectors, while dampening the swirling flow at

the exit. It is presented here as a word of caution for those repeating the work.

• The Mean Pressure Field: Pressure is a surface force, much like shear, how-

ever only acting on the fluid element in the normal direction. Pressure and

shear are closely related and oftentimes instabilities, unrealistic behavior, and

unphysical values in the turbulent parameters manifest themselves as instabili-

ties in the pressure field (and subsequent velocity field). Because pressure is so

closely tied to shear-stress and velocity we must under-relax the values heavily

and choose extremely stable boundary conditions that case smaller perturba-

tions in the flow field.

In most incompressible flow simulations in which a velocity is prescribed at the

inlet and a zero-gradient in velocity at the outlet, the inlet boundary condition

of pressure is set to be a zero-gradient boundary, meaning that the pressure is

determined from the resulting velocity field value in order to maintain continuity

at the boundary cells near the inlet. This is standard practice among all finite

volume codes and is generally accepted across all fields of engineering utilizing

a similar method of decoupling pressure and velocity. In addition, the pressure

condition at the particle surface and tube wall was set as a zero-gradient during

the process of solving the pressure Poisson equation.

In order to maintain stability and satisfy the continuity equation, a fixed value

boundary condition for pressure is applied at the outlet and usually set to a

gauge pressure (absolute pressure minus atmospheric pressure) of zero. Because

we are defining our pressure field in gauge pressure space, negative pressures

merely mean we are determining a value less than atmospheric pressure and

not below absolute zero pressure. In some cases of extremely stiff systems, we

may opt for a more subtle “pseudo” fixed value boundary condition in which

we gradually change the pressure value at the outlet to converge to a prescribed

78

fixed mean value. This pseudo-fixed value boundary condition produced a more

stable –especially eliminating constantly rising inlet pressure– solution progres-

sion towards eventual convergence.

• The Mean Turbulent Kinetic Energy Field (k) and turbulent dissipa-

tion rate (ε): The Lam-Bremhorst model is designed to predict the effects of

dissipation in the viscous sublayer and therefore does not require a wall func-

tion like the standard k − ε model. The prediction of the phenomena within

the near-wall region is completely left to the model. Because of this, the wall

boundary conditions for both k and ε are set to a zero-gradient. From a physical

perspective, this boundary condition is meaningful as we only require that the

production of k and ε be zero in the laminar sublayer. Just above the laminar

sublayer, we expect the an interface of laminar and turbulent flow; with large

shear that produces “turbulence”. The generated k and ε are then diffused into

the laminar subregion and dissipated, a analysis that agrees with Kolmogorov’s

hypothesis and the cascade of turbulent energy [133]. For the inlet values of

k and ε, several assumptions must be made. To determine k, the turbulent

intensity

I =
||u′||
||U||

,

was assumed to be a fairly low 5 %. The inlet value of k could then be deter-

mined using

k =
3

2
I||U||2

[
m2

s2

]
.

For estimating inlet ε, a turbulent length scale (l) was assumed to be 10% of

the particle diameter. Subsequently, ε was determined using the definition

ε =
C0.75
µ k0.5

l

[
m2

s3

]
,

where the turbulent model constant Cµ = 0.09. Though these are initial guesses

for k and ε, the values of both quickly equilibrated and changed to a more

realistic value ones the fluid entered the packed-bed.

79

At this point in the overall discussion, the domain on which calculations have been

performed on was introduced (Chapter 3); the theory of turbulence along with the

modeling methodology for simulating turbulent flows; and the details into the models

used to approximate physical phenomena within the packed bed have been presented.

Specific details concerning the convergence history, relaxation values, equation dis-

cretization schemes, linear system solvers have been left out of the discussion thus far.

In the next section, the results of the simulations on randomly packed-beds of cylin-

ders is given with a thorough discussion over three-dimensional data, radial profiles,

and a newly developed post-processing viewing perpendicular profiles is provided.

4.3 Results and Discussion

In this section, the complex three-dimensional data from the velocity field, the classi-

cal radial profiles in the packed-bed, and a newly developed perpendicular profile will

be discussed. Results for both laminar and turbulent flows in packed-beds of 3 cm

diameter and length cylinders in a 40 cm tube were determined. Particle Reynolds

numbers of 10, 100, 1500, 2500, 3000, and 5000 were simulated until steady-state

solutions were reached. A steady-state solution was considered to be converged when

the each variable residual measurement was constant, the mass flow rate through the

domain was constant, and several chosen probe point values within the system were

constant. The convection term in the RANS model was discretized with the 2nd order

linear upwind scheme with a least-squares gradient approximation that was limited

with a cell based limiter. An overall convergence criteria of 1e-6 for all variables was

used, along with relaxations values of 0.7 for velocity, 0.3 for pressure and 0.4 for k

and ε was set and is considered ideal for this type of simulation. Using these parame-

ters, pressure drop calculations were determined as an initial point of discussion and

are presented in the next section.

4.3.1 Pressure-Drop Calculations

Estimating pressure drop in a packed bed is often performed using Ergun’s equation

(Equation 4.25), where the classical values for the constants E1 and E2 are 150 and

80

7/4 respectively [17].(
(P0 − Pl)

L

)(
ρdp
G2

0

)(
ε3bulk

1− εbulk

)
︸ ︷︷ ︸

Y

= E1

(
µ(1− εbulk)
DtubeG0

)
︸ ︷︷ ︸

X

+E2 (4.25)

Based on the particle diameter (dp) and shape, bulk porosity of the bed (εb), su-

perficial fluid velocity (V̇ /Atube = G0), fluid viscosity, and tube diameter the pressure

drop across the bed can be calculated accurately. However, the fitting constants E1

and E2 vary from system to system. It is therefore useful to determine the Ergun

constants for the calculation of pressure drop at various superficial fluid velocities.

Using the linearized form of Ergun’s Equation 4.25, pressure drop data as a function

of packed-bed Reynolds number

RePB =
DtubeG0

ν(1− εbulk)

is plotted in Figure 4.2, showing an R2 ≈ 1. The fit of Ergun’s model is highly

dependent on boundary conditions, overall convergence, and near wall mesh (i.e.

local y+ values).

As you can see in Figure 4.2, the Spalart-Allmaras model is capable of producing

results that will fit Ergun’s equation perfectly. However, if the Lam-Bremhorst model

is used the values will not match the Ergun Equation. Though values of pressure-drop

that did not fit Ergun’s model, qualitatively similar results were seen between other

turbulence models. Additionally, it is known that the Ergun equation in reality does

not fit very well to flows in which the particle diameter to tube diameter ratio is less

than 25. Knowing this, Ergun’s Equation should not be used as a primary source

of validation for interstitial-scale CFD modeling efforts on small systems though this

is often the case in the literature. Ideally, instantaneous and time-averaged three-

dimensional data on the interstitial scale should be used for complete validation.

However, the length-scales of the voidage, the physical geometry of the packed-bed,

and fidelity required for such validations make it a difficult task. The next subsection

will discuss the three-dimensional velocity data and associated derived variables from

the velocity field and RANS model.

81

y = 190.16374x + 0.46813
R² = 0.99998

0

5

10

15

20

25

30

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Y

1/RePB

Laminar Regime
Turbulent
Regime

Figure 4.2: Typical pressure drop data from the simulations that is fitted
to Ergun’s equation (Equation 4.25) using the fv3 version of the Spalart-
Allmaras turbulent closure model

4.3.2 Three-Dimensional Data

For complex three-dimensional data, it often illustrative to present the data in its

raw image form for qualitative inspection in order to draw some conclusions about

the nature of the flow. For this study, all three-dimensional data is given as a slice of

the domain along the (1,-1,0) or (0,0,1) miller index planes. These planes are shown

in Figure 4.3 as a red line for clarity.

For plug flow reactors it is well-known that deviations from plug flow are common and

strongly depend on Reynolds number, the particle shape and type, radial porosity

distributions, and fluid properties of the system. In Figure 4.4 (a) and (b), the low

particle Reynolds flows show laminar flow with a relatively uniform velocity distribu-

tion. For higher particle Reynolds numbers in the turbulent regime, the flow exhibits

a great amount of wall flow that is greater than the inner portions of the packed bed.

82

(a)

(b)

Figure 4.3: Presentation of three-dimensional data along the (a) (1,-1,0)
and (b) (0,0,1) plane through the bed using Miller index notation.

Though this result is not surprising, it is indeed very indicative of how influential the

wall effects are on small particle to tube ratio systems.

For an improved perspective of the channeling at the wall, it is constructive to look

at the (1,-1,0) plane through the center of the packed bed. Upon initial inspection,

one will notice that the bed has been mirrored. This was discussed in Chapter 3, as

a method to increase the mesh cell density in order to capture the boundary layers

around the particles. With a similar analysis to the previous discussion on the (0,0,1)

plane, the turbulent flows show a dramatic increase in the near-wall velocity (i.e.

channeling) due to the porosity being the largest at the wall.

A closer inspection yields a more relevant result, which involves shedding and swirling

of flow past the randomly packed cylinders. To illustrate this, a comparison of the

velocity and vorticity magnitude near a specific particle is shown in Figure 4.6 for both

laminar and turbulent flows. For laminar flows, the fluid moves smoothly around the

particles and is evident by the slow moving fluid wrapping around the lower corners

of the particle. The vorticity of the between the particle is low due to the non-

overlapping streamlines of the laminar flow, and is highest at the interface of the bulk

flow and slow moving fluid near the particle surface. This is seen as a thin red layer

near the particle surface in the bottom left corner of Figure 4.6 and exhibits relatively

83

(a) (b)

(c) (d)

Figure 4.4: Velocity magnitude slices along (0,0,1) plane through the
packed bed for (a) laminar flow at Rep=10; (b) laminar flow at Rep=100;
(c) fully turbulent flow at Rep=1500; and (d) fully turbulent flow at
Rep=2500

homogeneous mixing near the along the length of the particle surface. The last

important observation is the presence of very slow moving fluid behind the particles

that extends well behind the particle in question. For the case of the turbulent flow

in the right column, the gradients in velocity as one travels away from the particle

surface normal are less extreme at large distances from the particle surface. All of

the transition occurs near the particle surface, i.e. large wall shear stress over the

particle. Accompanying the turbulent flow is an increase in vorticity magnitude at

the sharp edges of the particle and behind the particle. This increase in rotation

in-turn dissipates the kinetic energy of the flow. The abrupt change in direction of

the fluid around the particle is a key source of drag and pressure drop in packed

beds, requiring a more thoughtful design for further improvements in pressure drop

reduction.

84

(a) (b)

(c) (d)

Figure 4.5: Velocity magnitude slices along (1,-1,0) plane through the
packed bed for (a) laminar flow at Rep=10; (b) laminar flow at Rep=100;
(c) fully turbulent flow at Rep=1500; and (d) fully turbulent flow at
Rep=2500. The entrance and exit regions of the beds have been removed
for improved visualization.

If more emphasis is put on energy dissipation, a look into the turbulent kinetic energy

(k) and turbulent kinetic energy dissipation (ε) shows that a relative maximum of k

and ε coincide with the rotation of the fluid shown in Figure 4.7. If a broader snapshot

was taken and translated to the (0,0,1) plane in the bed, we would see a picture of

highest k and ε in the outer region of the bed at the areas of highest relative velocity.

Owing its existence to the complex interactions of the fluid shedding over the particle,

it is difficult to derive any meaning directly from inspection beyond what has been

noted. Further contraction of the data will yield a more fruitful discussion of near

particle behavior, and is provided in the next section covering radial profiles.

In the last portion of the discussion of three-dimensional data, it is beneficial to adopt

a more subjective measure to “visualize” fluid vortices. For this purpose, we can use

85

Re
p
 100 Re

p
2500

Velocity
Magnitude

Vorticity
Magnitude

Figure 4.6: Comparison of velocity magnitude (top row) and vorticity
magnitude (bottom row) for laminar (left column) and turbulent (right
column) flows around a particular particle in the bed.

Turbulent Kinetic Energy

Dissipation (ε)
Turbulent Kinetic

Energy (k)

Figure 4.7: Surface plots of turbulent kinetic energy (left) and turbulent
kinetic energy dissipation (right) near a particle surface.

the Q-criterion [57] that can be defined as

Q =
1

2

(
trace(∇U)2 − trace(∇U · ∇U)

)
.

Used as a method to obtain a qualitative look at vortex formation, Q-criteria is

a subjective assessment of velocity gradients to differentiate pure shearing motions

from actual swirling motion of a vortex (something that vorticity magnitude cannot

86

Figure 4.8: Surface and contour plot of Q-criterion used to visualize the
presence of vortexes around the packed particles.

provide)[73]. Looking at Figure 4.8, we can paint a very complex portrait of our flow

in which flow from one particle strongly influences flow near another particle. The

two colors (red and blue) represent positive and negative Q-criterion. Positive (Red)

represents a situations in which actual swirl is dominant over shearing, revealing

an actual vortex in the system. A vortex shedding off of one particle influences

the direction of rotation of another vortex off of another particle in the form of

a “doublet”. These fluid structures disrupt the formation of streamlines between

the particles and increase the convective exchange, but disrupt the formation of a

boundary layer. In general, the shedding of fluid and rotation is maximum at sudden

changes in the particle surface normal direction. The smooth faces with unidirectional

flow over top promote orderly flow, while abrupt changes (such as a fluid approaching

a particle) cause convective acceleration, an increase in drag, and eventual shedding

of this energy in the form of a swirl. Although this fact may seem trivial, it is one of

the key mechanisms of energy loss in the automotive industry and drives the concern

for lift and drag in external flow design and simulations. Though this discussion is

cursory, there are many more coherent vortex detection strategies [73] that could be

used for validation and investigation of packed-bed systems that are not presented

here.

The complex three-dimensional results presented here were qualitatively evaluated,

giving a sense of the complex process of acceleration, vortex shedding, and dissipation

87

of energy around particles. On a global scale the summation of the individual effects

are seen in the pressure-drop (drag forces) and also lumped together in radial distri-

butions of velocity, k, and ε. What follows in the next section is a detailed evaluation

of the lumping of these individual effects with respect to the global radial direction

in the packed-bed.

4.3.3 Distributions in the Radial Direction

As we saw at the end of the previous section, it is constructive to contract complex

data into information of lower tensor dimensionality, eg. vectors→ vector magnitude

or stress components→ Q-criterion. The analysis of fields in three-dimensional space

of higher rank tensors (e.g. vectors and stress tensors) is simplified by determining

a representative rank 0 tensor field (scalar field). In a similar spirit of simplifica-

tion, we can contract data in three spatial dimensions into lower spatial dimensions

through averaging through planes or about an axis. This allows for analysis of global

interactions by lumping information, with some loss of detail.

The most familiar form of this spatial averaging is the formulation of global radial

data profiles. The data in the packed bed is converted to cylindrical coordinates

with the principle axis of the bed aligned with the z-axis of our coordinate system.

The data (in r,θ,z format) is then averaged from the base of the packed bed to the

height H, and further averaged around the θ-axis. The resulting information is now

in one spatial dimension along the r-direction, outward from the centerline along the

principle axis.

The first and most relevant radial distribution to discuss is the velocity data. For

each velocity component (Ur,Uθ, and Uz), the data is non-dimensionalized through

scaling with the average value at each Reynolds number 11.

• Radial Velocity: The radial velocity component (Ur) within the interstitial

spaces (Figure 4.9(a)) in the packed-bed had a nearly equal trend of inward

11Because the average magnitude of the laminar flow solutions were orders of magnitude lower
than the turbulent solutions, each series was non-dimensionalized with average value of that series
rather than the laminar values.

88

0 1 2 3 4 5 6 7
−4

−2

0

2

4

6

8

10
 r vs. r−velocity

r/d
particle

 [−]

U
r [−

]

Rep 10
Rep 100
Rep 1500
Rep 2500
Rep 3000
Rep 5000

(a)

0 1 2 3 4 5 6 7
−40

−20

0

20

40

60

80

100

120
 dimensionless r vs. θ−velocity

r/d
particle

 [−]

U
θ [−

]

Rep 10
Rep 100
Rep 1500
Rep 2500
Rep 3000
Rep 5000

(b)

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4
 dimensionless r vs. z−velocity

r/d
particle

 [−]

U
z [−

]

Rep 10
Rep 100
Rep 1500
Rep 2500
Rep 3000
Rep 5000

(c)

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4
 dimensionless r vs. velocity magnitude

r/d
particle

 [−]

|U
| [

−
]

Rep 10
Rep 100
Rep 1500
Rep 2500
Rep 3000
Rep 5000

(d)

Figure 4.9: Dimensionless (a) radial velocity component Ur/Ūr, (b) azu-
muthal velocity component Uθ/Ūθ, (c) axial velocity component Uz/Ūz, and
(d) velocity magnitude ||U||/||Ū|| vs. dimensionless radial distance from
the center (r/dparticle) for laminar and turbulent flows.

and outward radial velocity towards the center of the bed, with the fluid being

pushed up against the tube near the wall of the reactor. Due to the random

nature of the particle packed up against the smooth wall, the fluid is pushed

outward to the fast moving lower pressure fluid near the wall itself. The presence

of a radial pressure profile was not seen on these scales, but may have an effect

on the radial velocity. At higher Reynolds number, the radial velocity near the

tube wall was higher, indicating the possibility of higher transport from the

center of the packed-bed.

89

• Azumuthal Velocity: The azumuthal velocity component (Uθ) within the

interstitial spaces (Figure 4.9(b)) in the packed-bed had a trend of nearly equal

positive and negative velocities, indicating no overall helical motion of the bulk

in this particular system.

• Axial Velocity and Velocity Magnitude: The axial velocity component

(Uz) and velocity magnitude (||U||) shown in Figures 4.9(c) and 4.9(d) show that

axial flow dominates. Comparing the non-dimensional data of Figures 4.9(a)

through (d), it can be noted that the axial velocity is an order of magnitude

larger than the radial and azumuthal velocity magnitudes. Though this is not

a surprising fact, it highlights a key dysfunction in packed beds, poor radial

scalar transport (e.g. heat and mass transport). A key metric to improve radial

transport would be to design a particle that increases radial flow, as convective

transport is much faster than conduction.

Secondary to velocity profiles, it is useful to visualize radial profiles of model and de-

rived quantities such as turbulent kinetic energy, turbulent kinetic energy dissipation,

and u′. Turbulent kinetic energy represents the root-mean-square of the fluctuating

components (u′) of the Reynolds decomposed velocity (〈U〉 + u′), i.e. the kinetic

energy per unit mass of the turbulent eddies [87]. Figures 4.10(a) through 4.10(d)

are the radial distributions for turbulent kinetic energy and turbulent kinetic energy

dissipation. It should be noted that the turbulent kinetic energy (k) vs. radial posi-

tion plot in Figure 4.10(b) has been non-dimensionalized using the magnitude of the

velocity at the lowest turbulent Reynolds number (i.e. Rep = 1500). Furthermore the

dimensionless turbulent kinetic energy dissipation vs. dimensionless radial position

has been scaled with the magnitude of the turbulent kinetic energy dissipation at

Rep = 1500.

The first note that should be made is that the magnitude of the k and ε scale similarly

with the previously discussed radial velocity profiles, i.e. higher particle Reynolds

number creates higher turbulence in area where porosity is highest. In an area of the

bed the is seemingly the most desirable for the fluid to travel, the fluid contacting the

particles converts the energy put into the packed-bed into turbulence and is ultimately

dissipated and lost. Through this process of creating eddies and dissipating energy,

heat and mass transport are enhanced the most in this region in the bed. This also

90

0 0.05 0.1 0.15 0.2 0.25
0

10

20

30

40

50

60

70
Turbulent Kinetic Energy (k) vs. Radial Bed Position (r)

k
[m

2 /s
2]

r [m]

Rep 1500
Rep 2500
Rep 3000
Rep 5000

(a)

0 1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90
Dimensionless Turbulent Kinetic Energy (k) vs. Dimensionless Radial Bed Position (r)

k/
||U

||2 [−
]

r/d
particle

 [−]

Rep 1500
Rep 2500
Rep 3000
Rep 5000

(b)

0 0.05 0.1 0.15 0.2 0.25
0

2000

4000

6000

8000

10000

12000

14000

16000
Turbulent Kinetic Energy Dissipation (ε) vs. Radial Bed Position (r)

ε
[m

2 /s
3]

r [m]

Rep 1500
Rep 2500
Rep 3000
Rep 5000

(c)

0 1 2 3 4 5 6 7
0

50

100

150

200

250

300

350

400

450

500

Dimensionless Turbulent Kinetic Energy Dissipation (ε) vs. Dimensionless Radial Bed Position (r/d
particle

)

ε/
||ε

||
[−

]

r/d
particle

 [−]

Rep 1500
Rep 2500
Rep 3000
Rep 5000

(d)

Figure 4.10: Dimensionless (a) radial velocity component Ur/Ūr, (b) azu-
muthal velocity component Uθ/Ūθ, (c) axial velocity component Uz/Ūz, and
(d) velocity magnitude ||U||/||Ū|| vs. dimensionless radial distance from
the center (r/dparticle) for laminar and turbulent flows.

implies, through Kolmogorov theory, that the smallest turbulent eddies in the system

will present in the region within 1.5 particle diameters of the wall. The mechanism

for the generation and dissipation of the turbulence is most evident by the fact that

1. Fluid is accelerated near the wall of the tube due to a pressure driving force

and higher levels of porosity.

91

2. The fluid approaches a particle face that is perpendicular the principle flow

direction, requiring convective acceleration around the particle to satisfy no-

slip and continuity near the particle surface.

3. The energy of this acceleration is ultimately dissipated in the shedding vortexes

off of the adjacent wall particles themselves.

Knowing this mechanism, one may be inclined to design a particle that would either

1) create less shedding vortexes or 2) redirect the flow towards the inner portion of

the bed so that the enhancement of the eddy formation can benefit inner portions fo

the bed. Though it is known what is occurring on a relatively global scale in the bed,

the generation of and dissipation of turbulence is happening on a more local scale

close to all of the walls in the bed. Instead of thinking on a global scale, thinking

on a scale local to every particle might provide further insight into the near particle

fluid behavior at every point in the bed. This is the subject of the next subsection,

covering the perpendicular profiles.

4.3.4 Perpendicular Profiles

In the previous section, one-dimensional distributions were formulated with respect to

a global coordinate system originating along the centerline of the principle axis of the

bed in the outward radial direction. Presented here as a novel method to analyze flow

data in packed beds, let us perceive a coordinate system that is again one-dimensional

but originating locally from every no-slip (i.e. wall) boundary face in the direction

normal to each of these boundary faces. This concept of a one-dimensional model in

the perpendicular direction from a wall though novel in the analysis of interstitial-

scale CFD has been widely accepted as a method to describe thin-film theory and

mass transfer coefficients[36]. Since field values at every point in the packed-bed are

associated with exactly one closest perpendicular wall face, a distribution can be

created.

If the magnitude of the velocity field at every point in the bed with a perpendicular

wall distance y from the nearest no-slip boundary is averaged, we will see the plots

shown in Figure 4.11. In Figure 4.11(a), each of the velocity values have been scaled

92

0 0.1 0.2 0.3 0.4 0.5 0.6
0

100

200

300

400

500

600

700

800

900

1000
 dimensionless y vs. velocity magnitude

y/d
particle

 [−]

|U
| [

−
]

Rep 10
Rep 100
Rep 1500
Rep 2500
Rep 3000
Rep 5000

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
 dimensionless y vs. velocity magnitude

y/d
particle

 [−]

|U
| [

−
]

Rep 10
Rep 100
Rep 1500
Rep 2500
Rep 3000
Rep 5000

(b)

Figure 4.11: Dimensionless velocity magnitude scaled with (a) the aver-
age velocity of the lowest laminar Reynolds number of Rep = 10 and (b)
the average velocity at each Reynolds number, related to dimensionless
perpendicular distance from the nearest wall (y) scaled with particle di-
ameter.

with the average velocity magnitude at the lowest Reynolds number studied (i.e. Rep

10). All of the perpendicular velocity profiles are asymptotically identical at the

wall, with a no-slip boundary condition of a zero velocity. As the particle Reynolds

number increases, the perpendicular gradient of velocity
(

dU
dy

)
drastically increases,

agreeing with the notion of increasing wall-shear-stress with increasing Reynolds num-

ber. Within 0.05 y/dparticle on the abscissa, we see oscillations of the ordinate at all

turbulent Reynolds numbers. These oscillations are due to the mixture of near wall

flow environments of high speed flow aligned with the principle flow-direction (i.e.

positive z-axis) and the low speed “dead-zones” behind particles. This agrees with

our previous description of the three-dimensional flow field in previous sections of

near cylindrical particle environments being a mixture of high and low speed flow.

At intermediate perpendicular distances (0.05 ≤ y/dparticle ≤ 0.35), a linear trend is

seen with a consistent maximum near y/dparticle ≈ 0.325. At the furthest perpendic-

ular distances, there is considerable scatter at all Reynolds numbers. This scatter

accents the overall complex flow field of high speed rivulets, swirling flow shedding off

of particles, and low speed stagnant zones; all averaged together to construct seem-

ingly uncorrelated random random values. In Figure 4.11(b), each of the series have

been scaled with the average velocities of the series. Again, similar trends are seen

93

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

10

20

30

40

50

60

70

80

Dimensionless Turbulent Kinetic Energy (k) vs. y/d
particle

k/
||U

||2 [−
]

y/d
particle

 [−]

Rep 1500
Rep 2500
Rep 3000
Rep 5000

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

50

100

150

200

250

300

350

400

Dimensionless Turbulent Kinetic Energy Dissipation (ε) vs. y/d
particle

ε/
||ε

||
[−

]

y/d
particle

 [−]

Rep 1500
Rep 2500
Rep 3000
Rep 5000

(b)

Figure 4.12: Dimensionless (a) perpendicular turbulent kinetic energy pro-
files scaled with the lowest turbulent velocity magnitude and (b) perpen-
dicular turbulent kinetic energy dissipation rate scaled with the lowest
turbulent ε.

to Figure 4.11 of high perpendicular gradient of velocity for turbulent flows, while

the laminar flows have a much more gradual and parabolic profile. The near wall

oscillations are consistent among all Reynolds numbers, but more exaggerated for

turbulent flows than laminar flows. The lesser oscillations in laminar flow are consis-

tent with our previous discussion of the three-dimensional data since the streamlines

around particles are smooth and relatively similar flow field around the particles at

low speeds. Because the effects of the no-slip condition are transmitted further from

the particle surfaces through viscous effects, a more gradual velocity profile is seen

at intermediate y/dparticle ranges for laminar flows. Finally, at larger perpendicular

distances the amount of scatter increases.

Further support of this novel one-dimensional approach to extract and conceptualize

the data from the complex three-dimensional fields, involves the turbulent kinetic

energy and dissipation. Constructed in an identical manner as the perpendicular

velocity magnitude profiles, the perpendicular k and ε profiles are shown in Figure

4.12. The most notable characteristic of Figures 4.12(a) and (b) is the maximum of

both k and ε just above the wall surface. This is consistent with our knowledge of

turbulent boundary layers in jets [78], in that the maximum production of turbulent

kinetic energy (and dissipation) is just above the laminar sublayer. At this point in

94

the turbulent boundary layer, the gradients in velocity are large and the production

of turbulence is greatest. Just below this peak, the flow is laminar and therefor no k

or ε are produced; only diffusing through the laminar region of the boundary layer.

Knowing this point of peak k and ε production can provide valuable information as

to the average characteristic diffusion length and possible thickness of the laminar

sublayer in the packed-bed.

The perpendicular profiles seen in this research enhance our picture of the repre-

sentative boundary layer in packed beds. Thin film theory in packed beds assumes

a smooth velocity profile approaches a well-developed representative boundary layer

thickness such that

kmass =
D
δm
,

relating a mass transfer coefficient (kmass) with the molecular diffusivity (D) and a

characteristic mass transfer length (δm). With the current results, we may revise this

picture to incorporate the global averaging of mixed high and low speed flows around

the surface of the particles. Additionally, different particles will possibly give different

results of perpendicular profiles, allowing for a point of optimization or yet another

(more accurate) empirical relationship for mass transfer coefficient.

4.4 Closure

This chapter brought together the theoretical background presented in earlier chap-

ters and provided a cursory discussion of turbulent theory and the methodology of

interstitial-scale momentum transport modeling for steady-state laminar and turbu-

lent flows. The major finding from the research is that much knowledge can be gleaned

by a qualitative analysis of the three-dimensional flow fields, radial profiles, and per-

pendicular profiles. More specifically, the shape of the particle perturbs the flow near

the surface and downstream to create both positive and negative flow characteristics

that should be more thoroughly understood and applied to improved particle design.

What follows are several take home messages.

• RANS Models of Momentum Transport: RANS-based models provide

an important description of the steady-state flow-field within the packed which

95

is otherwise extremely complex and highly depended on boundary conditions,

turbulent closure relations (i.e. turbulent viscosity model), mesh structure,

equation discretization, and convergence criteria. What has been lacking in the

literature for interstitial-scale modeling is a definitive method for modeling the

transport phenomena in packed-beds.

• Three-Dimensional Data Analysis: Clear differences in near particle flow

phenomena were shown for several cases of laminar and turbulent flows. For

laminar flow, the fluid moves around the particle creating very little swirl near

the sharp edges of the particle. The laminar flow exhibited very uniform flow

through the radial direction in the bed, however had many regions of recir-

culation in-between and downstream from particles. By using the Q-criteria

proposed by Hunt et. al [57], the differences in near particle flow environment

can be further exaggerated to show additional flow complexities and vortex

formations.

• Contraction of Data: Complex three-dimensional data was contracted for

two primary reasons (1) To improved conceptualization and understanding and

(2) to reflect complex information to lower dimension models (e.g. dispersion

models, Euler-Euler models, etc.). For the radial profiles of velocity, it was seen

that the flow magnitudes in the center of the bed were relatively flat with a

drastic peak near the wall. This peak at the wall of course coincided with the

rise in porosity from wall effects. In addition the radial profiles of turbulent

kinetic energy (k) and turbulent kinetic energy dissipation rate (ε) showed that

there was a much larger presence of turbulence within the first 1.5 particle

diameters near the wall. This rise in turbulence and dissipation would indicate

the increase in mixing and energy loss near the wall due to the complex approach

and swirling the fluid experiences.

• Perpendicular Profiles: Perpendicular profiles were introduced as a novel

method to post-process the complex velocity, k, and ε fields. The profiles agreed

asymptotically with the boundary conditions as well as accepted descriptions

of turbulent boundary layers in general. It was seen that the turbulent kinetic

energy and dissipation experienced distinct peaks just away from the walls and

a sharp decline near the wall, inidicating the diffusion and dissipation of turbu-

lence in a laminar sublayer. Overall, the perpendicular profiles can be viewed as

96

a representative boundary layer of the packed-bed, that could be used to refine

our viewpoint of thin-film theory in packed-beds and revise one-dimensional

models (e.g. mass transfer and thin-film theory).

With a thorough presentation of momentum transport in packed beds, the next step

is to pursue a discussion in scalar transport in packed beds. Linking the momen-

tum transport results to scalar transport will identify key points in catalyst design

improvements and provide a more detailed picture phenomena in packed beds. This

is the subject of the next chapter, covering scalar transport in packed-beds for both

laminar and turbulent flow fields.

97

Chapter 5

Interstitial-Scale Scalar

Transport Modeling

5.1 Introduction

In Chapter 4, interstitial-scale momentum transport modeling was performed on

a computational mesh generated from the methods discussed in Chapter 3. The

interstitial-scale flow field was found to be a complex composite of phenomena in

which fluid elements experienced convective acceleration around particles, followed

by shedding of vortices; the formation of developed boundary layers was disrupted by

the complex streamlines and shedding of vortices; and a large number of low-speed

“dead” zones behind and in-between particles. All of these effects are inherently im-

portant in scalar transport due to the interconnectivity of the momentum and scalar

transport equations.

In this chapter, the theory of turbulence presented in Chapter 4 will be extended

in a discussion of turbulent mixing that will lead to an improved understanding of

the intricacies of scalar transport in packed-beds. The RANS methodology will be

applied to the scalar transport equation, and will require additional effort to close the

scalar-flux term arising from our mathematical formulation leveraging Reynolds de-

composition. All of the theoretical background will then be used to evaluate transient

behavior that is simulated in the packed-bed.

98

As a method of interrogating the packed-bed, simulated step-tracer experiments in

both laminar and turbulent flows were performed. In both flow regimes, three-

dimensional transient data was collected along with the cup-mixing concentration

monitored at the exit of the bed. The flow characteristics captured in the momen-

tum transport modeling is directly linked to the three-dimensional data and age-

distribution. Lastly, time-step and turbulent Schmidt dependence is addressed with

closing thoughts on the scalar transport simulations. Prior to the discussion of simu-

lation results, a brief background in turbulent mixing and modeling scalar transport

in turbulent flows is provided.

5.2 Scalar Transport Modeling

5.2.1 Scalars and Turbulent Mixing

A scalar is defined as a rank 0 tensor representing a simple physical quantity (e.g.

volume fraction, mass, temperature, or species concentration) in a system. Subse-

quently, transport equations are used to describe the conservation of a scalar within a

system to represent inflow, outflow, generation, and accumulation of a scalar quantity.

If scalar transport does not interact with concurrent transport processes in the sys-

tem, it is appropriately named a passive scalar. Conversely, if the scalar affects other

simultaneous transport processes, it is referred to as an active scalar (e.g. thermal in-

teractions with momentum through a buoyancy term in the momentum conservation

equation). Scalar transport (passive or active) is present throughout many scientific

fields, from basic science in the study of transport phenomena to industrial engineer-

ing processes. In the case of a scalar in a flowing fluid, turbulence is often encountered

and requires additional consideration.

Although our understanding of turbulent flow has grown tremendously over the last

century, fundamental knowledge of the mechanism of conserved scalar transport in a

turbulent flow is still a growing field of research. Recent reviews by Dimotakis[39],

Warhaft[131], and Tominaga and Stathopoulos[126] provide valuable background cov-

ering the experimental, theoretical, and modeling work concerning scalar transport

99

during the 20th century. Dimotakis reviewed turbulent mixing, with a thorough dis-

cussion into what has been categorized as level-1, level-2, and level-3 mixing where,

• Level-1 mixing involves passive scalars, such that the combination of a fluid and

tracer or fluids of similar properties result in no effect on overall flow dynamics.

• Level-2 mixing is indicated by the interaction of two fluids causing a change

in flow dynamics (eg. Rayleigh-Taylor instability flows).

• Level-3 mixing is categorized by mixing that produces changes in overall fluid

intensive properties (density or composition), resulting in a change in flow dy-

namics (eg. buoyancy driven flow).

Dimotakis notes that studies on level-2 and level-3 mixing are very much open research

topics, while level-1 mixing research has been limited to canonical flows (eg. pipe flow,

free shear layers, and jets) and relations to empirical data. The conclusions drawn by

Dimotakis end on the hope for experimental studies to produce more detailed data

needed to develop large eddy simulation (LES) subgrid scale (SGS) models based on

observations of scalar mixing rather than on low-order statistics. Warhaft focused

on the turbulent passive scalar, touching deeply on passive scalar anisotropy and the

direct connection of turbulent length scales rather than the cascading mechanisms of

turbulent interactions. Mainly giving an experimental perspective, cornerstones of

turbulence theory are addressed in an effort to understand intermittency. Warhaft’s

discussion, however fundamentally important in understanding turbulence, is beyond

the general remarks of this review and left to the motivated reader. Lastly, the work by

Tominaga and Stathopoulos offers a discussion of the Reynolds averaged approach to

modeling passive scalars, with an emphasis on gas-phase urban and building diffusion

problems. The overall conclusion from Tominaga and Stathopoulos is that there

is a need for optimal global Sct numbers based on dominant effects instead of the

generally accepted values of turbulent Schmidt (Sct) number in the range of 0.7-0.9.

The implications of a turbulent Schmidt number are provided later in this discussion.

The cited reviews provide an appropriate introduction into the topic of passive scalar

transport in turbulent flows, but leave room for further improvement on the subject

in terms of Reynolds averaged modeling approaches.

100

5.2.2 Turbulent Scalar Transport Theory

Inasmuch the RANS equation requires closure to account for the effect of chaotic

turbulent fluctuations, so does the transport of a passive scalar in a turbulent flow

field[45, 105]. The conservation equation describing the scalar transport of species α

is

∂φα
∂t

+∇ · (Uφα) = ∇ ·Dα∇φα + Sα (φ) , (5.1)

where the Sα (φ) is the chemical source term (i.e. rate of production) for species

α. Using Reynolds decomposition[17], a scalar quantity φα is decomposed into an

ensemble averaged value 〈φα〉 and a fluctuating component φ′α as

φα (x, t) = 〈φα (x, t)〉+ φ′α (x, t) . (5.2)

Substituting 5.2 into the scalar transport equation for species α in 5.1, we are left

with
∂ 〈φα〉
∂t

+∇ · 〈Uφα〉 = ∇ ·Dα∇〈φα〉+ 〈Sα (φ)〉 , (5.3)

where the second term on the left hand side of (5.3) requires further decomposition

into

∇ · 〈Uφα〉 = ∇ · 〈(〈U〉+ u′) (〈φα〉+ φ′α)〉

= ∇ · (〈U〉 〈φα〉+ 〈u′φ′α〉) . (5.4)

Back substitution of 5.4 into 5.3 results in the unsteady Reynolds averaged passive

scalar equation

∂ 〈φα〉
∂t

+∇ · (〈U〉 〈φα〉) = ∇ ·Dα∇〈φα〉 − ∇ · 〈u′φ′α〉+ 〈Sα (φ)〉 . (5.5)

As it was seen in the RANS equation, the unclosed 〈u′φ′α〉 scalar-flux term in (5.5)

involves fluctuating components that must be reconciled. In the case of production

(i.e. non-zero chemical source Sα (φ)), additional numerical treatment is required to

101

close the ensemble averaged chemical source term 〈Sα (φ)〉. Further discussion of the

chemical source closure can be found in works by Pope[105] and Fox[45]. The closure

of the 〈u′φ′α〉 term in 5.5 is discussed in the next section.

The Closure of The Scalar-Flux term 〈u′φ′α〉

The closure of the 〈u′φ′α〉 term in Equation 5.5 is generally accomplished with either a

gradient-diffusion hypothesis (GDH) model similar to the eddy viscosity model (4.8),

an algebraic moment (AM) model, or a scalar-flux transport model (SFM). Each of

these approaches differ in formulation, complexity of transport equations, and has

strengths and weaknesses that will be covered in this discussion. The full derivations

and applications of each of these methods are available in the cited literature.

• Gradient Diffusion Models

By far the simplest method to account for 〈u′iφ′α〉 is to use a gradient diffusion

hypothesis (GDH) in which

〈u′φ′α〉 = −Dt∇〈φα〉 = − νt
Sct
∇〈φα〉 , (5.6)

with Sct being the turbulent Schmidt (or turbulent Prandtl) number and Dt

being the turbulent mass diffusivity. The gradient diffusion hypothesis assumes

isotropic turbulence for simplicity. As a result, the GDH is known to inaccu-

rately predict turbulent effects in cases where the scalar flux is not aligned with

the mean scalar gradient (i.e. highly anisotropic flows). The benefit of the GDH

closure is that there are no additional transport equations, making it relatively

simple to implement numerically.

• Algebraic Models

A more rigorous approach than the GDH involves determining an anisotropic

turbulent diffusivity tensor Dt, first introduced by Batchelor[9] as

〈u′φ′α〉 = −Dt∇〈φα〉 , (5.7)

102

with the difficulty being in directly determining the components ofDt
ij. Younis[135]

noted that the simplest rational algebraic model (AM) was developed by Daly

and Harlow[35], setting Dt directly proportional to the Reynolds Stresses, with

〈u′φ′α〉 = −Cθ
k

ε
〈u′v′〉∇ 〈φα〉 , (5.8)

where Cθ is set as a positive constant. This formulation overcomes one of

the shortcomings of GDH due to misalignment of scalar-flux and mean scalar

gradient but, as Younis[135] comments, 5.8 predicts the wrong magnitude of the

scalar-flux in the direction normal to the mean scalar gradient. The conclusion

by Younis was drawn through comparison of the ratio of streamwise to cross-

stream heat fluxes in fully developed channel flow with heated walls, noting the

slight differences of the Daly-Harlow model (5.8) compared to DNS results by

Kim[71]. A similar model discussed by Fox[45], reveals a slight variation where

〈u′φ′α〉 = − k

Sctε
〈u′v′〉∇ 〈φα〉 , (5.9)

which is used in conjunction with the k− ε or Reynolds-stress models. 5.9 cor-

respondingly overcomes the flaw of scalar-flux and mean gradient misalignment

of the GDH, due to its use of the anisotropic
〈
u′iu
′
j

〉
term. Both 5.8 and 5.9

draw criticism[135, 45] for their lack of accuracy in predicting the scalar-flux;

yet they both imply a strong influence of Reynolds-stress on simple scalar-flux

models; a more agreeable description of physical phenomena in turbulent flows

than those relying on the simplifying assumptions of turbulent isotropy. The

theme of Reynolds-stress influence on scalar-flux is recurrent in commentaries

by Churchill[25], related directly to Prt, and the discussions in classic literature

by Levich[80] on diffusion rates in turbulent boundary layers. Not surprisingly,

more extensive models used to close the scalar-flux yield more detailed descrip-

tions of turbulent effects on scalar transport. Hence, one may more accurately

resolve scalar-flux by utilizing additional transport equations, which is discussed

in the next section.

• Scalar-Flux Transport Models

Similar to the Reynolds-stress equations, in a scalar-flux model (SFM) approach

103

the 〈u′φ′α〉 is treated directly[135, 45] with the transport equation

∂ 〈u′φ′α〉
∂t

+ 〈U〉 · ∇ 〈u′φ′α〉 = ∇ •
(
J − 〈u′v′φ′α〉 −

1

ρ
〈p′φ′α〉 δij

)
+ P +R− εα,

(5.10)

where J is a component capturing the influence of molecular diffusion that is

often neglected, since molecular diffusion will be small compared to turbulent

diffusion effects in higher Reynolds number flows; P is the closed scalar-flux

production term; R is the unclosed pressure-scalar-gradient term; and εα is the

scalar flux dissipation term often neglected if assuming small-scale isotropy. The

remaining 〈u′v′φ′α〉 and 〈p′φ′α〉 flux terms are generally closed by relations similar

to the gradient-diffusion hypothesis[45]. The triple correlation term 〈u′v′φ′α〉 in

5.10 should be of much lower magnitude compared to the double correlation

term 〈u′φ′α〉 in 5.5, making the use of GDH to describe 〈u′v′φ′α〉 an acceptable

approximation of less dominant phenomena in the SFM. The SFM is one of

the most detailed Reynolds averaged models for scalar-flux transport, and is

the most computationally intensive method compared to the GDH and AM

presented in this discussion.

Reynolds averaged passive scalar modeling requires the use of a scalar-flux model to

close the 〈u′φ′α〉 term in Equation 5.5. Generally, this is accomplished with either a

gradient-diffusion hypothesis (GDH) model similar to the eddy viscosity model (4.8),

an algebraic moment (AM) model, or a scalar-flux transport model (SFM). Though

it is desirable to use the most complex, and possibly the most accurate, it was found

during this project that more complex models can give out of the ordinary results. For

this reason, the GDH was used exclusively for all transient step-tracer simulations.

The methodology for solving the passive scalar transport equation is discussed in the

next section.

5.2.3 Scalar Transport Modeling Methodology

In transient modeling of scalar transport in turbulent flows, Equation 5.5 captures

the ensemble averaged scalar concentration. Modeling reacting systems in turbulent

104

flows presents additional difficulty, due to the added necessity of closing the 〈Sα (φ)〉
in Equation 5.5. For simplicity, these studies are not concerned with any reaction in

the bulk fluid, since valuable information about mixing can be derived from a simpler

approach of modeling passive scalars.

The method of simulating passive scalars requires that there is only one-way coupling

between velocity and scalar transport was permitted. One-way coupling is accom-

plished by determining a steady-state velocity field from a RANS solving technique,

followed by the transient passive scalar transport Equation defined as

∂ 〈C〉
∂t

+∇ · (〈U〉 〈C〉) = ∇ ·D∇〈C〉+
νt
Sct
∇2 〈C〉 . (5.11)

Because the velocity is known, Equation 5.11 is a linear 2nd order partial differential

equation. At the inlet of the packed-bed, a constant tracer concentration is set, while

the exit and walls are defined as a zero-gradient. At this point, the system is defined

fully and an implicit formulation of the problem into a linear system of equations can

be achieved and solved with methods described in Chapter 2. With the necessary

background in turbulence and scalar transport modeling, the results of the step-tracer

studies are discussed in the next section.

5.3 Results and Discussion

In this section, the complex three-dimensional data describing the step-tracer flow

through the packed bed will be discussed. Results for both laminar and turbulent

flows in packed-beds of 3 cm diameter and length cylinders in a 40 cm tube were

determined. The cup-mixing concentration was collected at the exit of the packed-

bed until the concentration was approximately 99.9 percent of Cstep. A detailed

discussion of the tracer flowing through the packed bed, age-distribution curves, and

dependence of turbulent Schmidt and Courant number are provided in the following

sections.

105

5.3.1 Transient Passive Scalar Transport

Tracer studies are an integral portion of the analysis of contacting patter within

chemical reactors. To perform the studies on the interstitial scale, a cross-sectionally

uniform step-input tracer of concentration 1 mol/m3 was released just below the bed

of particle at time zero. At a plane just downstream from the bed, the cup-mixing

concentration, defined as

C̃ =

∫
S
C (n ·U) dA∫
S

(n ·U) dA
≈
∑

iCi (ni ·Ui)Ai∑
i (ni ·Ui)Ai

, (5.12)

was collected over surface S. The cup-mixing concentration is fundamentally differ-

ent than the average concentration, since cup-mixing concentration represents the

momentum-flux weighted average of concentration.

Before the tracer breakthrough curves are discussed, it is useful to first discuss trans-

port of the passive scalar through the interstitial spaces. For laminar flows (i.e.

Rep < 250), the presence of noticeable species diffusion is seen through interface

smearing as the tracer flows through interstitial spaces. In Figures 5.1.(a)-(f), it can

be seen that there is considerable diffusion and spreading of the tracer front as it trav-

els through the bed. This spreading can be viewed as a residence time effect since as

the tracer front move slowly through the bed, there is more time allowed for diffusion

to spread the tracer-fluid interface. Furthermore, higher speed convective channels

through the bed deliver an abundance of tracer that must diffuse perpendicularly to

the slower moving zones behind and in-between particles. Though this is expected,

this accentuates the necessity of improvement in particle shape such that convection

delivers a scalar to all particle surfaces.

For turbulent flow, the behavior of the tracer was noticeably different and is seen in

Figures 5.2.(a)-(f). The tracer moves swiftly through channels of higher convection

with very little spread of the fluid front. The fluids arriving at the exit at different

ages is primarily due to tortuosity rather than molecular diffusion (residence time

effects). Also, at these higher Rep the flow is much more susceptible to channeling

and bypassing due to jets in the flow through the bed; a fact that is much more

evident in the E-curves presented in the next section.

106

(a) t = 0.00 sec (b) t = 0.25 sec

(c) t = 9.00 sec (d) t = 17.25 sec

(e) t = 23.25 sec (f) t = 32.25 sec

Figure 5.1: Laminar (Rep = 10, Sc = 0.79, C0 = 0.8, and Bo = 7.9) step-tracer
surface plot through the (1,-1,0 plane) cutting plain with t̄ = 26.8 [sec] and
σ2 = 78.01 [sec2].

In the snapshots of the step-tracer through the packed-bed, there is a drastic difference

between laminar and turbulent flow regimes. For turbulent flows, the spreading of

107

(a) t = 0.00 sec (b) t = 0.015 sec

(c) t = 0.0375 sec (d) t = 0.0675 sec

(e) t = 0.10005 sec (f) t = 0.47505 sec

Figure 5.2: Turbulent (Rep = 1500, Sc = 0.79, Sct = 0.7, Co = 0.8, and
Bo = 1188) step-tracer surface plot through the (1,-1,0 plane) cutting plain
with t̄ = 5.25 · 10−2 [sec] and σ2 = 4.74 · 10−5 [sec2].

the tracer heavily dependent on the complex structure (tortuosity) within the bed

rather than the diffusion of species.

108

5.3.2 F and E Curve Analysis

Knowing the degree of non-ideality is the key to reflecting interstitial-scale simulation

results down to lower order models (i.e. compartmental, dispersion, or even Eulerian-

Eulerian CFD models). One principle method to understand deviation from ideal

flow, in this case plug-flow, is the pulse or step-tracer experiment. As mentioned

before, the cup-mixing concentration (Equation 5.12) was determined for the plane

just outside the packed particles, producing a C-curve. For simplicity, the Cstep was

chosen to be 1, making the C-curve equal to the F-Curve, since it is desired to calculate

the age distribution (Et-curve) of the fluid. The F and E-curves are related via

Et =
dF

dt
≈ Fi − Fi−1

ti − ti−1

(5.13)

Figure 5.3, is a comparison of the age-distribution and dimensionless age-distribution

for a laminar and turbulent flow in the packed bed. Several comments can be made

about the two figures. The step-tracer in a laminar flow if shown in Figure 5.3.(a),

and exhibits a large amount of spread in comparison to the ideal dirac-delta that is

seen in a perfect step-tracer experiment. As noted in previous discussions, the spread

of this curve is due to overall bed tortuosity, molecular diffusion, slow moving fluid

in-between particle, and post particle “dead” zones. it is expected that a different

particle shape reducing the slow moving fluid in-between particle and post particle

“dead” zones would reduce the spread of the curve. It may be undesirable to eliminate

the tortuosity due to the benefit of mixing in the bed. In Figure 5.3.(b), we can see

the dimensionless E-curves for laminar and turbulent flows defined by the variables

Eθ = t̄Et (5.14)

θ =
t

t̄
. (5.15)

For the turbulent flow we can immediately see that there is much less variance in

the curve and that there is a sharp initial front in the Rep − 1500 curve. This

sharp jump is due primarily to channel or bypassing that is near the wall. This was

seen in our previous discussion concerning the t-dependent surface plots in which it

109

0

0.01

0.02

0.03

0.04

0.05

0.06

0 10 20 30 40 50 60 70 80

Et [sec-1]

t [sec]

Rep = 10

(a)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 0.5 1 1.5 2 2.5 3

E��

��

Rep = 10

Rep = 1500

(b)

Figure 5.3: Presentation of (a) an age-distribution curve for a laminar flow
with Rep = 10 and (b) a comparison of dimensionless age-distribution (Eθ)
versus dimensionless time (t̄) between a laminar flow and fully turbulent
step-tracer.

was noticed that the flow was much more susceptible channeling phenomena. Not

surprising, this is seen in even higher Reynolds number flows. The channeling seen in

these small geometries may be due to the physical setup of the domain and has not

110

been mentioned by other researchers. Since most research project in interstitial-scale

modeling do not present tracer experiments, it is doubtful that they do not exhibit

similar effects. If so, any added wall heat transfer may be an aberration of channeling

rather than the particle shape alone. This fact brings into question the validity of

drawing conclusions on such small domains.

The last point of analysis in this portion of the project is an investigation of the

dependence of turbulent Schmidt and Courant number on the results. Firstly, Figure

5.4(a) shows the effect of turbulent Schmidt number on a step-tracer experiment. It

was found that there is no significant difference between the resulting E-curves. What

was of importance is that at lower turbulent Schmidt numbers, more inner iterations

are necessary to converge the solution at each time-step. The slight differences be-

tween the curves in Figure 5.4(a) are most likely due to the convergence and stopping

criteria rather than differences in the model.

Another unanswered question is the dependence of transient scalar transport calcu-

lations on time-step size i.e. Courant number. The cell Courant number is very

generically defined as

Cocell =
||U||δt
δx

, (5.16)

where δt and δx refer to the time-step size and spatial discretization width. The

Courant number is used as a time-step size control method since there are practical

and stability limitations (for explicit schemes) with time-step size that are system

dependent. Equation 5.16 is adequate when a finite difference formulation is used,

however is not sufficient for a finite-volume formulation. Because the finite-volume

method is primarily concerned with cell-face values and face-fluxes, a formulation

based on the face-flux of momentum is used and is discussed in appendix B.2. What

is important to note is that based on an alternate formulation, Courant number lim-

itations of 1 are not necessary for implicit finite-volume formulations of the problem.

Lastly, Courant numbers as high as 1.5 were used and did not presented stability

issues; did not cause unbounded and unphysical results; and produced no difference

in the age-distribution curves presented in Figure 5.4.(b).

111

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

0.00E+00 1.00E-02 2.00E-02 3.00E-02 4.00E-02 5.00E-02 6.00E-02 7.00E-02 8.00E-02 9.00E-02 1.00E-01

Et [sec-1]

Time [sec]

Sct = 0.1

Sct = 0.7

Sct = 0.9

(a)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

0.00E+00 1.00E-02 2.00E-02 3.00E-02 4.00E-02 5.00E-02 6.00E-02 7.00E-02 8.00E-02 9.00E-02 1.00E-01

Et [sec-1]

Time [sec]

Co = 1.5

Co = 0.54

Co = 0.85

(b)

Figure 5.4: E curves for flows with Rep = 1500 comparing (a) the effect of
turbulent Schmidt and (b) the effect of Courant number.

5.3.3 Effect of Scalar-Flux Model

As discussed in previous sections, the closure of the 〈u′φ′α〉 term in Equation 5.5

is generally accomplished with either a gradient-diffusion hypothesis (GDH) model

112

similar to the eddy viscosity model (4.8), an algebraic moment (AM) model, or a

scalar-flux transport model (SFM). Though one goal of the project was to explore

the various algebraic models and scalar-flux transport models, it was found that the

algebraic model presented by Fox (Equation 5.9) presented unphysical results. More-

over, a Reynolds stress model would be necessary to further leverage more detailed

scalar-flux models. Though it is an interesting topic that is worthy of study, it was

decided that this pursuit is left as a continuing project and is outlined as a future

project based on this work.

5.4 Closure

This chapter brought together the theoretical background presented in earlier chap-

ters and provided a cursory discussion of turbulent scalar transport theory and the

methodology of interstitial-scale scalar transport modeling for transient laminar and

turbulent flows. The overall finding is that the overall behavior of the tracer in the

packed-bed bed is a combination of the effects of local flow environments (convective

acceleration around particle, vortex shedding, dead-zones, low speed zones near con-

tact points, etc.), and the tortuous path that the fluid must travel between the bed

entrance and exit. With an improved knowledge of the near particle flow character-

istics and how they affect mass transport, additional improvements in particle shape

optimization can be achieved. What follows are several take home messages.

• Reynolds Averaged passive Scalar Equation: The Reynolds averaged pas-

sive scalar equation is capable of providing the ensemble averaged concentration

fields for turbulent flows. For Reynolds averaged approaches, scalar-flux closure

generally achieved through the gradient-diffusion hypothesis. In this project,

the more complex algebraic and scalar-flux transport models gave unphysical

results and requires more research and validation arrive at a final conclusion of

their utility.

• Turbulent Schmidt Number and the GDH: For the work that was per-

formed, there was no sensitivity of the model to turbulent Schmidt within a

reasonable range of values for Sct = [0.1, 1]. What was found is that for lower

113

Sct the number of inner iterations (i.e. iterations to solve the Ax = b sys-

tem) over each time-step (outer-iteration). For values above 0.7 there was no

significant change in inner-iteration count.

• Three-Dimensional Data Analysis: Clear differences in near particle flow

phenomena were shown for several cases of laminar and turbulent flows. For

laminar flow, the fluid moves around the particle creating very little swirl near

the sharp edges of the particle. The laminar flow exhibited very uniform flow

through the radial direction in the bed, however had many regions of recircula-

tion in-between and downstream from particles. This characteristic translated

to higher dispersion in the age-distribution curve seen during the step-tracer

experiments. Most importantly, molecular diffusion to the surface of the par-

ticles was a primary mode of transport of species rather than convection. For

turbulent flows, the wave front through the bed was defined and convection

dominated. The dead-zones behind the particles were not evident in the age-

distribution curves, but were seen as an area of design improvement. One such

design improvement has been suggested by Nijemeisland [92], requiring holes

in the lengthwise direction of the particle to sweep away the dead-zone at the

rear of each particle. What has not been addressed is the creation of intense

vortexes off of the front of the particles, disrupting the formation of boundary

layers over the particle and adjacent particles. By disrupting the formation of

the boundary layers over the particles, the characteristic length that a species

must diffuse is increased, further limiting already transport limited reaction

rates.

• Residence-Time vs. Tortuosity Effects: For laminar flows, the tracer front

has more time in between changes in direction that might cause mixing. This

additional time allows the tracer front to smear, giving way to a more “diffused”

fluid-tracer interface. In turbulent flows, the deviation from the flat fluid-tracer

front was due to the tortuosity of the complex structure. The direct relationship

of tortuosity and the pressure drop in the bed was also alluded to in the previous

chapter as well. What can be said is that the convective acceleration (i.e. the

change in direction fo the near particle flow fields) around the particle lends

itself as the main cause of drag and pressure drop in the bed. Reducing this

convective acceleration, while maintaining the complex structure of the bed to

114

move reactants to every face of the particles is key to the improved utilization

of packed-bed. For mass transport, these abrupt changes in direction of the

fluid adds to the radial and azimuthal spreading of the tracer. A better design

be entail a balance between pressure drop and spreading of reactants evenly

throughout the bed.

• Particle Design Improvements: As mentioned previously, one of the im-

provements suggested by Nijemeisland [92] was to insert holes along the length-

wise axis of the particle. One of the benefits of of this design would be to

“sweep” away the post particle dead-zones. One point that could be made is

that by introducing a volume that is not directly in contact with the higher-

speed flow outside the particle, the designer runs the risk of creating internal

dead-zones. One suggestion from this project is to elongate the particle shape

to a form more consistent with a grain of rice. This elongation will reduce the

drag of fluid approaching the face of the particle and could reduce post-particle

dead-zones. Modeling such a particle will require a reworking of the packing al-

gorithm. It also should be noted that in order to produce an optimized particle

shape, the shape must be altered (based on the discussion at hand), repacked,

re-meshed, and subjected to fluid simulation. Key objective functions should

be identified to enable a more systematic approach to optimization.

One of the key issues with the study of interstitial-scale flow phenomena is the lack

of computing power. With more computational speed, one could capture more com-

plicated and transient behavior (e.g. Kelvin-Helmholtz instability) with large-eddie

simulation (LES) or hybrid LES and RANS models. One such method to increase

the computational power of a cluster as a minimal cost per flop is to leverage the

new computing paradigm of graphics processing units or GPUs. The subject of us-

ing GPUs to speed up the process of CFD through integrating sparse linear system

solvers in OpenFOAM is the subject of the penultimate chapter of this dissertation.

115

Chapter 6

Implementing Sparse Linear

System Solvers Based on CUDA in

OpenFOAM

6.1 Introduction

Chapter 2 showed that an implicit finite volume formulation of transport equations

produces systems of linear algebraic equations. The solution of these sparse systems

is the most time-consuming portion of the CFD solution methodology. This has led to

the goal of accelerating a widely used CFD code through the use of graphics process-

ing units to parallelize Krylov subspace linear system solvers [117, 113, 129]. More

specifically, an unreleased library for solving sparse linear systems in OpenFOAM [29]

using CUDA will be further built upon, optimized, and released to the open source

CFD community under the name Cufflink. For the remainder of this chapter, the

GPU technology will be introduced, sparse linear algebra and iterative solvers will be

discussed, and preliminary results confirming the acceleration of OpenFOAM code

will be given.

116

6.1.1 The Graphics Processing Unit: A Shift in Computing

Paradigm

In the last decade, Graphics Processing Units or GPUs have become more prevalent

in high performance computing due to their performance gains in memory bandwidth

and computational speed. Seen in figure 6.1(a) below, the comparison of Intel based

CPUs and Nvidia based GPUs for single and double precision calculations show a

disruptive jump in performance, in some cases more than an order of magnitude

over the CPU. Additionally, the GPU is a fast developing technology with drastically

improving memory bandwidth with each generation of GPUs being brought to mar-

ket. With such growing performance characteristics, the GPU has become a highly

competitive and synergistic technology with CPU and is persistent throughout the

scientific computing community.

The success of a new computing paradigm requires greater performance over CPUs,

a usable programming platform, and reduced communication bottlenecks. The com-

puting speed gains that GPUs possess are directly attributed to the many core, many

thread, computing structure of the hardware itself. They are built to execute com-

pute intensive and concurrent actions for data processing rather than flow control

and caching [32]. The many core parallel computing approach requires a computing

language conducive to simplified multi-thread programming. With this goal in mind

Nvidia created the Compute Unified Device Architecture (CUDA C/C++) program-

ming language specifically for Nvidia brand GPU devices. CUDA C/C++ is similar

in appearance to that of C and C++ with additional structures for improved control

and implementation of parallel algorithms. In addition, many libraries for standard

templates, numerical algorithms, image processing, and signals analysis provide fur-

ther simplified use of GPUs in scientific computing. Lastly, for large problems that

cannot be solved using a single GPU, fast communication between multiple GPUs

is paramount. Recent advances using Nvidia GPUDirect have produced as much as

30 percent improvement in GPU-GPU communication speed across networked nodes

[33]. The advances in communication speed improve with each generation of Nvidia

GPUs, as well as each new development in networking hardware. The speed of the

parallel execution, fast on-board GPU memory, and improvements in communication

speed make the GPU an ideal platform for CFD acceleration. The next section will

117

http://developer.nvidia.com/gpudirect

(a)

(b)

Figure 6.1: Intel CPU vs. Nvidia GPU [32] (a) GFlops per second perfor-
mance comparison for single and double precision (b) Memory bandwidth
comparison

118

provide a cursory discussion of sparse linear algebra, the implemented methods of

the newly developed library, and outline the computational workflow required for the

library to be tied into OpenFOAM.

6.2 Theory and Implementation

It was shown in Chapter 2, that a linear system of equations arises during the implicit

finite volume discretization of linear (or linearized) transport equations. The coeffi-

cient matrix of these systems are always sparse for partial differential equations, and

increase in size for increasing mesh cell and face count [44]. To improve algorithm

efficiency and reduce memory requirements, only non-zero entries are stored in spe-

cialized storage formats including lower-diagonal-upper (LDU)12, compressed sparse

row (CSR), coordinate matrix (COO), and diagonal (DIA) [112]. Depending on the

storage scheme, algebraic operations will be formulated slightly different in order to

exploit the sparsity pattern and enable the fastest possible computation.

Once the linear system has been defined through the implicit discretization proce-

dure, a solution must be found in a fast, efficient, and computationally inexpensive

manner. Solving the system of equations using direct methods such as Gauss elimi-

nation or directly calculating the inverse of the coefficient matrix are computationally

prohibitive on even moderately large meshes. To reduce the expense associated with

solving such systems, iterative methods that guess a solution, check if a solution has

been found, and redirect the next guess are commonly used. If the cost per iteration

is small and the number of iterations are low, then iterative methods will be faster

and more efficient than a direct method.

In general, the class of iterative solvers used in this work are based on Krylov subspace

methods for both symmetric and asymmetric positive definite coefficient matrices. For

clarity, a Krylov subspace method uses the residual vector (ri = b−Axi) to select a

search direction for determining the next guess for the solution. Because Krylov meth-

ods determine residual vectors orthogonal to the previous search directions, Krylov

methods are guaranteed to produce linearly independent search direction unless the

12The LDU format is native to OpenFOAM and is used exclusively in the OpenFOAM library.

119

residual is zero, i.e. the solution is found [116]. For the sake of this brief discussion, a

more detailed discussion is left to Saad [112] and Shewchuk [116]. For symmetric posi-

tive (SPD) matrices, methods based on the preconditioned conjugate gradient (PCG)

method were used, while for asymmetric matrices a preconditioned biconjugate gra-

dient (PBiCG) method was used. Both of these methods are known to be stable,

suffer a low degree round-off error, and can be extremely fast if a preconditioner is

used to increase convergence rate and lower iteration count.

The PCG method is method used only for a symmetric coefficient matrix (e.g. pres-

sure field), while the PBiCG is used for asymmetric coefficient matrices (e.g. veloc-

ity field, scalar transport field, etc.). For this discussion, only the PCG method is

presented to illustrate common linear algebraic operations that will requires special

consideration later in the chapter. In Algorithm 2, the bold letters are vectors, the

capitalized variables are matrices, and the unbolded lower-case characters are scalars.

It can be seen that for each inner iteration of our solver loop, there are two vector dot

products, two matrix-vector multiplications, and three vector-vector additions. In

addition, there is one vector magnitude calculation when determining if the current

solution is accurate enough.

Algorithm 2: Parallel Preconditioned Conjugate Gradient

1 Compute: γ = normFactor(A,x,b);

2 Initialize: r = b− Ax0, z = M−1r, rz = (r · z), p = z, and rγ,0 = rγ = ||r||/γ;

3 while (rγ > tol) & (rγ/rγ,0 ≥ relTol) & (count ≤ maxIters) do

4 y← Ap ;

5 α← rz/(y · p) ;

6 x← x + αp ;

7 r← r− αy ;

8 z←M−1r ;

9 rzold ← rz ;

10 rz ← (r · z) ;

11 β ← rz/rzold ;

12 p← z + βp ;

13 rγ ← ||r||/γ;

14 count++ ;

15 end

120

Another important note is that the residual rγ ← ||r||/γ is scaled by a normalization

factor that is unique to OpenFOAM. For completeness, this normalization factor is

determined using the procedure

Algorithm 3: OpenFOAM Normalization Factor Computation

1 y← Ax ;

2 xref ← 〈x〉 ;

3 x′ ← vector of length n, all entries equal to xref ;

4 y′ ← Ax′ ;

5 y′′ ← y − y′ ;

6 b′′ ← b− y′ ;

7 γ = ||y′′||+ ||b′′||;

This normalization procedure is necessary to make complete one-to-one comparison

to the CPU based solvers in OpenFOAM with the GPU based solvers in this library13.

Now that we have introduced the idea of sparse linear algebra and Krylov subspace

methods, the next section will discuss the implemented linear algebraic operations

in order to produce a multi-GPU capable library to solve large systems sparse linear

algebraic equations.

6.2.1 Implemented Algebraic Operations

Although both CUSP and THRUST provide general transformation (e.g. vector

magnitude and Euclidean norm) and operations for level 1 (vector-vector) and 2

(matrix-vector) Basic Linear Algebra Subprograms (BLAS), the multi-GPU imple-

mentation of the vector dot product, vector magnitude, matrix-vector multiplica-

tion (for domain decomposed geometries), and vector average were not available 14.

The operations created for this work are derivatives of the CUSP operations and an

Open Message Passing Interface (MPI) implementation. For this presentation, only

the multi-gpu matrix-vector multiplication is discussed, while the Euclidean norm

13Often times, this normalization procedure is left out of GPU based linear system solvers and
often misrepresents true results.

14This is as of Summer 2011, and may be different at the time of this publication

121

(gpuSumMag(vector)), vector dot product (gpuSumProd(vector,vector)), and

vector average (gpuAverage(vector)) are presented in detail15 in Appendix B.1.1.

Domain Decomposed Multi-GPU Matrix-Vector Multiplication

One of the strengths of Krylov subspace methods is the fact that it eliminates matrix-

matrix multiplication [127], making the matrix-vector operation the most time con-

suming portion in the solution process. In recent years, as the GPU technology

has progressed, highly efficient and highly parallel matvec multiplication algorithms

have paved the way for faster scientific computing [48]. Because of the importance

of the matvec operation in the multi-GPU implementation of Krylov methods, it de-

serves special discussion about how it ties together with the coarse grained parallelism

through domain decomposition that OpenFOAM does so efficiently.

When a physical domain is decomposed using OpenFOAM (i.e. simple, scotch, or

metis decomposition from Section 3.3.5), the mesh is broken up so that a section is

assigned to a computational node or processor. Each computational node (e.g. a cpu-

core of separate GPU) can be on the same machine or spread across a network. The

idea of domain decomposition was first encountered in Section 3.3.5, where Figure

6.2 is a decomposed packed-bed mesh with the different colors representing different

processors associated with that portion of the mesh. On a simpler mesh, each of

the sub-meshes are numbered by processor, where each domain knows the location of

their neighbor domains, and they are coupled through a processor interface shown in

Figure .

Overall, our goal is to solve the associated Ax = b system created by our implicit

finite volume method, but in a faster way though coarse-grained parallelism. Each

of these sub-meshes in Figure 6.3 have an associated coefficient matrix we will label

Aii and an interface matrix formulated from the processor interface coefficients we

will call Aij. Overall, the global matrix is composed of all of the sub-matrices and

interface matrices simply called A. Moreover, each sub-mesh has an associated x and

b such that we can visualize the global problem similar to Figure 6.4.

15The actual code for these transformations and level 1 BLAS implementations is located in the
cufflink-library/lduMatrix/solvers/CFL Headers/globalOps.H file.

122

Figure 6.2: Packed-Bed mesh decomposition using Scotch

� �

� � �

� � �

�������������������

Figure 6.3: Simple domain decomposition across six nodes, each containing
processor interfaces between sub-meshes

What is important to note here is that each processor interface has two sub-matrices

and the interface matrices between two nodes are the transpose of each other i.e.

Aij = ATji. 123

� �

�
��

�
��

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 6.4: A global representation of our decomposed Ax = b system with
coefficient (Aii) and interface (Aij) matrices for each sub-mesh

Now that we have defined out decomposed system, the remaining task of defining the

matvec multiplication is relatively straightforward, yet the implementation is rather

difficult to optimize. The product vector (bi) for each sub-domain is now dependent

on the coefficient matrix (Aii) and vector (xi) of that sub-domain plus the influence

of the interface matrices (Aij) and neighboring sub-mesh vector values (xj). This can

be defined by

Aiixi +
N∑

j=06=i

Aijxj = bi (6.1)

where this repeated over N sub-domains. The actual matvec multiplication and

summation of the vectors is handled in CUSP. Furthermore, from a programming

perspective, this means that each node must have knowledge the interface matrices

and vector values of the neighboring sub-meshes to compute a product vector. It is

this information transfer that is the subject of constant improvement and optimization

124

and is not presented in the present discussion. Lastly, the reader must recognize that

any operation within an iterative method involving a matvec multiplication in a

decomposed domain must go through this algorithm. The next section will discuss

the iterative solution process using the presented matvec multiplication that is now

referred to as the gMatVec(matrix,vector) function.

6.2.2 Parallel Preconditioned Conjugate Gradient Method

with Normalized Residual

Thus far, the concepts of the iterative solver, the multi-GPU BLAS operations, and

the multi-GPU matvec operation have been covered. In order to actually solve the

system of equations derived from the decomposed mesh across multiple nodes, a

slightly different PCG method should be used. Algorithm 4 outlines the multi-GPU

implementation of the PCG algorithm in pseudo-code. When compared to the serial

version of the PCG in algorithm 2, all of the vector-vector dot product, matvec, and

vector magnitude operations have been replaced with the mulit-GPU version of the

125

functions. Vector-vector addition does not require GPU=GPU communication and

was not changed.

Algorithm 4: Parallel Preconditioned Conjugate Gradient

1 Compute: γ = normFactor(A,x,b);

2 Initialize: r = b− gMatV ec(A,x0), z = gMatV ec(M−1, r),

rz = gpuSumProd(r, z), p = z, and rγ,0 = rγ = gpuSumMag(r)/γ;

3 while (rγ > tol) & (rγ/rγ,0 ≥ relTol) & (count ≤ maxIters) do

4 y← gMatV ec(A,p) ;

5 α← rz/gpuSumProd(y,p) ;

6 x← x + αp ;

7 r← r− αy ;

8 z← gMatV ec(M−1, r) ;

9 rzold ← rz ;

10 rz ← gpuSumProd(r, z) ;

11 β ← rz/rzold ;

12 p← z + βp ;

13 rγ ← gpuSumMag(r)/γ;

14 count++ ;

15 end

As a result of the new algorithm for the decomposed domain, the normalization factor,

γ, is now calculated using

Algorithm 5: Normalization Factor Computation

1 y← gMatV ec(A,x) ;

2 xref ← gpuAverage(x) ;

3 x′ ← vector of length n, all entries equal to xref ;

4 y′ ← gMatV ec(A,x′) ;

5 y′′ ← y − y′ ;

6 b′′ ← b− y′ ;

7 γ = gpuSumMag(y′′) + gpuSumMag(b′′);

In order to optimize the performance of the multi-GPU algorithms, efficient commu-

nication between GPUs, more thoughtful bundling of data structures (e.g. sparse

126

matrix storage techniques), and optimized node communication hardware must be

considered and are in need of further research. In the next section, the subject of

how Cufflink is coupled with OpenFOAM is outlined.

6.2.3 Computational Workflow of Cufflink Solvers

Solving the system of linear equations on the GPU involves multiple levels of design.

In addition to an efficient algorithm to solve the system (e.g. preconditioned conjugate

gradient method), the transfer and manipulation of the data itself must be performed

with efficiency in mind. The basic process of moving data from OpenFOAM to

Cufflink and a subsequent solve in the linear system solvers involves three major

phases that are illustrated in Figure 6.5 and outlined in the following descriptions.

I. OpenFOAM: In OpenFOAM, all of the mesh handling and equation discretiza-

tion are performed using the CPU and stored in the computer memory. Within

the top-level solver (e.g. icoFOAM), the method solve(...) is called and trig-

gers the LDU format coefficient matrix (A) along with the solution vector (x),

source (b), and solver convergence criteria to be passed to a container class

holding the linear system. The LDU matrix only stores the diagonal, upper

triangular, and lower triangular elements of the matrix with the row and col-

umn indices of the upper triangular elements for a total of five vectors. Using

the CPU, the LDU matrix is converted to a partial COO matrix by copying

the lower, upper, and diagonal elements along with only the row and column

indices of the upper triangular elements.

II. Thrust and CUSP: Using Thrust and CUSP, the incomplete COO matrix in

the computer memory is then transferred to the GPU card memory along with

the solver convergence criteria. The remainder of the COO matrix is filled with

the row and column indices of the lower triangular elements along with the row

and column indices of the diagonal elements. At this point, the COO matrix is

reordered in an effort to optimize memory access and can be converted to other

formats such as CSR or DIA.

III. Cufflink: In this final sequence of steps, the linear system is passed to a specific

solver along with the convergence criteria. Once convergence has been reached,

127

A
X b

=

lduMatrix is copied to an incomplete COO
using thrust::copy() in C++

Incomplete COO is
transferred to GPU

COO is converted to other
formats on GPU
and passed to Cufflink
solver

=

Call to solve(…) method

Incomplete COO is
completed using
thrust::sequence()

Solver
stopping
criteria

Solve linear system

Thrust and CUSP

Thrust
OpenFOAM

Return X

Return
convergence
info

Cufflink

II I

III

Figure 6.5: Data flow diagram outlining the movement and conversion of
data from OpenFOAM to the Cufflink solvers. The process is broken up
into three portions where (I.) takes place in OpenFOAM C++ code, (II.)
leverages Thrust and CUSP to convert and move the information to the
GPU, and (III.) the system is solved on the GPU using Cufflink with the
solution transferred back to OpenFOAM.

or the solver stops, the solution vector (x) and information about the solutions

process (e.g. iteration count, residual, etc.) are passed back to OpenFOAM

and the outer-iteration continues to solve other variables in the top-level of the

fluid solver.

128

Though much of the details of the code have been abstracted in this discussion, the

overall flow of information is captured by Figure 6.5. Once the data has been moved

to the GPU, the calculation often requires less time that the data transfer itself. The

next section will present several sets of results for different case studies, along with a

discussion pertaining to further studies using the Cufflink library.

6.3 Results and Discussion

Determining the performance of the GPU-based solvers was based on overall clock-

times of the top-level solver in OpenFOAM. All of the latency due to data transfer,

preconditioner formulation, and the solver itself have been lumped together. As a

feasibility study of the technology, a simple case solving the temperature profile in a

flat plate was chosen.

6.3.1 Steady-State Scalar Transport

As a proof-of-concept for speed-up achieved by allowing the GPU to solve the linear

system created in OpenFOAM, a simple case solving Laplace’s equation ∇2T = 0 on

a square plate was chosen. The reason for such a simple case was to select a problem

that is inner-iteration dominant16, i.e. the overall solve time was controlled by the

linear system solver efficiency. For this simple case, all timing was taken before and

after the solve(...) method was called in the top level solver.

Previous studies have shown GPU solvers to be superior to CPU based solvers in

OpenFOAM when comparing the most advanced preconditioned conjugate gradi-

ent GPU solver with the unpreconditioned conjugate gradient solver on the CPU

in OpenFOAM [29]. Specifically, the multigrid solvers in Cufflink were shown to be

more than one hundred times faster than the unpreconditioned conjugate Gradient in

OpenFOAM. A more constructive comparison is between the best CPU-based solver

16 An example of a system that is outer-iteration dominant is the steady-state solution of the
Navier-Stokes equation.

129

in OpenFOAM and the best GPU-based solver in Cufflink. Figure 6.6 shows a com-

parison of the geometric algebraic multigrid (GAMG) solver in OpenFOAM over six

processors with the Cufflink solvers using one and two GPUs.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0.E+00 5.E+05 1.E+06 2.E+06 2.E+06 3.E+06 3.E+06 4.E+06 4.E+06

S
p
e
e
d
u
p

Cell Count

GAMG6 cufflink_CG

cufflink_DiagPCG cufflink_SmAPCG

cufflink_CG_Parallel cufflink_DiagPCG_Parallel

cufflink_SmAPCG_Parallel

Figure 6.6: Speed-up comparison of geometric algebraic multigrid solver in
OpenFOAM over 6 processors (GAMG6) with the several Cufflink solvers
using one and two GPUs, where CG = conjugate gradient, DPCG = diag-
onal preconditioned conjugate gradient, SmAPCG = smoothed aggrega-
tion multigrid preconditioned conjugate gradient, Parallel indicates two
GPUs, and cufflink indicates a GPU solver.

On the x-axis, a mesh with size cell count was created over the square plate and

the times before and after the solve(...) methods were collected. The difference

of these two times is the overall solve time. On the y-axis, speed-up was deter-

mined by dividing the overall solve time using the GAMG solver on six processors,

with the overall solve times of each Cufflink solver at each cell count. Overall, the

parallel GAMG solvers are faster than the simpler diagonal preconditioned conju-

gate gradient and unpreconditioned conjugate gradient solvers in Cufflink. For larger

systems, the smoothed aggregation multigrid preconditioned solvers in Cufflink out-

performed the GAMG solver in OpenFOAM. The parallel solvers showed significant

speed-up, but lost performance when communication between the GPU cards because

the bottleneck. GPUs that communicate across a network will show even more loss

130

of performance due to communication issues. Though these results seem to be very

simple, they are a significant leap forward that needs more attention that will be

discussed next.

6.3.2 Current Developments

Currently, a research group at the University of Adelaide is using Cufflink to per-

form large eddy simulations applied to ship hydrodynamics. As a preliminary result,

they have shown as much as fifteen times speed-up using multiple GPUs on a high

performance cluster in their lab. This result, although an initial result is shows that

the proposed multi-GPU algorithm is efficient enough to see speed-up in fluid sim-

ulations. What has yet to be performed is to optimize communication between the

GPUs, where this is a hardware and software based solution that will not be discussed

in the current work. This work will be discussed in subsequent publications after this

dissertation due to time constraints.

6.4 Closure

In this chapter, an implementation of sparse linear system solvers based on CUSP and

Thrust where coupled with OpenFOAM. This new library, called Cufflink was shown

to accelerate the OpenFOAM code compared to the geometric algebraic multigrid

solver in OpenFOAM. There are several conclusions that can be made from this

work.

• Cufflink is the first library to have multi-GPU linear system solvers that use

the domain decomposition in OpenFOAM. No other major CFD software has

this capability and this is the first project of its kind.

• Because there is a bottleneck of data transfer from the computer memory to

the GPU memory, these transfers of data should be minimized. This implies

that CFD solvers in which many outer-iterations are performed will be less

efficient than CFD solvers that mostly consist of inner-iterations. For example,

131

it is very common in steady-state Navier-Stokes solvers that decouple pressure

and velocity to only converge the velocity fields by a few percent, relax the

solution, and then solve pressure, relying on many outer-iterations for overall

convergences. In transient solvers, each time step requires many inner iterations

in order to produce a conservative answer for that time step and are therefore

inner-iteration dominant.

• More test cases need to be run on optimized hardware. The current setup

in our lab is not capable of producing adequate results for publication due to

hardware limitations. As a result, collaboration between CREL, the University

of Adelaide, and Nvidia should continue after this project.

132

Chapter 7

Summary of Contributions and

Future Work

The overall objective of this work was to investigate heat, mass, and momentum

transport on the length-scale of the particles within a randomly packed beds of parti-

cles and decipher an appropriate method to generate the random domain and capture

various physical phenomena. The principle objectives of this thesis were to:

1. Develop a packing algorithm to randomly place cylindrical particles in a tubular

domain while knowing the exact location, orientation, and dimensions of each

particle.

2. Develop a strategy to generate computational meshes of these randomly packed

particles that minimizes numerical errors.

3. Using computational fluid dynamics, simulate particle-scale momentum trans-

port using the Navier-Stokes equations (laminar flow) and Reynolds-averaged

Navier-Stokes methodology (turbulent flow) in OpenFOAM.

4. Using computational fluid dynamics, simulate mass transport both laminar and

turbulent flow fields to investigate the sensitivity of turbulent mixing in the

system to the choice turbulent scalar-flux approximation methods.

5. Develop heterogeneous computing methodologies using graphics processing units

to accelerate simulations and decrease overall simulation time.

133

With each of these overall goals in mind, there are several conclusion that can be

drawn and take home messages from the research.

7.1 Constructing Packed Beds of Cylindrical Par-

ticles

• Geometry generation using a Monte-Carlo packing algorithm A Monte-

Carlo packing algorithm using a sorting method is presented as an effective

method to produce loosely packed bed domains of cylindrical and trilobed par-

ticles. The particle-particle overlap determination is achieved using a method

proposed by Blaak et Al.[18], based on approximating a cylinder with spheres,

spherocylinders, and ellipsoids. The bulk porosities of approximately 0.65 are

achieved by this method with relatively few packing cycles due largely to the use

of a sorted list of particles. The sorting of the particles allowed for particles lo-

cated closer to the bottom of the container to be packed before particles located

higher in the bed. The increase in space created greater degrees of freedom for

particles to achieve a more dense packing in less packing cycles.

The radial porosity distributions produced by the packing algorithm are quali-

tatively comparable to experimental work by Roblee et al.[110], showing similar

wall effects observed experimentally. The main difference being that the exper-

imental results by Roblee showed an extremely densely packed bed of particles

near the wall and throughout the bed that is considerably more dense than

those seen in CT and DigiDEM reported in the literature[21]. This due mainly

to external forces (gravity and manual compression) during the physical pack-

ing process in the experimental work. The Monte-Carlo algorithm presented

here uses only random motion and a lowering of the top boundary to reduce

the degrees of freedom to form the packed bed of particles. For a more densely

packed bed, there must be either more packing cycles or an algorithm incorpo-

rating a force field similar to ones used in molecular dynamics simulations. The

Monte-Carlo packing algorithm proposed in this paper tracks the location and

orientation of each face of the particles being packed. Knowing the location

and orientation of each particle face facilitates the meshing process as there is

no need for more preprocessing to extract the edges and faces from a pixilated

134

image produced using the method by Gan et al.[47] and Caulkin et al.[21]. Ulti-

mately, this image extraction process may introduce more approximations into

the already extremely intricate structures seen in packed beds of particles.

The resulting computational meshes fully define the location of the particle

faces within a domain of randomly packed cylinder based particles. In terms

of interstitial CFD modeling, knowing the exact location of the particle faces

allows for extremely fine boundary layer meshes to be used to increase reso-

lution of near particle modeling of transport phenomena. Ultimately, meshes

accurately describing the microstructure of packed beds enable more realistic

CFD simulations, providing further insight into the fluid dynamics on the length

scale of the interstitial spaces between particles. As a result, a deeper under-

standing of fluid flows within packed beds can be achieved and will ultimately

improve catalyst shape optimization, current models describing reactors, and

unit operations leveraging the intricate structure of packed beds.

• Mesh Generation The mesh generation portion of the project was a time-

consuming task that involved numerous meshes (almost 50 gigabytes of data),

with solutions being attempted on most of the created meshes. The method

developed to create a high quality mesh can be summarized in the following

steps:

1. Create the underlying domain in GAMBIT using the output journal file

from the Mote-Carlo packing algorithm

2. Create an initial face mesh in GAMBIT and export the mesh as .msh

format

3. Import the .msh file into TGRID, and remove any Delaunay violating

triangular faces

4. Create the pure tetrahedral mesh using growth functions and remove any

Delaunay violations. Smooth the volume mesh and assess the quality,

re-meshing if necessary.

5. Convert the pure tetrahedral mesh into an arbitrary polyhedral mesh using

ANSYS Fluent 13.

6. Import the mesh into OpenFOAM and then decompose the domain ac-

cording to the number of parallel nodes to be used in the calculation

135

For the parallel computations, the mesh was converted to an arbitrary poly-

hedral mesh to reduce the cell count by 81 percent and the face count by 37

percent. Additionally, the renumbering of was used to increase memory access

efficiency, by reducing the number of diagonal bands by almost 98 percent. Us-

ing the Scotch library was instrumental in decomposing the mesh into separate

sub-domains with nearly equal cell and processor patch counts. It can be said

with confidence, that the combination of care in creating the mesh and careful

planning to decompose the mesh reduced the overall solution time significantly.

If more projects are pursued that will leverage OpenFOAM, it is prudent that

more investment be made to improve our local cluster or the SEAS cloud.

7.2 Interstitial-Scale Momentum Transport Mod-

eling

• RANS Models of Momentum Transport: RANS-based models can provide

an adequate description of the steady-state flow-field within packed-beds. This

description is extremely complex and highly dependent on boundary conditions,

turbulent closure relations (i.e. turbulent viscosity model), mesh structure,

equation discretization, and convergence criteria.

• Three-Dimensional Data Analysis: Clear differences in near particle flow

phenomena were shown for several cases of laminar and turbulent flows. For

laminar flow, the fluid moves around the particle creating very little swirl near

the sharp edges of the particle. The laminar flow exhibited very uniform flow

through the radial direction in the bed, however had many regions of recir-

culation in-between and downstream from particles. By using the Q-criteria

proposed by Hunt et. al [57], the differences in near particle flow environment

can be further exaggerated to show additional flow complexities and vortex

formations.

• Contraction of Data: Complex three-dimensional data was contracted for

two primary reasons (1) To improved conceptualization and understanding and

(2) to reflect complex information to lower dimension models (e.g. dispersion

models, Euler-Euler models, etc.). For the radial profiles of velocity, it was seen

136

that the flow magnitudes in the center of the bed were relatively flat with a

drastic peak near the wall. This peak at the wall of course coincided with the

rise in porosity from wall effects. In addition the radial profiles of turbulent

kinetic energy (k) and turbulent kinetic energy dissipation rate (ε) showed that

there was a much larger presence of turbulence within the first 1.5 particle

diameters near the wall. This rise in turbulence and dissipation would indicate

the increase in mixing and energy loss near the wall due to the complex approach

and swirling the fluid experiences.

• Perpendicular Profiles: Perpendicular profiles were introduced as a novel

method to post-process the complex velocity, k, and ε fields. The profiles agreed

asymptotically with the boundary conditions as well as accepted descriptions

of turbulent boundary layers in general. It was seen that the turbulent kinetic

energy and dissipation experienced distinct peaks just away from the walls and a

sharp decline near the wall, indicating the diffusion and dissipation of turbulence

in a laminar sublayer. Overall, the perpendicular profiles can be viewed as a

representative boundary layer of the packed-bed, that could be used to refine

our viewpoint of thin-film theory in packed-beds and revise one-dimensional

models (e.g. mass transfer and thin-film theory).

7.3 Interstitial-Scale Scalar Transport Modeling

• Reynolds Averaged passive Scalar Equation: The Reynolds averaged pas-

sive scalar equation is capable of providing the ensemble averaged concentration

fields for turbulent flows. For Reynolds averaged approaches, scalar-flux closure

generally achieved through the gradient-diffusion hypothesis. In this project,

the more complex algebraic and scalar-flux transport models gave unphysical

results and requires more research and validation arrive at a final conclusion of

their utility.

• Turbulent Schmidt Number and the GDH: For the work that was per-

formed, there was no sensitivity of the model to turbulent Schmidt within a

reasonable range of values for Sct = [0.1, 1]. What was found is that for lower

137

Sct the number of inner iterations (i.e. iterations to solve the Ax = b sys-

tem) over each time-step (outer-iteration). For values above 0.7 there was no

significant change in inner-iteration count.

• Three-Dimensional Data Analysis: Clear differences in near particle flow

phenomena were shown for several cases of laminar and turbulent flows. For

laminar flow, the fluid moves around the particle creating very little swirl near

the sharp edges of the particle. The laminar flow exhibited very uniform flow

through the radial direction in the bed, however had many regions of recircula-

tion in-between and downstream from particles. This characteristic translated

to higher dispersion in the age-distribution curve seen during the step-tracer

experiments. Most importantly, molecular diffusion to the surface of the par-

ticles was a primary mode of transport of species rather than convection. For

turbulent flows, the wave front through the bed was defined and convection

dominated. The dead-zones behind the particles were not evident in the age-

distribution curves, but were seen as an area of design improvement. One such

design improvement has been suggested by Nijemeisland [92], requiring holes

in the lengthwise direction of the particle to sweep away the dead-zone at the

rear of each particle. What has not been addressed is the creation of intense

vortexes off of the front of the particles, disrupting the formation of boundary

layers over the particle and adjacent particles. By disrupting the formation of

the boundary layers over the particles, the characteristic length that a species

must diffuse is increased, further limiting already transport limited reaction

rates.

• Residence-Time vs. Tortuosity Effects: For laminar flows, the tracer front

has more time in between changes in direction that might cause mixing. This

additional time allows the tracer front to smear, giving way to a more “diffused”

fluid-tracer interface. In turbulent flows, the deviation from the flat fluid-tracer

front was due to the tortuosity of the complex structure. The direct relationship

of tortuosity and the pressure drop in the bed was also alluded to in the previous

chapter as well. What can be said is that the convective acceleration (i.e. the

change in direction fo the near particle flow fields) around the particle lends

itself as the main cause of drag and pressure drop in the bed. Reducing this

convective acceleration, while maintaining the complex structure of the bed to

138

move reactants to every face of the particles is key to the improved utilization

of packed-bed. For mass transport, these abrupt changes in direction of the

fluid adds to the radial and azimuthal spreading of the tracer. A better design

be entail a balance between pressure drop and spreading of reactants evenly

throughout the bed.

• Particle Design Improvements: As mentioned previously, one of the im-

provements suggested by Nijemeisland [92] was to insert holes along the length-

wise axis of the particle. One of the benefits of of this design would be to

“sweep” away the post particle dead-zones. One point that could be made is

that by introducing a volume that is not directly in contact with the higher-

speed flow outside the particle, the designer runs the risk of creating internal

dead-zones. One suggestion from this project is to elongate the particle shape

to a form more consistent with a grain of rice. This elongation will reduce the

drag of fluid approaching the face of the particle and could reduce post-particle

dead-zones. Modeling such a particle will require a reworking of the packing al-

gorithm. It also should be noted that in order to produce an optimized particle

shape, the shape must be altered (based on the discussion at hand), repacked,

re-meshed, and subjected to fluid simulation. Key objective functions should

be identified to enable a more systematic approach to optimization.

7.4 Implementing Sparse Linear System Solvers

Based on CUDA in OpenFOAM

• Cufflink is the first library to have multi-GPU linear system solvers that use

the domain decomposition in OpenFOAM. No other major CFD software has

this capability and this is the first project of its kind.

• Because there is a bottleneck of data transfer from the computer memory to

the GPU memory, these transfers of data should be minimized. This implies

that CFD solvers in which many outer-iterations are performed will be less

efficient than CFD solvers that mostly consist of inner-iterations. For example,

it is very common in steady-state Navier-Stokes solvers that decouple pressure

and velocity to only converge the velocity fields by a few percent, relax the

139

solution, and then solve pressure, relying on many outer-iterations for overall

convergences. In transient solvers, each time step requires many inner iterations

in order to produce a conservative answer for that time step and are therefore

inner-iteration dominant.

• More test cases need to be run on optimized hardware. The current setup

in our lab is not capable of producing adequate results for publication due to

hardware limitations. As a result, collaboration between CREL, the University

of Adelaide, and Nvidia should continue after this project.

7.5 Overall Comments

In order to continually improve processes in packed beds, particle shape design must

be part of an overall process optimization strategy. Shown in this work was the role of

tortuosity and packing structure directly on dispersion and pressure drop in packed-

bed systems. Through a deeper understanding of both of these phenomena, energy

costs can be reduced and particle surface or catalyst utilization will be improved.

Ultimately, the success of interstitial-scale modeling depends on computational capa-

bilities and deciding an objective function to optimize within a specific system set by

industry. This work presented several suggestions of improving computational speed

including using arbitrary polyhedral meshes and hardware acceleration using graph-

ics processing units. With this research, there are still several unanswered questions

including that must be addressed in future projects. These questions will be posed a

the defense and added in a revision of this document.

140

Appendix A

Miscellaneous Mathematical

Matter

A.1 General Form of Gauss’s Flux Theorem

Gauss’s theorem is most commonly associated with the divergence operator, as a

method to convert the divergence of a vector function F over a control volume T into

a surface integral over the piecewise smooth bounding surface S through:

∫ ∫ ∫
T

∇ •FdV =

∫ ∫
S

F •n dA. (A.1)

n is the outward normal vector of surface S on element dA [74]. As a more general form

of Gauss’s Theorem, the inner, outer, and cross product operators (represented as

the multiplicative operator ?) can be converted from a volume integral to a bounding

surface integral using:

∫
VP

∇ ? (F)dV =

∮
SP

dS ? F. (A.2)

In this case, dS is the differential area element, normal to the surface SP i.e. n dA.

141

A.2 Owner-Neighbor Relationship in FVM

For completeness, Equation 2.5 can be further broken down into the summation of

owner and neighbor values at each discrete control volume such that:

∑
f

Fφf =
∑
owner

Fφf −
∑

neighbor

Fφf , (A.3)

where the owner and neighbor faces for each cell are chosen such that each face has

exactly one owner and one neighbor.

A.3 Reynolds Averaging

The details of Reynolds averaging are often left out in basic texts on the subject. The

Reynolds averaging of the general case, 〈u′〉, and 〈u′ 〈U〉〉 terms are given briefly.

142

Appendix B

Programming Related Matter

B.1 The Cufflink Library

Cuda For FOAM Link (cufflink) is an opensource library (http://code.google.

com/p/cufflink-library) for linking numerical methods based on Nvidia’s Com-

pute Unified Device Architecture (CUDA
TM

) C/C++ programming language and

OpenFOAM R©. Currently, the library utilizes the sparse linear solvers of Cusp and

methods from Thrust to solve the linear Ax = b system derived from OpenFOAM’s

lduMatrix class and return the solution vector. Cufflink is designed to utilize the

course-grained parallelism of OpenFOAM R© (via domain decomposition) to allow

multi-GPU parallelism at the level of the linear system solver.

Please note that cufflink is not approved or endorsed by Silicon Graph-

ics International Corp., the owner of the OpenFOAM R© trademark and

producer of OpenFOAM R© software.

B.1.1 Multi-GPU BLAS Level 1 Operations

This appendix is meant to further define the BLAS level 1 functions in the CUFFLINK

library.

143

http://code.google.com/p/cufflink-library
http://code.google.com/p/cufflink-library

Reference to the gpuSumProd(vector,vector) function

The vector dot product across multiple GPUs is simply the sum of the local vector

dot products on each of the GPU nodes. In this algorithm, the index i refers to the

local vectors stored in the memory of each GPU node from 0 to N nodes.

Algorithm 6: Multi-GPU Vector Dot Product

1 Compute: a · b;

2 Si = a1,ib1,i + a2,ib2,i + ...+ an,ibn,i;

3 α =
N∑
i=0

Si ;

4 broadcast α to all nodes;

It is important to note here that the dot product of the two vectors (line 2) is a

preexisting function defined in CUSP (cusp::blas::dotc(a, b)), optimized for

the GPU, and not rewritten. Additionally, the values of Si on line 3 are summed

and accumulated on the master node (usually node zero) with the MPI function

MPI_Reduce(...). The collected result is then sent out to all of the nodes for later

use with the command MPI_Bcast(...). Though seemingly simple, this was not

implemented in the CUSP library a the time of use.

Reference to the gpuSumMag(vector) function

The calculation of the vector magnitude across multiple GPUs is simply the sum of

the Euclidean norm (M =
√
x2

1 + x2
2 + ...+ x2

n) of the local vector on each of the

GPU nodes. In this algorithm, the index i is the local vector stored in the memory

of each GPU node from 0 to N nodes.

Algorithm 7: Multi-GPU Euclidean Vector Norm

1 Compute: ||a||;

2 Mi =
√
a2

1,i + a2
2,i + ...+ a2

n,i;

3 β =
N∑
i=0

Mi ;

4 broadcast β to all nodes;

144

It is important to note here that the Euclidean norm of the local vector (line 2) is

a preexisting function defined in CUSP (cusp::blas::nrm2(a)), optimized for the

GPU, and not rewritten. Additionally, the values of the local norm (Mi) on line 3

are summed and accumulated on the master node (usually node zero) with the MPI

function MPI_Reduce(...). The collected result is then sent out to all of the nodes

for later use with the command MPI_Bcast(...).

Reference to the gpuAverage(vector) function

The calculation of the average of a vector across multiple GPUs is simply the sum of

the local vector components on each of the GPU nodes collected and then divided by

the total number of entries in of all the local vectors. In this algorithm, the index i is

the local vector stored in the memory of each GPU node from 0 to N nodes, where

each vector has ni components.

Algorithm 8: Multi-GPU Vector Average

1 Compute: ā;

2 Mi = a1,i + a2,i + ...+ an,i;

3 A =
N∑
i=0

Mi ;

4 T =
N∑
i=0

ni ;

5 ā = A/T ;

6 broadcast ā to all nodes;

Line 2 in the algorithm is a preexisting routine in the TRHUST library, called

with thrust::reduce(a.begin(),a.end()). Line 3 is the reduction using MPI

(MPI_Reduce(...)) and the final result on line 5, producing ā, is simple arith-

metic. The collected result is then sent out to all of the nodes for later use with the

command MPI_Bcast(...).

145

B.2 Courant Number Definitions

The cell Courant number is very generically defined as

Cocell =
||U||δt
δx

, (B.1)

where δt and δx refer to the time-step size and spatial discretization width. The

Courant number is used as a time-step size control method since there are practical

and stability limitations (for explicit schemes) with time-step size that are system

dependent. Equation 5.16 is adequate when a finite difference formulation is used,

however is not sufficient for a finite-volume formulation. Because the finite-volume

method is primarily concerned with cell-face values and face-fluxes, a more construc-

tive formulation is

Coext = max

(
1

Sf

||Uf · Sf ||
df

)
δt (B.2)

Cosgi =
1

2
max

(∑
f ||Sf ·Uf ||
δV

)
δt. (B.3)

As you can see, there are several definitions of the Courant number. Each of the two

presented above are in different versions of the OpenFOAM library. This research

project used the SGI version of OpenFOAM.

146

Appendix C

Additional Background in

Transport Phenomena Concepts

C.1 The k-ε Model

As noted by Wilcox, turbulence is a continuum phenomena in which the length scale

of the smallest turbulent eddie (i.e. the Kolmogorov length) is orders of magnitude

above molecular scales [133]. Furthermore, due to the random nature of the fluid mo-

tion, we are limited in our pursuit of an exact representation17 to seeking a statistical

amalgamation of the flow. For this project the manifestation of this statistical repre-

sentation is in the form of the Reynolds averaged Navier-Stokes equations (Equation

4.7).

As previously mentioned, one method to close the Reynolds stress term
〈
u′iu
′
j

〉
in

Equation 4.7, is to use the Boussinesq eddy viscosity hypothesis in Equation 4.8.

The Boussinesq eddy viscosity hypothesis seeks to lump continuum phenomena of

turbulence into a turbulent viscosity (νt), similar to that of lumping molecular ef-

fects in viscosity. Though this may be the main fault of turbulent viscosity methods,

the Boussinesq eddy viscosity hypothesis seems to correctly (or rather adequately)

account the dissipation of energy through the effects of cascading, giving local infor-

mation about turbulence [78]. One such class of models for determining the turbulent

viscosity are two-equation models such as k − ε.
17Though we can use direct numerical simulation (DNS) to get an “exact” flow field for velocity, it

is neither practical nor possible in most research laboratories due to lack of computational resources.

147

Models based on turbulent kinetic energy (k) are abundant and are used widely across

numerous engineering fields [133]. The adoption of the turbulent kinetic energy (k)

as a primary turbulence variable was introduced by Kolmogorov in 1942, giving rise

to subsequent models that proposed a second transport equation based on a mixing

length variable z = knlm, where m and n are constants [78]. Launder notes that ε

was initially favored as a second equation due to the relative ease at which a second

transport equation could be derived and that ε already appears as an unknown in the

transport equation for k [78]. Nonetheless, conceptualizing ε as a rate of turbulent

energy dissipation seen in Kolmogorov’s Theory or as a mixing length variable, has

proven to be of tremendous use for the fluid modeling community through its wide

acceptance.

With such a wide variety of choices of turbulence models, one must choose carefully

especially in cases where experimental data is lacking. Previous researchers in the

field of interstitial-scale packed-bed modeling have used a variety of turbulence mod-

els for various reason (Table 1.1). However, the overall conclusion one could make

from the variety of models used in interstitial-scale modeling is that 1) The choice of

turbulence model is highly specific for heat, mass, and momentum transport condi-

tions; 2) Given a set of experimental validation guidelines (e.g. Pressure Drop, overall

heat transfer, etc.), there are several “valid” turbulence models (when used properly)

that will yield results with good agreement; 3) None of the models are correct if

a more rigorous validation was used. Considering the fact that a model is only as

valid as the experimental method used to validate it, the only true method outside

of experimentation is the perform DNS.

From the perspective of using DNS to validate results, Sarkar [114] delivered an

interesting discussion of low-Reynolds number k − ε models for wall bounded flows

(Turbulent Couette flow). With comparison to the Wilcox k−ω [133] and k−τ model

of Speziale [118], low-reynolds number models designed to agree asymptotically (i.e.

dissipate turbulence in the viscous sublayer) were more successful at matching DNS

data near the wall and in the bulk. Those not designed to asymptotically agree with

the boundary layer, yielded uniform values across the channel and not at the walls,

with those designed for wall bounded flows performed better. While not a surprising

result, it does bring up the importance of the fact that turbulence models designed

for wall bounded flows should be used for wall dominated domains (i.e. packed

148

beds). Considering that interstitial-scale packed-bed simulations are dominated by

wall bounded flows and wall shear and that the boundary layer thickness in these

simulations is small compared to length scales of the particles, it would be extremely

difficult to validate such results experimentally and extremely important to choose

the right model.

C.2 The Turbulent Schmidt and Prandtl Numbers

Throughout the last century the turbulent Schmidt (Sct) and Prandtl (Prt) numbers

have played a key role in turbulent passive scalar transport modeling that utilize

the gradient diffusion hypothesis (5.6). Specifically, Sct or Prt are used to relate the

turbulent mass or thermal diffusivity in 5.6, to the turbulent viscosity (νt) determined

by a turbulent-viscosity model (4.8) in the RANS or URANS equations. This leads

to the key question of what determines Sct and Prt and why are they important?

This is briefly addressed in the following section.

In general, Sct or Prt is treated as a global parameter in complex fluid simulations

usually set to a default value of 0.7 or unity. The treatment of the turbulent Schmidt

and Prandtl number in this sense is ubiquitous, being used in both open source[132]

and commercial[58] CFD packages; accepted in scientific literature[63, 82, 46, 126];

and detailed in the scientific literature by Pope[105], Ranade[107], and Fox[45] de-

voted to the subject of reacting turbulent flows and chemical reaction engineering.

Estimates of a global turbulent Schmidt number in homogeneous turbulent flows were

discussed thoroughly by Corrsin[34] by comparing Taylor microscales for the scalar

φ′ and velocity u′ components. Noted by Corrsin, values of Sct were approximately

unity or less, in agreement with the work of Batchelor[10, 12]. Although the results

of Corrsin were valuable for homogeneous turbulence, inhomogeneous turbulence is

often encountered in practice and requires transport equations to model its effects.

Nevertheless, the use of a constant global turbulent Schmidt number in packed bed

simulations[46], urban diffusion problems[126], and combustion modeling[13, 83] is

seen throughout computational fluid dynamics, ranging in values from 0.1 to 2.2.

149

This large range alludes to the fact that prescribing a global value is problem depen-

dent. In all cases, a sensitivity study of a particular variable correlated to Sct should

be performed[83].

In contrast to the use of a global Sct and Prt to lump the complex relationship of

turbulent fluctuations and turbulent mixing through values of νt and Dt or αt, very

little work in the last few decades has been done to elucidate the factors influencing

Sct and Prt. Addressed in a 1974 article by A.J. Reynolds[109], the previous 25 years

of turbulent Schmidt (Sct = νt/Dt) and Prandtl (Prt = νt/αt) number predictions

were reviewed. The discussion was restricted to temperature and concentration ranges

that do not significantly interact with the flow (i.e. passive scalar flows and level-1

mixing), and assumed an almost perfect analogy between Prt and Sct numbers, with

minor exception in gases. This exception is based on the differences between actual

and assumed enthalpy fluxes seen in the flows, where they are negligible and within

measured experimental variability. Reynolds noted that Prt and Sct depended on

the corresponding molecular value of Pr and Sc, the position within the flow (i.e.

distance from the wall), and the local turbulent intensity of the flow in question. In

general, Reynolds summarized these observations into a single general formula

Sct = C1 exp [−C2Sc
m (νt/ν)n] , (C.1)

where C1, C2,m and n are all positive constants. In C.1, the position within the flow

is taken into account implicitly through the νt term, which is spatially variable and

highly influenced by the wall and turbulent boundary layer. C.1 is consistent with the

observation that Sct decreases as νt/ν increases, indicating greater turbulent mixing

in more turbulent regions. For νt/ν ratios approaching zero, Sct approaches C1. This

is inconsistent with the definition of Sct = νt/Dt, as Sct should be undefined since

νt and Dt equal zero in laminar regions. The boundedness of C.1 in laminar regions

makes it’s use practical from a modeling perspective, albeit incorrectly overstating

turbulent mass flux in the laminar sublayer of boundary layers. Finally, all of the

relations presented by Reynolds classified the Sct and Prt into Prandtl mixing length

based models, simple empiricism, and statistical calculations. Reynolds concluded

that the mixing length models were not fundamentally advantageous since they do

not elucidate transport phenomena, but are practical in the sense they are easy to

150

use and contain realistic information. The remaining models were neither practical

nor fundamentally advantageous since they merely served to ”remind us how little

confidence can be placed in any limited group of measurements”[109]. Though the

mixing length models were considered most desirable at the time, Reynolds concluded

that more work should be done to account for position from the wall separately from

the turbulent intensity.

Since the review of A.J. Reynolds[109], further research related to the prediction

turbulent Schmidt and Prandtl numbers has been more empirical. Work by Jischa[65]

described Prt and Sct using simple empirical correlations

Prt = A+B/Pr

Sct = A+B/Sc, (C.2)

with no influence of wall distance or turbulent intensity taken into account. A re-

view by Kays[69] examined experimental data on the turbulent Prandtl number for

two dimensional turbulent boundary layer flows in circular pipes or flat ducts. Kays

discussed empirical models based on DNS and experimental data to predict Prt in

different regions of the boundary layer for various fluids (i.e. air, water, oil, liquid met-

als). The conclusions by Kays further support the conclusions by A.J Reynolds[109]

in that the Prt and Sct depend on molecular Pr and Sc and the distance from the

wall. More recent work by Koeltzsch[72] investigated height dependence of Sct in

boundary layers through wind tunnel experiments. As a result, a power series ap-

proximation of Sct was used to fit experimental data only to further show the wall

dependence of Sct in turbulent boundary layer flows. In a different approach, Guo et

al.[55] applied the genetic algorithm to optimize a variable Sct proportional to three

constants to control the magnitude of the Sct, the relative importance of turbulent

frequency scale, and the affect of asymmetry in the stresses to agree with experi-

mental results for a jet in crossflow. Validated against three different cases, Guo et.

al. showed qualitative and quantitative agreement with previously published data.

For completeness, a comparison against cases of constant global Sct was performed.

The work by Guo et al. addresses the need for new spatially and temporally variable

Sct (rather than a global constant Sct) and shows that a variable turbulent Schmidt

number fits numerical data to experimental data better than using a constant Sct,

but fails to elucidate phenomena influencing the Sct in turbulent flows.

151

The overall importance of the Sct and Prt in CFD is that the value of these two

numbers strongly influence the level of turbulent mixing in the modeled system. If

small global Sct and Prt numbers are assumed then large turbulent mass or thermal

diffusivity is defined. For instance in combustion, a lower Sct intensifies combustion

due to enhanced species diffusion and turbulent mixing, while a higher Sct may create

mixtures that are unable to sustain combustion[13]. Without a more fundamental

understanding of the Sct and Prt numbers, more uncertainty is introduced into CFD

simulations.

The implications of an improved ability to predict Prt and Sct reach beyond CFD to

more classical fields of mass and heat transfer correlations using Sherwood and Nusselt

numbers. For the turbulent Prandtl, a 2000 review by Churchill[24] noted that ”The

development of a comprehensive predictive or correlative expression for the turbulent

Prandtl number is the principle remaining challenge with respect to the prediction of

turbulent forced convection.” This can be equally stated for the turbulent Schmidt

number in highly complex, boundary layer, and multiscale flows. A. Dudukovic and

Pjanovic[42] found that “it is precisely this assumption of Sct = constant that leads

to misrepresentation of the Reynolds number dependence”, referring to a Sherwood

number correlation

Sh = a1Re
√
fSc/Sct, (C.3)

for boundary layers in pipe flows and falling films. The conclusions by A. Dudukovic

and Pjanovic further stated that Sct is not constant and is dependent on turbulent

spectra, agreeing with conclusions by A.J. Reynolds[109] concerning the importance

of the turbulent intensity in predicting Sct.

C.2.1 Churchill’s Reinterpretation and A Look to the Future

Reexamination from a different perspective often leads to improvements in funda-

mental knowledge and understanding. This is true with respect to the turbulent

Prandtl number in a published work by Churchill[25] in 2002. Churchill provided a

reinterpretation of the turbulent Prandtl number, for a fully-developed turbulent flow

in a round tube, in terms of a local fraction of shear stress and fraction of heat flux

152

density due to fluctuations in velocity. The essential steps in the derivation require

the stresses in the radial direction, the transport of energy in the negative radial di-

rection, and a formulation of dimensionless shear and heat flux density. As a result,

Churchill was able to formulate

Prt
Pr

=
(u′v′)++(1− (T ′v′)++)

(T ′v′)++(1− (u′v′)++)
. (C.4)

C.4 expands the Prandtl numbers in terms of dimensionless shear stresses

(u′v′)++ =
−ρ
〈
u′iu
′
j

〉
τij

, (C.5)

and dimensionless heat flux density

(T ′v′)++ =
ρc 〈T ′u′〉

q
, (C.6)

where τij is the total shear in the radial direction, q is the heat flux density in the

y-direction, and ρ and c are the fluid density and heat capacity respectively.

C.4 is an important starting point for relating Prandtl numbers in fully developed

turbulent flow in channels and pipes. One can see the possibilities of extending this

methodology to spatially variable Prt (or Sct) in more complex geometries. The crux

of using such an approach is the determination of (u′v′)++ and (T ′v′)++. Based on the

work by Papavassiliou and Hanratty[97], Churchill noted that a Lagrangian form of

DNS provided an accurate calculation of these quantities without empiricism. Also,

a recent work by Srinivasan and Papavassiliou[119] explored the use of Lagrangian

DNS to determine Prt for classical Poiseulle channel and plane Couette flows. Prt

was found to be a function of Pr, which agrees with the observations presented

earlier in this paper. The extension of determination of Prt for curved geometries

(where transport is not necessarily unidirectional) remains an open challenge and is

153

the subject of ongoing research in our laboratory that will be addressed in upcoming

publications.

154

References

[1] gnu.org. http://www.gnu.org/copyleft/gpl.html.

[2] ERCOFTAC special interest group on ”Quality and trust in industrial CFD”,
January 2000.

[3] Openfoam-1.5-dev, 2010.

[4] Ramesh Agarwal. COMPUTATIONAL FLUID DYNAMICS OF WHOLE-
BODY AIRCRAFT. Annual Review of Fluid Mechanics, 31(1):125–169, Jan-
uary 1999.

[5] Harten Ami. High resolution schemes for hyperbolic conservation laws. Journal
of Computational Physics, 135(2):260–278, August 1997.

[6] Rutherford Aris. Vectors, Tensors and the Basic Equations of Fluid Mechanics.
Dover Publications, January 1990.

[7] Abdelouahab Attou and Gilles Ferschneider. A two-fluid hydrodynamic model
for the transition between trickle and pulse flow in a cocurrent gas-liquid packed-
bed reactor. Chemical Engineering Science, 55(3):491511, February 2000.

[8] M.J. Baker, P.G. Young, and G.R. Tabor. Image based meshing of packed beds
of cylinders at low aspect ratios using 3d MRI coupled with computational fluid
dynamics. Computers & Chemical Engineering, 35(10):1969 – 1977, 2011.

[9] G. K. Batchelor. Diffusion in a field of homogeneous turbulence. i. eulerian
analysis. Australian Journal of Scientific Research A Physical Sciences, 2:437,
December 1949.

[10] G. K. Batchelor. Small-scale variation of convected quantities like temperature
in turbulent fluid part 1. general discussion and the case of small conductivity.
Journal of Fluid Mechanics, 5(01):113–133, 1959.

[11] G. K. Batchelor. The Theory of Homogeneous Turbulence. Cambridge Univer-
sity Press, June 1982.

[12] G. K. Batchelor, I. D. Howells, and A. A. Townsend. Small-scale variation of
convected quantities like temperature in turbulent fluid part 2. the case of large
conductivity. Journal of Fluid Mechanics, 5(01):134–139, 1959.

155

[13] R. A. Baurle. Modeling of high speed reacting flows: established practices and
future challenges. AIAA, 267:42, 2004.

[14] M. Behnam, A.G. Dixon, M. Nijemeisland, and E.H. Stitt. Catalyst deactiva-
tion in 3D CFD resolved particle simulations of propane dehydrogenation. Ind.
Eng. Chem. Res, 49(21):1064110650, 2010.

[15] N. Bell and M. Garland. Efficient sparse matrix-vector multiplication on CUDA.
Technical report, NVIDIA Technical Report NVR-2008-004, NVIDIA Corpora-
tion, 2008.

[16] Nathan Bell and Michael Garland. Cusp: Generic parallel algorithms for sparse
matrix and graph computations, 2010.

[17] R. Byron Bird, Warren E. Stewart, and Edwin N. Lightfoot. Transport Phe-
nomena, 2nd Edition. Wiley, 2 edition, July 2001.

[18] R. Blaak, D. Frenkel, and B. M Mulder. Do cylinders exhibit a cubatic phase?
The Journal of Chemical Physics, 110:11652, 1999.

[19] J. Boussinesq. Thorie de lcoulement tourbillant. Mem. Prsents par Divers
Savants Acad. Sci. Inst. Fr, 23:46–50, 1877.

[20] P. Cardiff, A. Ivankovic, D. FitzPatrick, R. Flavin, and A. Karac. Contact
stress analysis in OpenFOAM: application to hip joint bones. 2011.

[21] R. Caulkin, X. Jia, C. Xu, M. Fairweather, R. A. Williams, H. Stitt, M. Ni-
jemeisland, S. Aferka, M. Crine, A. Leonard, D. Toye, and P. Marchot. Sim-
ulations of structures in packed columns and validation by x-ray tomography.
Industrial & Engineering Chemistry Research, 48(1):202–213, January 2009.

[22] Richard Caulkin, Michael Fairweather, Xiaodong Jia, Richard A. Williams,
W. Marquardt, and C. Pantelides. Validation of a digital packing algorithm
for the packing and subsequent fluid flow through packed columns. In 16th
European Symposium on Computer Aided Process Engineering and 9th Inter-
national Symposium on Process Systems Engineering, volume Volume 21, pages
395–400. Elsevier, 2006.

[23] Richard Caulkin, Xiaodong Jia, Mike Fairweather, and Richard A. Williams.
Lattice approaches to packed column simulations. Particuology, 6(6):404–411,
December 2008.

[24] Stuart W. Churchill. Progress in the thermal sciences:AIChE institute lecture.
AIChE Journal, 46(9):1704–1722, September 2000.

[25] Stuart W. Churchill. A reinterpretation of the turbulent prandtl number. In-
dustrial & Engineering Chemistry Research, 41(25):6393–6401, December 2002.

156

[26] Daniel P. Combest, Palghat Ramachandran, and Milorad P. Dudukovic. Micro-
scale CFD modeling of packed-beds. In 6th OpenFOAM Workshop, Penn State
University, USA, June 2011.

[27] Daniel P. Combest and Palghat A. Ramachandran. Micro-scale CFD modeling
of packed-beds. In American Institute of Chemical Engineers Annual Meeting:
Computational Fluid Dynamics in Chemical Reaction Engineering, Salt Lake
City, UT, October 2010.

[28] Daniel P. Combest and Palghat A. Ramachandran. Nvidia professor partnership
proposal: Implementing fast linear algebraic system solvers for OpenFOAM
using CUSP and THRUST. Technical report, Washington University, St. Louis,
MO, August 2010.

[29] Daniel P. Combest, Palghat A. Ramachandran, and Milorad P. Dudukovic. Im-
plementing fast parallel linear system solvers in OpenFOAM based on CUDA. In
6th OpenFOAM Workshop: Optimization, HPC, and Pre- and Post-Processing
I Session, Penn State University, USA, June 2011.

[30] Daniel P. Combest, Palghat A. Ramachandran, and Milorad P. Dudukovic. On
the gradient diffusion hypothesis and passive scalar transport in turbulent flows.
Ind. Eng. Chem. Res., 50(15):8817–8823, 2011.

[31] John Horton Conway and Neil J. A. Sloane. Sphere Packings, Lattices and
Groups. Springer, 2nd edition, November 1992.

[32] NVIDIA Corporation. Nvidia CUDA C Programming Guide: Version 4.0. May
2011.

[33] NVIDIA Corporation. Nvidia GPUDirectTM technology overview, 2011.

[34] Stanley Corrsin. The isotropic turbulent mixer: Part II. arbitrary schmidt
number. AIChE Journal, 10(6):870–877, November 1964.

[35] Bart J. Daly and Francis H. Harlow. Transport equations in turbulence. Physics
of Fluids, 13:2634–2649, November 1970.

[36] P. V. Danckwerts. GasLiquid Reactions. McGraw-Hill Book Company, January
1970.

[37] Arno de Klerk. Voidage variation in packed beds at small column to particle
diameter ratio. AIChE Journal, 49(8):2022–2029, August 2003.

[38] I. Demirdi and S. Muzaferija. Numerical method for coupled fluid flow, heat
transfer and stress analysis using unstructured moving meshes with cells of
arbitrary topology. Computer Methods in Applied Mechanics and Engineering,
125(1-4):235–255, September 1995.

157

[39] Paul E Dimotakis. Turbulent mixing. Annual Review of Fluid Mechanics,
37(1):329–356, January 2005.

[40] A.G. Dixon, M.E. Taskin, M. Nijemeisland, and E.H. Stitt. CFD method to
couple three-dimensional transport and reaction inside catalyst particles to the
fixed bed flow field. Industrial & Engineering Chemistry Research, 2010.

[41] A.G. Dixon, M.E. Taskin, M. Nijemeisland, and E.H. Stitt. Systematic mesh
development for 3D CFD simulation of fixed beds: Single sphere study. Com-
puters & Chemical Engineering, 2010.

[42] Aleksandar Dudukovic and Rada Pjanovic. Effect of turbulent schmidt number
on mass-transfer rates to falling liquid films. Industrial & Engineering Chem-
istry Research, 38(6):2503–2504, June 1999.

[43] Exa Corporation. Frequently asked questions - physics.

[44] Joel H. Ferziger and Milovan Peric. Computational Methods for Fluid Dynamics.
Springer, 3rd edition, December 2001.

[45] Rodney O. Fox. Computational Models for Turbulent Reacting Flows. Cam-
bridge University Press, December 2003.

[46] S. Frigerio, H. Thunman, B. Leckner, and S. Hermansson. Estimation of gas
phase mixing in packed beds. Combustion and Flame, 153(1-2):137–148, April
2008.

[47] M. Gan, N. Gopinathan, X. Jia, and R. A. Williams. Predicting packing char-
acteristics of particles of arbitrary shapes. Kona, 22:8293, 2004.

[48] M. Garland. Sparse matrix computations on manycore GPU’s. In Proceedings
of the 45th annual conference on Design automation, page 26, 2008.

[49] M. Giese, K. Rottschaefer, and D. Vortmeyer. Measured and modeled superficial
flow profiles in packed beds with liquid flow. AIChE Journal, 44(2):484490,
1998.

[50] A. Guardo, M. Coussirat, M.A. Larrayoz, F. Recasens, and E. Egusquiza. In-
fluence of the turbulence model in CFD modeling of wall-to-fluid heat transfer
in packed beds. Chemical Engineering Science, 60(6):1733–1742, March 2005.

[51] Alfredo Guardo, Miguel Coussirat, M. Angels Larrayoz, Francesc Recasens,
and Eduard Egusquiza. CFD flow and heat transfer in nonregular packings
for fixed bed equipment design. Industrial & Engineering Chemistry Research,
43(22):7049–7056, October 2004.

158

[52] Prashant R. Gunjal, Madhavanand N. Kashid, Vivek V. Ranade, and
Raghunath V. Chaudhari. Hydrodynamics of trickle-bed reactors: Experi-
ments and CFD modeling. Industrial and Engineering Chemistry Research,
44(16):62786294, 2005.

[53] Prashant R. Gunjal and Vivek V. Ranade. Modeling of laboratory and commer-
cial scale hydro-processing reactors using CFD. Chemical Engineering Science,
62(18-20 SPEC ISS):55125526, 2007.

[54] Prashant R Gunjal, Vivek V Ranade, and Raghunath V Chaudhari. Compu-
tational study of a singlephase flow in packed beds of spheres. AIChE Journal,
51(2):365–378, February 2005.

[55] Yanhu Guo, Guangbin He, and Andrew T. Hsu. Application of genetic al-
gorithms to the development of a variable schmidt number model for jet-in-
crossflows. International Journal of Numerical Methods for Heat & Fluid Flow,
11(8):744–761, 2001.

[56] Jared Hoberock and Nathan Bell. Thrust: A parallel template library, 2010.

[57] J. C. R. Hunt, A. A. Wray, and P. Moin. Eddies, streams, and convergence
zones in turbulent flows. pages 193–208, December 1988.

[58] Ansys Inc. Fluent 6.3 user’s Guide. Ansys Inc., September 2006.

[59] Ansys Inc. Fluent 12.1 user’s Guide. Ansys Inc., October 2009.

[60] H. Jasak and H. G Weller. Application of the finite volume method and un-
structured meshes to linear elasticity. 1998.

[61] Hrvoje Jasak. Error Analysis and Estimation for the Finite Volume Method
with Applications to Fluid Flows. PhD thesis, Imperial College of Science,
Technology and Medicine, London England, June 1996.

[62] Tao Jia, Yuwen Zhang, and J.K. Chen. Simulation of granular packing of
particles with different size distributions. Computational Materials Science,
51(1):172–180, January 2012.

[63] Lei-Yong Jiang and Ian Campbell. Prandtl/Schmidt number effect on temper-
ature distribution in a generic combustor. International Journal of Thermal
Sciences, 48(2):322–330, February 2009.

[64] Y. Jiang, M.R. Khadilkar, M.H. Al-Dahhan, and M.P. Dudukovic. CFD of
multiphase flow in packed-bed reactors: I. k-fluid modeling issues. AIChE
Journal, 48(4):701715, 2002.

159

[65] Michael Jischa and Heinz Berend Rieke. About the prediction of turbulent
prandtl and schmidt numbers from modeled transport equations. International
Journal of Heat and Mass Transfer, 22(11):1547–1555, November 1979.

[66] K.R. Jolls and T.J. Hanratty. Transition to turbulence for flow through a
dumped bed of spheres. Chemical Engineering Science, 21(12):1185–1190, De-
cember 1966.

[67] Fabian Peng Karrholm. Rhie-chow interpolation in OpenFOAM, 2006.

[68] Sriganesh R. Karur and P. A. Ramachandran. Solving linear diffusion-reaction
networks in porous catalyst particles using BEM. AIChE Journal, 42(2):383–
390, 1996.

[69] W. M Kays. Turbulent prandtl number. where are we? ASME Transactions
Journal of Heat Transfer, 116:284295, 1994.

[70] Franklyn J. Kelecy. Using polyhedral cells in fluent 6.3, May 2006.

[71] J. Kim, P. Moin, and R. Moser. Turbulence statistics in fully developed channel
flow at low reynolds number. Journal of Fluid Mechanics, 177(-1):133166, 1987.

[72] Konrad Koeltzsch. The height dependence of the turbulent schmidt number
within the boundary layer. Atmospheric Environment, 34(7):1147–1151, 2000.

[73] Vaclav Kolar. Vortex identification: New requirements and limitations. Inter-
national Journal of Heat and Fluid Flow, 28(4):638–652, 2007.

[74] Erwin Kreyszig. Advanced Engineering Mathematics. Wiley, 10 edition, August
2011.

[75] Zeljko Kuzeljevic. Hydrodynamics of Trickle Bed Reactors: Measurements and
Modeling. PhD thesis, Washington University, St. Louis, MO, May 2010.

[76] H.M. Kvamsdal, H.F. Svendsen, T. Hertzberg, and O. Olsvik. Dynamic sim-
ulation and optimization of a catalytic steam reformer. Chemical Engineering
Science, 54(13-14):26972706, 1999.

[77] C. K. G. Lam and K. Bremhorst. A modified form of the k-epsilon model
for predicting wall turbulence. Journal of Fluids Engineering, 103(3):456–460,
1981.

[78] Brian Launder and Dudley Brian Spalding. Lectures in Mathematical Models
of Turbulence. Academic Press Inc, July 1972.

[79] J.J. Lerou and G.F. Froment. Velocity, temperature and conversion profiles
in fixed bed catalytic reactors. Chemical Engineering Science, 32(8):853–861,
1977.

160

[80] V. Levich. Physicochemical Hydrodynamics. Prentice Hall, June 1962.

[81] OpenCFD Limited. OpenFOAM programmer’s guide version 1.6, July 2009.

[82] A.N. Lipatnikov and J. Chomiak. Effects of premixed flames on turbulence
and turbulent scalar transport. Progress in Energy and Combustion Science,
36(1):1–102, February 2010.

[83] Ying Liu, Hua Feng, Michael G. Olsen, Rodney O. Fox, and James C. Hill. Tur-
bulent mixing in a confined rectangular wake. Chemical Engineering Science,
61(21):6946–6962, November 2006.

[84] S. A Logtenberg, M. Nijemeisland, and A. G Dixon. Computational fluid dy-
namics simulations of fluid flow and heat transfer at the wall-particle contact
points in a fixed-bed reactor. Chemical Engineering Science, 54(13-14):2433
2439, 1999.

[85] Rodrigo J. G. Lopes and Rosa M. Quinta-Ferreira. Numerical simulation of
trickle-bed reactor hydrodynamics with RANS-Based models using a volume of
fluid technique. Ind. Eng. Chem. Res., 48(4):1740–1748, 2009.

[86] Rodrigo J.G. Lopes and Rosa M. Quinta-Ferreira. CFD modelling of multiphase
flow distribution in trickle beds. Chemical Engineering Journal, 147(2-3):342–
355, April 2009.

[87] John L. Lumley and Henk Tennekes. A First Course in Turbulence. The MIT
Press, March 1972.

[88] Guy B. Marin. Advances in Chemical Engineering, Volume 31. Academic Press,
1 edition, December 2006.

[89] Duane Merrill and Andrew Grimshaw. High performance and scalable radix
sorting: A case study of implementing dynamic parallelism for GPU computing.
Parallel Processing Letters, 21:245, 2011.

[90] Gary E. Mueller. Prediction of radial porosity distributions in randomly packed
fixed beds of uniformly sized spheres in cylindrical containers. Chemical Engi-
neering Science, 46(2):706–708, 1991.

[91] Hubert Nguyen. GPU Gems 3. Addison-Wesley Professional, August 2007.

[92] M. Nijemeisland. Influences of catalyst particle geometry on fixed bed reactor
near-wall heat transfer using CFD. PhD thesis, Worcester Polytechnic Institute,
2003.

[93] M. Nijemeisland and G. D Dixon. Comparison of CFD simulations to experi-
ment for convective heat transfer in a gas-solid fixed bed. Chemical Engineering
Journal, 82(1-3):231 246, 2001.

161

[94] Michiel Nijemeisland, Anthony G Dixon, and E. Hugh Stitt. Catalyst design by
CFD for heat transfer and reaction in steam reforming. Chemical Engineering
Science, 59(22-23):5185 5191, 2004.

[95] S.J. Owen. A survey of unstructured mesh generation technology. In 7th Inter-
national Meshing Roundtable, volume 3, 1998.

[96] Steve Owen. An introduction to mesh generation algorithms, September 2005.

[97] Dimitrios V. Papavassiliou and Thomas J. Hanratty. Transport of a passive
scalar in a turbulent channel flow. International Journal of Heat and Mass
Transfer, 40(6):1303–1311, April 1997.

[98] Suhas Patankar. Numerical Heat Transfer and Fluid Flow. Taylor & Francis, 1
edition, January 1980.

[99] S.V Patankar and D.B Spalding. A calculation procedure for heat, mass and
momentum transfer in three-dimensional parabolic flows. International Journal
of Heat and Mass Transfer, 15(10):1787–1806, October 1972.

[100] Marisa N. Pedernera, Juliana Pina, Daniel O. Borio, and Veronica Bucala.
Use of a heterogeneous two-dimensional model to improve the primary steam
reformer performance. Chemical Engineering Journal, 94(1):2940, 2003.

[101] M. Peric and S. Ferguson. The advantage of polyhedral meshes. Dynamics,
24:45.

[102] J. W. Perram and M. S. Wertheim. Statistical mechanics of hard ellipsoids.
i: Overlap algorithm and the contact function. Journal of computational
physics(Print), 58(3):409416, 1985.

[103] John. W. Perram, John Rasmussen, Eigil Praestgaard, and Joel L. Lebowitz.
Ellipsoid contact potential: Theory and relation to overlap potentials. Physi-
cal Review E, 54(6):6565, December 1996. Copyright (C) 2009 The American
Physical Society; Please report any problems to prola@aps.org.

[104] Richard Pletcher, John Tannehill, and Dale Anderson. Computational Fluid
Mechanics and Heat Transfer, Second Edition. Taylor & Francis, 2 edition,
April 1997.

[105] Stephen B. Pope. Turbulent Flows. Cambridge University Press, 1 edition,
January 2000.

[106] P. A. Ramachandran and R. V. Chaudhari. Three-Phase Catalytic Reactors.
Gordon & Breach Science Pub, 1982.

162

[107] Vivek Ranade. Computational Flow Modeling for Chemical Reactor Engineer-
ing. Academic Press, 1st edition, September 2001.

[108] Vivek V. Ranade, Raghunath Chaudhari, and Prahant R. Gunjal. Trickle Bed
Reactors: Reactor Engineering & Applications. Elsevier, April 2011.

[109] A.J. Reynolds. The prediction of turbulent prandtl and schmidt numbers. In-
ternational Journal of Heat and Mass Transfer, 18(9):1055–1069, September
1975.

[110] L. H. S. Roblee, R. M. Baird, and J. W. Tierney. Radial porosity variations in
packed beds. AIChE Journal, 4(4):460–464, 1958.

[111] Henrik Rusche. Computational Fluid Dynamics of Dispersed Two-Phase Flows
at High Phase Fraction. PhD thesis, Imperial College of Science, Technology
and Medicine, London England, December 2002.

[112] Yousef Saad. Iterative Methods for Sparse Linear Systems, Second Edition.
Society for Industrial and Applied Mathematics, 2 edition, April 2003.

[113] Yousef Saad and Henk A. van der Vorst. Iterative solution of linear systems in
the 20th century. Journal of Computational and Applied Mathematics, 123(1-
2):1–33, November 2000.

[114] A. Sarkar and R.M.C. So. A critical evaluation of near-wall two-equation models
against direct numerical simulation data. International Journal of Heat and
Fluid Flow, 18(2):197–208, April 1997.

[115] OA Saunders and H. Ford. Heat transfer in the flow of gas through a bed of
solid particles. J. Iron Steel Inst, 141:291, 1940.

[116] J. R. Shewchuk. An introduction to the conjugate gradient method without the
agonizing pain, 1994. URL http://www-2. cs. cmu. edu/jrs/jrspapers. html#
cg, 1994.

[117] G. L.G Sleijpen, H. A Vorst, and D. R Fokkema. BiCGstab (l) and other hybrid
bi-CG methods. Numerical Algorithms, 7(1):75–109, 1994.

[118] Charles G Speziale, Ridha Abid, and E. C Anderson. A critical evaluation of
two-equation models for near wall turbulence. Technical report, June 1990.

[119] Chiranth Srinivasan and Dimitrios V. Papavassiliou. Prediction of the turbu-
lent prandtl number in wall flows with lagrangian simulations. Industrial &
Engineering Chemistry Research, December 2010.

[120] Alexander Stepanov and Meng Lee. The standard template library.
WG21/N0482, ISO PROGRAMMING LANGUAGE C PROJECT, 1995.

163

[121] S. Strobl. FRIEDRICH-ALEXANDER-UNIVERSITT ERLANGEN-
NURNBERG.

[122] P. K. Sweby. High resolution schemes using flux limiters for hyperbolic conser-
vation laws. SIAM Journal on Numerical Analysis, 21:995, 1984.

[123] M. Ertan Taskin, Anthony G Dixon, Michiel Nijemeisland, and E. Hugh Stitt.
CFD study of the influence of catalyst particle design on steam reforming reac-
tion heat effects in narrow packed tubes. Industrial and Engineering Chemistry
Research, 47(16):5966 5975, 2008.

[124] M.E. Taskin, A. Troupel, A.G. Dixon, M. Nijemeisland, and E.H. Stitt. Flow,
transport, and reaction interactions for cylindrical particles with strongly en-
dothermic reactions. Industrial & Engineering Chemistry Research, 2010.

[125] M.E. Taskin, A. Troupel, A.G. Dixon, M. Nijemeisland, and H. Stitt. Intra-
particle Diffusion/Reaction modeling for strongly endothermic reactions in low-
n tubes with cfd. In The 2008 Annual Meeting, 2008.

[126] Yoshihide Tominaga and Ted Stathopoulos. Turbulent schmidt numbers for
CFD analysis with various types of flowfield. Atmospheric Environment,
41(37):8091–8099, December 2007.

[127] H. van der Vorst. How to write a frequently-cited article. AUSTRALIAN
MATHEMATICAL SOCIETY GAZETTE, 31(2):94100, 2004.

[128] H. Versteeg and W. Malalasekera. An Introduction to Computational Fluid
Dynamics: The Finite Volume Method. Prentice Hall, 2 edition, February 2007.

[129] Henk A. van der Vorst. Iterative Krylov Methods for Large Linear Systems.
Cambridge University Press, 1 edition, November 2009.

[130] D. Vortmeyer and J. Schuster. EVALUATION OF STEADY FLOW PRO-
FILES IN RECTANGULAR AND CIRCULAR PACKED BEDS BY a VARI-
ATIONAL METHOD. Chemical Engineering Science, 38(10):16911699, 1983.

[131] Z. Warhaft. Passive scalars in turbulent flows. Annual Review of Fluid Me-
chanics, 32(1):203–240, January 2000.

[132] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensorial approach to com-
putational continuum mechanics using object-oriented techniques. Computers
in Physics, 12(6):620–631, November 1998.

[133] David C. Wilcox. Turbulence Modeling for CFD. Dcw Industries, Incorporated,
3rd edition, November 2006.

164

[134] H. Yamaguchi. Engineering Fluid Mechanics. Springer, 1st edition. edition,
November 2010.

[135] B. A Younis, C. G Speziale, and T. T Clark. A rational model for the turbulent
scalar fluxes. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Science, 461(2054):575, 2005.

165

	Washington University in St. Louis
	Washington University Open Scholarship
	8-29-2012

	Interstitial-Scale Modeling of Packed-Bed Reactors
	Daniel Parks Combest
	Recommended Citation

	Abstract
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Background and Motivation
	Objectives of this Work

	Previous and Related Studies
	Random Packing of Cylinders
	Interstitial-Scale Modeling of Packed Bed Reactors
	Sparse Linear System Solvers in CUDA

	Present Contributions
	Thesis Outline

	A Brief Background in Computational Fluid Dynamics
	Introduction
	The Process of Using Computational Fluid Dynamics
	Domain and Equation Discretization
	An Introduction to Domain Discretization
	Equation Discretization: The Finite Volume Method

	Closure

	Constructing Randomly Packed Beds of Cylindrical Particles
	Introduction
	Geometry Generation Using a Monte-Carlo Packing Algorithm
	Packing Methodology
	Results and Discussion

	Strategy for Mesh Generation
	Generating the Underlying Particle Geometry
	Determining the Initial Face Mesh
	Generating the Tetrahedral Volume Mesh
	Polyhedral Mesh Conversion
	Parallel Mesh Decomposition
	Results and Discussion

	Closure

	Interstitial-Scale Momentum Transport Modeling
	Introduction
	Momentum Transport Modeling
	Turbulent Momentum Transport Theory
	Momentum Modeling Methodology

	Results and Discussion
	Pressure-Drop Calculations
	Three-Dimensional Data
	Distributions in the Radial Direction
	Perpendicular Profiles

	Closure

	Interstitial-Scale Scalar Transport Modeling
	Introduction
	Scalar Transport Modeling
	Scalars and Turbulent Mixing
	Turbulent Scalar Transport Theory
	Scalar Transport Modeling Methodology

	Results and Discussion
	Transient Passive Scalar Transport
	F and E Curve Analysis
	Effect of Scalar-Flux Model

	Closure

	Implementing Sparse Linear System Solvers Based on CUDA in OpenFOAM
	Introduction
	The Graphics Processing Unit: A Shift in Computing Paradigm

	Theory and Implementation
	Implemented Algebraic Operations
	Parallel Preconditioned Conjugate Gradient Method with Normalized Residual
	Computational Workflow of Cufflink Solvers

	Results and Discussion
	Steady-State Scalar Transport
	Current Developments

	Closure

	Summary of Contributions and Future Work
	Constructing Packed Beds of Cylindrical Particles
	Interstitial-Scale Momentum Transport Modeling
	Interstitial-Scale Scalar Transport Modeling
	Implementing Sparse Linear System Solvers Based on CUDA in OpenFOAM
	Overall Comments

	to Appendix A Miscellaneous Mathematical Matter
	General Form of Gauss's Flux Theorem
	Owner-Neighbor Relationship in FVM
	Reynolds Averaging

	to Appendix B Programming Related Matter
	The Cufflink Library
	Multi-GPU BLAS Level 1 Operations

	Courant Number Definitions

	to Appendix C Additional Background in Transport Phenomena Concepts
	The k- Model
	The Turbulent Schmidt and Prandtl Numbers
	Churchill's Reinterpretation and A Look to the Future

	References

